Surf Saturn’s Rings In Amazing Raw Cassini Images From This Week

Sunlight and shadow combine in this photo of Saturn and its rings taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute

When Saturn is at its closest to Earth, it’s three-quarters of a billion miles away — or more than a billion kilometers! That makes these raw images from the ringed planet all the more remarkable.

Nearly every day, the Cassini spacecraft beams back what it sees at Saturn and the images are put up on this NASA website. This week, for example, it was checking out Saturn’s rings. We have a few of the pictures below, plus an older picture of the entire planet for reference.

Saturn’s rings are believed to be about 4.4 billion years old — that’s close to the age of the Solar System itself. Astronomers, however, have only known about them since the 1600s, when Galileo Galilei was trying to make sense of some funny-looking shapes on either side of the planet in his telescope.

According to NASA, the particles in the rings range from dust-sized to mountain-sized. Some of Saturn’s dozens of moons act as shepherds to the rings, keeping gaps open. You can read more about what we know about their origins here.

The Cassini spacecraft looks to the side of Saturn's rings in this picture from Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
The Cassini spacecraft looks to the side of Saturn’s rings in this picture from Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Bands prominently feature in this raw picture of Saturn taken by the Cassini spacecraft Aug. 17, 2014. Credit: NASA/JPL/Space Science Institute
Bands prominently feature in this raw picture of Saturn taken by the Cassini spacecraft Aug. 17, 2014. Credit: NASA/JPL/Space Science Institute
Different shades shine in this raw image of Saturn's rings taken by the Cassini spacecraft taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Different shades shine in this raw image of Saturn’s rings taken by the Cassini spacecraft taken Aug. 19, 2014. Credit: NASA/JPL/Space Science Institute
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.
Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.

Awesome Video of a Satellite in Orbit

Image of the TechDemoSat-1 in orbit, taken minutes after separation of the satellite from the Soyuz-2 launcher and shows a view of the Earth from Space, with the spacecraft's Antenna Pointing Mechanism in view. Credit: SSTL.

Here’s a great video from a camera mounted on the exterior of the TechDemoSat-1, an in-orbit technology demonstration mission from the UK. It launched on July 8, 2014 on a Soyuz-2, and the video shows the satellite moments after separation from the upper stage. The satellite even took a selfie, below.

The video shows the satellite’s rotation and reveals a spectacular vista of “blue marble” Earth (visible is cloudy skies over the Pacific, south of French Polynesia).

It’s interesting to note that some identified flying objects zip past the field of view: At :25 seconds, the Fregat upper stage of the Soyuz-2 rocket appears as a gold object passing away from the satellite left to right at a distance of approximately 60 meters. At :34 seconds a white “dot” crosses the frame left to right – which has been identified as one of the other satellites that shared the ride into orbit with TechDemoSat-1.

“It is very rare to see actual footage of our satellites in orbit,” said Sir Martin Sweeting, Executive Chairman of Surrey Satellite Technology Ltd (SSTL), the company behind the mission, “and so viewing the video taken from TechDemoSat-1 moments after separation from the rocket has been a hugely rewarding and exciting experience for everyone at SSTL. We are delighted with the progress of commissioning the TechDemoSat-1 platform, and are looking forward to the next phase – the demonstration of a range of new technologies being flown on this innovative mission.”

The satellite is roughly the size of a refrigerator but wieghs just 150kg. TechDemoSat (TDS-1) carries eight separate payloads from UK academia and industry plus other payloads from SSTL for product development. Find out more here from SSTL.

Scientists Discover 101 Geysers Erupting at Saturn’s Intriguing Icy Moon Enceladus

This dramatic view looks across the region of Enceladus' geyser basin and down on the ends of the Baghdad and Damascus fractures that face Saturn. The image, which looks approximately in the direction of Saturn, was taken from a more elevated viewpoint than other Cassini survey images of this area of the moon's south pole. Credit: NASA/JPL-Caltech/SSI

Scientists analyzing the reams of data from NASA’s Cassini orbiter at Saturn have discovered 101 geysers erupting from the intriguing icy moon Enceladus and that the spewing material of liquid water likely originates from an underground sea located beneath the tiny moons ice shell, according to newly published research.

