I love looking at unusual cloud formations, and these have to be some of the most intriguing. These long, horizontal rolls of clouds are called “cloud streets” and NASA’s Terra satellite had a “drive by” of these clouds, observing them over Hudson Bay, Canada on November 20, 2011 at 12:25 p.m. EST (17:25 UTC). These rows of clouds stretch from northwest to southeast over the Hudson Bay.
Cloud streets are long lines or bands of cumulus clouds that usually form within the lower one to three kilometers of the atmosphere, and come from eddies in the atmosphere.
According to NASA’s Earth Observatory and the Goddard Space Flight Center Flickr page, cloud streets form when cold air blows over warmer waters, while a warmer air layer—or temperature inversion—rests over top of both. The comparatively warm water of Hudson Bay gives up heat and moisture to the cold air mass above, and columns of heated air—thermals—naturally rise through the atmosphere. As they hit the temperature inversion like a lid, the air rolls over like the circulation in a pot of boiling water. The water in the warm air cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the wind.
Hudson Bay is a large body of saltwater located in northeastern Canada. Also in the image, are several snow-covered islands in Hudson Bay. The larger island to the north is South Hampton Island, and the smaller island east is Coats Island, and further east is Mansel Island.
Says Rob Manning, Curiosity Chief Engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif – in an exclusive interview with Universe Today for all fans of Curiosity and the unprecedented voyage of Science and Discovery about to take flight to Mars on November 26. Manning was also the Chief Engineer for the Entry, Descent and Landing (EDL) of NASA’s phenomenally successful Spirit, Opportunity and Phoenix Mars robotic explorers.
Read Rob Manning’s special greeting about Curiosity to readers of Universe Today below.
Meet Rob and other JPL Mars engineers in the cool Video describing the ‘Challanges of Getting to Mars’ – below
Curiosity is NASA’s next Mars rover and her MMRTG nuclear power source has been installed at the launch pad through special access panels in the Atlas booster payload fairing and protective aeroshell on Nov. 17.
The huge 1-ton robot is now due to blastoff for the Red Planet on Saturday, November 26 at 10: 02 a.m. EST from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida. The launch window is open for one hour and 43 minutes.
Liftoff was postponed by one day to replace a battery in the on board flight termination system required in case the rocket were to veer off course.
Here is the very latest Curiosty update status from JPL’s Rob Manning as of Sunday evening – Nov. 20
“All seems well here at JPL in Pasadena,” Manning told me.
“We are having our last rehearsal at 1:30 a.m. on Monday, Nov 21.
“Weird ! As of a few hours ago the last human hands (in gloves) closed out the hatch door on the entry aeroshell and the two large doors in the rocket fairing have been closed. What is weird about it is that finally finally she is powered up and alone.”
“She has never been this alone before. Ironically all eyes are still upon her. Our team is monitoring her vitals 24-7,” Manning explained.
“The Challenges of Getting to Mars’ – Video caption: Meet Curiosity Chief Engineer Rob Manning and more members of the Curiosity Mars Rover Engineering Team at NASA’s Jet Propulsion Laboratory explain the final assembly of Curiosity at the Kennedy Space Center and how Curiosity will land use the rocket assisted Sky Crane.
“By this time next week, Curiosity will be heading for the home she was meant for.”
“Soon she will feel the cold walls of deep space on her radiators. The x-band transmitter and receiver will have an broken view of the sky (with Earth but a shiny blue dot off to her left). The penetrating rays of the sun will push electrons out of the solar panels and keep her battery charged. (And perhaps a few solar flares will pass by, just to keep things interesting.)”
“Earth can be a rough place for a rover not designed for our planet. Worse are those of us who have poked and prodded, tested beyond spec and pushed in ways that can only be done on Earth.”
“Sometimes we over-do it and push near the breaking point. We are not perfect after all but we need to know that she will do what needs to be done for her very own survival. Well she seems to have survived us.”
“Of course Curiosity will never really be alone. We are right there with her every step of the way. She is us.”