The geysers are composed of tiny icy particles, water vapor and trace amounts of simple organic molecules. They were first sighted in Cassini imagery snapped during flyby’s of the 310-mile-wide (500 kilometers wide) moon back in 2005 and immediately thrust Enceladus forward as a potential abode for alien life beyond Earth and prime scientific inquisition.

Liquid water, organic molecules and an energy source are the key requirements for life as we know it.

The eruptions emanated from a previously unknown network of four prominent “tiger stripe” fractures, named Damascus, Baghdad, Cairo and Alexandria sulci, located at the south polar region of Saturn’s sixth largest moon.

Using imagery gathered over nearly seven years of surveys by Cassini’s cameras, researchers generated a survey map of the 101 geysers erupting from the four tiger strips.

This artist's rendering shows a cross-section of the ice shell immediately beneath one of Enceladus' geyser-active fractures, illustrating the physical and thermal structure and the processes ongoing below and at the surface.  Image Credit:  NASA/JPL-Caltech/Space Science Institute
This artist’s rendering shows a cross-section of the ice shell immediately beneath one of Enceladus’ geyser-active fractures, illustrating the physical and thermal structure and the processes ongoing below and at the surface. Image Credit: NASA/JPL-Caltech/Space Science Institute

The new findings and theories on the physical nature of how the geysers erupt have been published in two articles in the current online edition of the Astronomical Journal.

Scientists had initially postulated that the origin of the geysers could be frictional heating generated from back and forth rubbing of the opposing walls of the tiger stripe fractures that converted water ice into liquids and vapors. Another theory held that the opening and closing of the fractures allowed water vapor from below to reach the surface.

The geysers locations was eventually determined to coincide with small local hot spots erupting from one of the tiger stripe fractures after researchers compared low resolution thermal emission maps with the geysers’ locations and found the greatest activity at the warmest spots.

After later high-resolution data was collected in 2010 by Cassini’s heat-sensing instruments the geysers were found to coincide with small-scale hot spots, measuring only a few dozen feet (or tens of meters) across.

“Once we had these results in hand we knew right away heat was not causing the geysers, but vice versa,” said Carolyn Porco, leader of the Cassini imaging team from the Space Science Institute in Boulder, Colorado, and lead author of the first paper. “It also told us the geysers are not a near-surface phenomenon, but have much deeper roots.”

This graphic shows a 3-D model of 98 geysers whose source locations and tilts were found in a Cassini imaging survey of Enceladus' south polar terrain by the method of triangulation. While some jets are strongly tilted, it is clear the jets on average lie in four distinct "planes" that are normal to the surface at their source location. Image credit: NASA/JPL-Caltech/Space Science Institute
This graphic shows a 3-D model of 98 geysers whose source locations and tilts were found in a Cassini imaging survey of Enceladus’ south polar terrain by the method of triangulation. While some jets are strongly tilted, it is clear the jets on average lie in four distinct “planes” that are normal to the surface at their source location. Image credit: NASA/JPL-Caltech/Space Science Institute

“Thanks to recent analysis of Cassini gravity data, the researchers concluded the only plausible source of the material forming the geysers is the sea now known to exist beneath the ice shell. They also found that narrow pathways through the ice shell can remain open from the sea all the way to the surface, if filled with liquid water,” according to a NASA press release.

These are very exciting results in the search for life beyond Earth and clearly warrant a follow up mission.

“In casting your sights on the geysering glory of Enceladus, you are looking at frozen mist that originates deep within the solar system’s most accessible habitable zone,” writes Porco in her Captain’s Log summary of the new findings.

Surveyor's Map of Enceladus' Geyser Basin - On this polar stereographic map of Enceladus' south polar terrain, all 100 geysers have been plotted whose source locations have been determined in Cassini's imaging survey of the moon's geyser basin. Credit: NASA/JPL-Caltech/SSI
Surveyor’s Map of Enceladus’ Geyser Basin – On this polar stereographic map of Enceladus’ south polar terrain, all 101 geysers have been plotted whose source locations have been determined in Cassini’s imaging survey of the moon’s geyser basin. Credit: NASA/JPL-Caltech/SSI

The Cassini-Huygens mission is a cooperative project between NASA, the European Space Agency (ESA) and the Italian Space Agency (ASI). Cassini was launched by a Titan IV rocket in 1997 and arrived at Saturn in 2004.

In 2005 Cassini deployed the Huygens probe which landed on Titan, Saturn’s largest moon sporting oceans of organic molecules and another prime location in the search for life.

The Cassini mission will conclude in 2017 with an intentional suicide dive into Saturn to prevent contamination on Titan and Enceladus – but lots more breathtaking science will be accomplished in the meantime!

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Flaming Space Junk Makes Jaws Drop in Australia

Frame grab from a Youtube video of the brilliant meteor that flared over Australia overnight.

“It first looked like a plane with fire coming out of the tail.” — Aaron O.

“I have never seen anything like it. Big, bright and moving gently across sky – slower than a plane, not falling at all but moving across.” — Shannon H.

“Viewed from cockpit of aircraft at 37,000′. Was visible for two or three minutes.” — Landy T.

Flaming plane? Incandescent visitor from the asteroid belt? As the these comments from the AMS Fireball Log attest, the brilliant and s-l-o-w fireball that seared the sky over  southeastern Australia tonight was probably one of the most spectacular displays of re-entering space junk witnessed in recent years.

Ted Molczan, citizen satellite tracker and frequent contributor to the amateur satellite watchers SeeSat-L sitenotes that the timing and appearance almost certainly point to the decay or de-orbiting of the Russian Soyuz 2-1B rocket booster that launched the meteorological satellite Meteor M2 on July 8.


Meteor over New South Wales. Look closely near the end and you’ll see it disintegrate into small pieces.

The magnificent man-made meteor, weighing some 4,400 pounds (2,000 kg), was seen from Melbourne to Sydney across the states of Victoria and New South Wales around 10 p.m. Hundreds of people were stopped in their tracks.  Most noticed how slowly the fireball traveled and how long it continue to burn on the way down.

Spacecraft that reenter from either orbital decay or controlled entry usually break up at altitudes between 45-52 miles (84-72 km) traveling around 17,500 mph (28,000 km/hour) . Compression and friction from the ever-thickening air cause the craft, or in this case, the rocket booster, to slow down and heat up to flaming incandescence just like a hunk of space rock arriving from the asteroid belt. In both cases, we see a brilliant meteor, however manmade debris.

Jan 21, 2001, a Delta 2 third stage, known as a PAM-D, reentered the atmosphere over the Middle East. The titanium motor casing, weighing about 70 kg, landed in Saudi Arabia about 240 km from the capital of Riyadh. Credit: NASA, Orbital Debris Program Office
A Delta 2 third stage, known as a PAM-D, reentered the atmosphere over the Middle East on Jan. 21, 2001. The titanium motor casing, weighing about 154 lbs. (70 kg), landed in Saudi Arabia about 150 miles from the capital of Riyadh. Credit: NASA, Orbital Debris Program Office

Occasional meteoroids break apart in the atmosphere and scatter meteorites just as pieces of occasional satellites, especially large, heavy craft, can survive the plunge and land intact –  if a tad toasted.  Whether anything remains of Russian rocket stage or where exactly it fell is still unknown. Here are a few more photos of successful space junk arrivals.

The only person to be hit by manmade space debris was Lottie Williams in 1997.  She was unharmed. Credit: Tulsa World
The only person to be hit by manmade space debris was Lottie Williams in 1997. She was unharmed. Credit: Tulsa World

Reportedly, only one person has been struck by satellite debris. In 1997 Lottie Williams of Tulsa, Oklahoma was hit on the shoulder while walking by a small, twisted piece of metal weighing as much as a crushed soda can. It was traced back to the tank of a Delta II rocket that launched a satellite in 1996. I suppose it’s only a matter of time before someone else gets hit, but the odds aren’t great. More likely, you’ll see what alarmed and delighted so many southeastern Australians Thursday night: a grand show of disintegration.

It’s Hurricane Season and NASA is Ready Like Never Before

A member of NASA's Global Hawk fleet takes to the air. Credit: NASA/Armstrong Spaceflight Research Center.

What’s in the cards weather-wise for the 2014 Atlantic hurricane season? Although the start of astronomical summer for the northern hemisphere is still over a week away on June 21st, meteorological summer has already begun and with it, hurricane season, which runs from June 1st to November 30th.

This year, NASA is deploying its latest weapons in its hurricane-hunting arsenal to study tropical storms like never before, including two new Earth observing satellites and two uncrewed Global Hawk aircraft.

The Global Hawk flights are set to begin on August 26th from NASA’s Wallops Flight Facility based along the Virginia coast and run through September 29th. This coincides with the peak of the Atlantic hurricane season, when storm activity should be in full swing. The campaign is part of NASA’s airborne Hurricane and Severe Storm Sentinel mission, also known as HS3.

“This year, we’re going full-force into tropical cyclone research,” stated HS3 mission principal investigator Scott Braun in a recent press release from NASA’s Goddard Space Flight center headquartered at Greenbelt, Maryland. “We’ll have two Global Hawks equipped with six instruments. The new NASA-JAXA Global Precipitation Measurement (GPM) Core Observatory will be providing much higher quality data than previously available on rain structure in tropical cyclones in all ocean basins. The surface-wind monitoring ISS-RapidScat instrument to be launched to the International Space Station this season will provide valuable information on surface winds and storms.”

One of the key mysteries that the HS3 program is targeting is the role that a dry hot air phenomenon known as the Saharan Air Layer or SAL plays in hurricane formation and subsequent intensification. Some studies suggest the SAL feeds and triggers hurricane formation off of the north African coast —a mainstream view held by many meteorologists — while other studies imply that it may actually suppress it. HS3 will also give researchers the enhanced capability to monitor and track the formation of thunderstorms near the core of hurricanes and tropical storms and follow their progression.

To accomplish this, the HS3 Global Hawk aircraft will deploy devices that measure humidity, temperature and wind speeds known as dropsondes. All of the dropsondes to be deployed by NASA in the 2014 season are managed by the National Oceanic and Atmospheric Administration.

Global Hawk aircraft are ideal for hurricane tracking and hunting because they can stay aloft for up to 26 hours and fly at altitudes of over 18,000 metres. HS3 mission control for the Global Hawks is based out of NASA’s Wallops Flight Facility.

The first Global Hawk will provide data on the storm’s environment. The gear it uses to accomplish this will include the Cloud Physics Lidar (CPL), the Advanced Vertical Atmospheric Profiling System (AVAPS), and the Scanning High-resolution Interferometer Sounder (S-HIS).

Global Hawk number two will analyze the core storm regions to gauge temperature, humidity, surface winds and precipitation. It will use an array of instruments to accomplish this, including the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR), the Hurricane Imaging Radiometer (HIRAD), and Doppler Radar.

The dramatic night launch of the GPM satellite from Tanegashima, Japan. Credit: NASA/JAXA
The dramatic night launch of the GPM satellite from Tanegashima, Japan. Credit: NASA/JAXA

In orbit, the Global Precipitation Mission (GPM) will continue with the legacy of the Tropical Rainfall Measuring Mission (TRMM) and follow hurricanes through all phases of formation and decay. A joint NASA/JAXA mission, GPM was launched atop an H-IIA rocket earlier this year on February 27th from Tanegashima Space Center located on the southern tip of Kyushu Island in Japan. Of particular interest to GPM researchers is the formation of deep thunderstorms known as hot towers near the hurricane eyewall. GPM is located in an 65° degree inclination in low Earth orbit and will be able to track hurricanes and study hot tower formation as they move out of the tropics.

Newsflash- no sooner than we finished this article than we noticed that a rocket booster associated with the GPM launch is set to reenter soon on June 17th.

A diagram of RapidScat's future home on the ISS. Credit: NASA/JPL-Caltech/Johnson Spaceflight Center.
A diagram of RapidScat’s future home on the ISS. Credit: NASA/JPL-Caltech/Johnson Spaceflight Center.

And finally, RapidScat is set to head to the International Space Station later this year. Set to be mounted on the exterior of the Columbus module of the ISS, RapidScat will be an invaluable tool for monitoring ocean surface winds and is a cost effective replacement for the QuickScat satellite that ceased operation in 2009. RapidScat is set to launch on a SpaceX Falcon-9 rocket as part of the CRS-4 Dragon resupply mission slated for sometime this August.

These assets will give NASA the ability to study hurricanes that form during the 2014 season like never before. And speaking of the ISS, the live camera that now broadcasts HD images 24 hours a day will make for some interesting views of hurricanes online from space.

And what’s on tap for the 2014 Atlantic season? Well, forecast models out of Colorado State University suggest that an anomalous cooling early on in the Atlantic will lead to fewer than usual named storms, with perhaps only 9, as opposed to the usual average number of 12. Of these, perhaps 1-2 will reach category 3 or higher, as opposed to the average number of 3. A leading factor in this weakened trend is the possibility of a moderate to strong El Nino event earlier this year. Keep in mind through, that it only takes one destructive hurricane to wreak havoc, and these still can and do occur, even on off years.

Whatever the case, NASA and the NOAA will have all their tools at their disposal ready to study these powerful storms as the season rolls on.

Captain HiRISE, Space Detective Beams Martian History Album To Earth

A large crater in Meridiani Planum on Mars, about 20 kilometers (12.4 miles) northwest of Opportunity's landing site and 42 kilometers (24.6 miles) northwest of Endeavour Crater, where Opportunity is right now. The crater is older than Victoria Crater (another target of Opportunity's), which is clear because it is more filled in with sediments and eroded. Credit: NASA/JPL/University of Arizona

Mars, that ever-changing and beautiful Red Planet practically next door to us, is one of the most well-studied places humans have in the universe. We’ve sent spacecraft there for about 50 years. Yet there’s still a lot of mysteries out there.

NASA’s Mars Reconnaissance Orbiter is among the investigating spacecraft in the area checking out the planet’s past and looking for any interesting clues to tell us more about how Mars — and the Earth, and the solar system, and planets in general — formed. Mars had a wetter past (as the rovers have showed us), but where the water went and why its atmosphere are so thin are among the things scientists are trying to understand.

Luckily for us, the catalog of the University of Arizona’s High Resolution Imaging Science Experiment (HiRISE) is easily available online for all of us to marvel at. Here are just some of the pictures sent back from across the solar system. To see more, look below and check out this HiRISE web page.

This image from Mars shows a variety of sandy features: ripples, transverse aeolian ridges (which are larger and lighter), dunes (dark) and draa (very large bedforms that are greater than 1 kilometer or 0.62 miles). Credit: NASA/JPL/University of Arizona
This image from Mars shows a variety of sandy features: ripples, transverse aeolian ridges (which are larger and lighter), dunes (dark) and draa (very large bedforms that are greater than 1 kilometer or 0.62 miles). Credit: NASA/JPL/University of Arizona
A Martian alluvial fan on the floor of a 60-kilometer (38-mile) crater near the equator of Mars. Scientists commonly study these features to learn more about the Red Planet's wet past. Credit: NASA/JPL/University of Arizona
A Martian alluvial fan on the floor of a 60-kilometer (38-mile) crater near the equator of Mars. Scientists commonly study these features to learn more about the Red Planet’s wet past. Credit: NASA/JPL/University of Arizona
Shiny dunes on Mars taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Shiny dunes on Mars taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Dunes migrating across the surface of Mars. Picture taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona
Dunes migrating across the surface of Mars. Picture taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA/JPL/University of Arizona

Observing Alert – Space Station ‘Marathon’ Starts This Week

Time exposure showing the International Space Station making a bright pass across the northern sky. Credit: Bob King

What’s your favorite satellite? For me it’s the space station. Not only is it the brightest spacecraft in the sky, but it’s regularly visible from so many places. It’s also unique. Most satellites are either spent rocket stages or unmanned science and surveillance probes. The ISS is inhabited by a crew of astronauts. Real people.

Every time I see that bright, moving light I think of the crew floating about the cabin with their microgravity hair, performing experiments and pondering the meaning of it all while gazing out the cupola windows at the rolling blue Earth below. Starting Friday, the station will make up to 5 flybys a night from dusk till dawn. Marathon anyone?

The ISS’s orbit is inclined 51.6 degrees to the equator and passes overhead for anyone living between 51.6 degrees north and 51.6 degrees south latitude. It’s visible well beyond this zone also but never passes through the zenith outside of these limits. Traveling at a little more than 17,000 mph (27,350 kph) the station completes an orbit in 93 minutes.

Diagram showing the Earth in late May when the space station's orbital track is closely aligned with the day-night terminator. The astronauts see the sun 24-hours a day (midnight sun effect) while we on the ground get to watch repeated passes. Credit: Bob King
Diagram showing the Earth in late May when the space station’s orbital track is closely aligned with the day-night terminator. The astronauts see the sun 24-hours a day (midnight sun effect) while we on the ground get to watch repeated passes. Credit: Bob King

Most of the time we get one easy-to-see bright pass preceded or followed by a fainter partial pass. ‘Partials’ occur when the space station glides into Earth’s shadow and disappears from view during an appearance. But in late May-early June each year, the space station’s orbit and Earth’s day-night terminator nearly align. From the astronauts’ viewpoint, the sun never sets, much like seeing the midnight sun from the Arctic Circle. From down on the planet between latitudes 40-55 degrees north, the ISS remains in sunlight during repeated 90 minute-long orbits.

Instead of once or twice a night, we’ll see passes all night long from dusk till dawn starting about May 30. For instance, on May 31 from Minneapolis, Minn., skywatchers will be treated to four flybys at 12:12 a.m, 1:44 a.m., 3:20 a.m. and 11:23 p.m. The best nights are June 4 and 6 with five passes. By the 10th, the space station ‘marathon’ winds down and we return to 2-3 passes a night.


In late May-early June near the summer solstice, the sun doesn’t set on the International Space Station

The ISS always appears in the western sky first and travels east opposite to the movement of the stars. Low altitude flybys are fainter because there’s more lateral distance between you and the station. Even then the it still shines as bright as Vega. But when the ISS flies overhead, it’s only about 250 miles away, as close as it gets. Then it outshines everything in the night sky except Venus and the moon. Absolutely stunning.

The track of the ISS near Vega in Lyra. From right to left, the station is passing from sunlight into Earth's shadow. Its color transitions from white to red. Credit: Bob King
The track of the ISS near Vega in Lyra. From right to left, the station is passing from sunlight into Earth’s shadow. Its color transitions from white to red. Credit: Bob King

Have you ever noticed that satellites, including the ISS, appear to move in a jerky or zigzag fashion if you watch them closely? What you’re really are your own eyes not moving smoothly as you follow the satellite across the starry sky. My favorite passes are those where the space station fades away mid-flyby as it encounters Earth’s shadow. I always keep binoculars handy for these passes so I can watch the ISS turn color from pale yellow (caused by the gold Mylar plastic used in its many solar panels) to orange and red as it experiences one of its many orbital sunsets.

The phenomenon is easy to capture on camera too. Find out when the station will cross into shadow using the maps from Heavens-Above (see below) and point your tripod-mounted camera in that direction. I typically use a 35mm lens wide open to f/2.8 and a 30-second exposure at either ISO 400 – if still twilight – or 800 in a darker sky.

ISS
The multiple solar panels on the ISS give it the shape of the letter ‘H’ when viewed through a telescope. Other modules are visible too but hard to see as clearly.  Credit: NASA

There are many ways to find out when the ISS will pass over your city. My favorite are the listings in Heavens-Above. Login with your city and you’ll see a complete list with links to create maps of the station’s track across the sky. There’s also Spaceweather’s Satellite Flyby tracker. Type in your zip code and hit enter. Couldn’t be easier. You can also have NASA send you an e-mail when the most favorable (highest, brightest) passes occur by adding your e-mail to the Spot the Station site. Be aware though that you won’t be notified of some of the less favorable passes.


Half-minute video of the space station tracked through a telescope

One last pleasure of space station watching is seeing it in a telescope. Notoriously tricky to track when magnified, after minimal research I’ve come up with a method that allows at least a half dozen people to see it up close during a good flyby. One person mans the finderscope, keeping the station in the center of the crosshairs, while one happy observer after another takes their turn for a look through the eyepiece. Sure, it’s a little herky-jerky, but you’d be surprised how much you can see at magnifications as low as 60x. The solar panels really jump out. Observing solo might mean a couple tries positioning the moving target  ahead of where you think it will cross the field of view and then being ready to lock on and follow.

Well, I’m going to prep for the upcoming marathon. See you in spirit on the course!

Russian Proton Rocket Fails After Launch, Destroys Satellite: Reports

Archive picture of a Proton launch. Image credit: ILS

About nine minutes after launching towards space, a Russian Proton rocket reportedly crashed Friday (May 16), destroying an advanced satellite being carried on board. The incident happened about 540 seconds after liftoff, after the events of the video shown above.

Russian news site RT (among others) reported that the rocket and Express-AM4R mainly burned up in the atmosphere, meaning no physical damage would be caused to the ground. But this failure marks the latest of several for the Russian rocket type in recent years.

“The exact cause is hard to establish immediately; we will be studying the telemetry. Preliminary information points to an emergency pressure drop in a steering engine of the third stage of the rocket,” said Oleg Ostapenko, the head of the Russian Federal Space Agency (Roscosmos), in a quote cited in RT.

The third stage is called a Breeze-M and reportedly experienced an emergency engine shutdown after the rocket veered on to a different trajectory than it was supposed to. Proton launches have ceased at the Baikonur Space Center in Kazakhstan pending an investigation.

The satellite was supposed to provide “TV and radio broadcasting, broadband Internet access, multimedia services, telephony, [and] mobile communications,” according to the Russian Satellite Communications Company.

Media reports say there have been six failures of this rocket type in the last three or four years. You can read about some of the past failures on Universe Today here:

Rocket Failures May Spur Change In Russian Federal Space Agency: Report (October 2013)

Russian Rocket Fails During Launch, Explodes After Liftoff (July 2013)

– Weekend Update: SpaceX Success, Russian Launch Failure (December 2010)

Satellite Fails To Reach Proper Orbit (March 2008)

Spectacular Aurora Sneaks in Quietly, Rages All Night

Auroral arcs are topped by red rays light up the northeast while the moon and Jupiter shine off to the west in this photo taken last night over a small lake north of Duluth, Minn. Both moon and aurora light are reflected in puddles on the ice. Credit: Bob King

Expect the unexpected when it comes to northern lights. Last night beautifully illustrated nature’s penchant for surprise. A change in the “magnetic direction” of the wind of particles from the sun called the solar wind made all the difference. Minor chances for auroras blossomed into a spectacular, night-long storm for observers at mid-northern latitudes.

 

6-hours of data from NASA's Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you'll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA
6-hours of data from NASA’s Advanced Composition Explorer spacecraft, which measures energetic particles from the sun and other sources from a spot 1.5 million kilometers ahead of Earth toward the sun. By watching the Bz graph, you’ll get advance notice of the potential for auroras. Click to visit the site. Credit: NOAA

Packaged with the sun’s wind are portions of its magnetic field. As that material – called the interplanetary magnetic field (IMF) – sweeps past Earth, it normally glides by, deflected by our protective magnetic field, and we’re no worse for the wear. But when the solar magnetic field points south – called a southward Bz – it can cancel Earth’s northward-pointing field at the point of contact, opening a portal. Once linked, the IMF dumps high-speed particles into our atmosphere to light up the sky with northern lights. 

A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King
A large red patch briefly glowed above the bright green arc around 11:15 p.m. CDT last night May 3. The color was faintly visible with the naked eye. Credit: Bob King

Spiraling down magnetic field lines like firefighters on firepoles, billions of tiny solar electrons strike oxygen and nitrogen molecules in the thin air 60-125 miles up. When the excited atoms return back to their normal rest states, they shoot off niblets of green and red light that together wash the sky in multicolor arcs and rays. Early yesterday evening, the Bz plot in the ACE satellite data dipped sharply southward (above), setting the stage for a potential auroral display.

After an intial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs before erupting again around 11:30 p.m. Credit: Bob King
After an initial flurry of bright rays, the aurora scaled back to two bright, diffuse arcs with subtle rayed textures before erupting again around 11:30 p.m. Credit: Bob King

Nothing in the space weather forecast would have led you to believe northern lights were in the offing for mid-latitude skywatchers last night. Maybe a small possibility of a glow very low on the northern horizon. Instead we got the full-blown show. Nearly every form of aurora put in an appearance from multi-layered arcs spanning the northern sky to glowing red patches, crisp green rays and the bizarre flaming aurora. “Flames” look like waves or ripples of light rapidly fluttering from the bottom to the top of an auroral display. Absolutely unearthly in appearance and yet only 100 miles away.


VLF Auroral Chorus by Mark Dennison

I even broke out a hand-held VLF (very low frequency) radio and listened to the faint but crazy cosmic sounds of electrons diving through Earth’s magnetosphere. When my electron-jazzed brain finally hit the wall at 4 a.m., flames of moderately bright aurora still rippled across the north.

Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT. The whole northern sky lit up with green and red rays earlier this morning. While the green color was easy to see, the red was very pale. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in a camera during a time exposure. Credit: Bob King
Just when you thought it was over, the whole northern sky burst into rays around 1 a.m. CDT this morning. The human eye is much more sensitive to green light than red, one of the reasons why the aurora rarely appears red except in time exposures made with a camera. Credit: Bob King
Around 2 o'clock the northern lights displayed flaming when ripples of light pulse from top to bottom. It's very difficult to photograph, but here it is anyway! Credit: Bob King
Around 2 o’clock, flames pulsed from bottom to top in patchy aurora. It’s very difficult to photograph, but here it is anyway! Credit: Bob King

So what about tonight? Just like last night, there’s only a 5% chance of a minor storm. Take a look anyway –  nature always has a surprise or two up her sleeve.

US Spy Sat and SpaceX Set for Double Barreled Blastoffs After Critical Cape Canaveral Radar Revitalized

Atlas V rocket and Super Secret NROL-67 intelligence gathering payload following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, on March 24, 2014. Credit: Ken Kremer - kenkremer.com

The Florida Space Coast is about to ignite with a doubled barreled dose of spectacular rocket launches from Cape Canaveral over the next few days that were suddenly postponed two weeks ago amidst final launch preparations when an electrical short completely knocked out use of the US Air Force’s crucial tracking radar that is mandatory to insure public safety.

A pair of liftoffs vital to US National Security and NASA/SpaceX are now slated for April 10 and April 14 from Cape Canaveral Air Force Station after revitalizing the radar systems.

The tracking radar is an absolutely essential asset for the Eastern Range that oversees all launches from Cape Canaveral Air Force Station and the Kennedy Space Center in Florida.

The United Launch Alliance Atlas V is now slated to launch on Thursday, April 10 at 1:45 p.m. EDT.

Artwork for Super Secret NROL-67 payload launching on Atlas V rocket. Credit: NRO/ULA
Artwork for Super Secret NROL-67 payload launching on Atlas V rocket. Credit: NRO/ULA

The Atlas V rocket is carrying the super secret NROL-67 intelligence gathering spy satellite for the National Reconnaissance Office (NRO).

The SpaceX Falcon 9 is slated to launch on Monday, April 14 at 4:58 p.m. EDT.

The Falcon 9 is lofting a SpaceX Dragon cargo ship and delivering some 5000 pounds of science experiments and supplies for the six man space station crew – under a resupply contract with NASA.

The pair of liftoffs of the Atlas V and Falcon 9 boosters for the NRO and SpaceX/NASA had been slated just days apart on March 25 and March 30, respectively.

Falcon 9 and Dragon static fire test on March 8, 2014. Credit: SpaceX
Falcon 9 and Dragon static fire test on March 8, 2014. Credit: SpaceX

I was on site at Cape Canaveral Launch Pad 41 photographing the Atlas V rocket carrying the NRO payload in anticipation of the launch.

Shortly thereafter a fire of unexplained origin in the radar equipment unexpected occurred and knocked the tracking radar off line. When no quick fix was possible, both launches were delayed indefinitely pending repairs.

“The tracking radar experienced an electrical short, overheating the unit and rendering the radar inoperable,” said the USAF in a statement I received from the 45th Space Wing that controls the critical launch control systems, communications, computers and radar elements at the Eastern Range.

On Monday, April 7, the Air Force announced that range repairs were on target and that a retired, inactive radar had been brought back online.

“A radar that was previously in standby status has been brought back to operational status while the repair work is being accomplished,” said the USAF in a statement.

A fully functional tracking radar is an absolute requirement to ensure the success and safety of every rocket launch.

Insufficient maintenance and antiquated equipment due to a lack of US government funding and investment in infrastructure may be at fault for the electrical short.

The Eastern range radar must function perfectly in order to destroy any rocket in a split second in the event it abruptly veers off course towards the nearby populated areas along the Florida Space Coast.

The Atlas V rocket was rolled out earlier today to Space Launch Complex 41 in preparation for Thursday’s NROL-67 launch. The weather forecast shows a 90 percent chance of favorable weather conditions for launch.

The Dragon spacecraft, filled with about 4,600 lbs of cargo bound for the space station, is mated with Falcon 9.  Credit: SpaceX
The Dragon spacecraft, filled with about 4,600 lbs of cargo bound for the space station, is mated with Falcon 9. Credit: SpaceX

Stay tuned here for Ken’s continuing Atlas V NROL 67, SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13.

Ken Kremer