“I will be at JPL during launch,” said Manning.
The JPL team is also working day and night to insure that the do or die Mars Insertion burn fires as planned.
“Once the Deep Space Network acquires the signal, I want to be there to make sure that we did not fail her and that the transition from being the Atlas’s payload to interplanetary cruise is as painless as possible.”
“It will be a bit of a surprise if we did not have a bit of a surprise – but we are ready and so is Curiosity”
Curiosity and the Atlas V booster that will propel her to Mars will roll out to Launch Pad 41 at the Florida Space Coast on Friday morning, Nov. 24, the day after the Thanksgiving holiday.
NASA TV will carry the MSL launch live
After a 10 month interplanetary journey to Mars, Curiosity will plummet through the atmosphere and fire up the rocket powered descent stage and ‘Sky Crane’ to safely touchdown astride a layered mountain at the Gale Crater landing site in August 2012.
Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.
Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
Imagine yourself as an astronaut performing scientific experiments and crowd-stunning aerobatics. Suddenly, ear-stinging, blaring alarms go off. Mission Control radios that all space station personnel should evacuate to the rescue vehicles because a piece of deadly space debris is headed your way.
This scenario isn’t science fiction. In June of 2011, Universe Today reported that “six crew members on board the International Space Station were told to take shelter in…two Russian Soyuz spacecraft.” As more satellites reach the end of their operational lives, there will be more space junk emergencies in space and on the ground, undoubtedly with less pleasant results. Our young space faring society has been lucky so far: the ISS has been able to steer clear of space junk, and falling, uncontrolled satellites have thankfully fallen into the oceans. But one day our luck will run out.
There is hope, however. A new paper titled Removing Orbital Debris with Lasers published on arXiv proposes using a high-power pulsed laser system from Earth to create plasma jets on pieces of space debris, slowing them slightly, causing them to re-enter and burn up in the atmosphere or fall into the ocean.
Claude Phipps and his team from a high-tech company named Photonic Associates outlined their method, called Laser Orbital Debris Removal (LODR) which uses 15-year-old laser technology which is now readily available.
The team recognized that “thirty five years of poor housekeeping in space have created several hundred thousand pieces of space debris larger than one cm in the …low Earth orbit (LEO) band.” These may not seem like large objects, but with the energy density of dynamite, even a large paint chip can cause major damage.
Removing debris is an urgent task because the amount of debris currently in space poses “runaway collisional cascading,” with objects colliding with each other, creating even more pieces of debris.
There are other solutions besides creating a plasma jet, but they tend to be both less effective and more expensive. A laser could be used to grind down an object into dust, but this would create an uncontrollable molten spray, making the problem worse.
Grappling the object or attaching a de-orbiting kit can both be effective. Unfortunately, they require a lot of fuel due to the need to accelerate to catch the object, which leads to more a more costly solution – about $27 million per object. Finally, there is the nuclear option of releasing a gas, mist, or aerogel to slow down objects, but this would affect both operational and non-operational spacecraft.
In their paper, Phipps and his team say that removing space junk by creating a jet of plasma of a few seconds in length with a laser is the best solution, costing only $1 million per big object removed and a few thousand for small objects. Furthermore, smaller objects can be de-orbited in merely one orbit, and a constellation of “167 different objects can be addressed (hit with a laser) in one day, giving 4.9 years to re-enter” the atmosphere.
All 167 objects must carefully be tracked as to not change their paths of doom for the worse; however, it is possible to use the system to adjust orbits of space junk. That being said, current levels of space debris tracking are not adequate to implement LODR, but there is a dual benefit of easier removal and better avoidance with improve debris tracking. Better tracking will then allow for better control of the re-entry point and orbit modification with LODR, if necessary.
How can a light-push from a laser modify an orbit? While the laser doesn’t blast the debris out of the air, it is still effective because of the nature of orbital mechanics.
Imagine a cubesat that needs to be disposed of in a low altitude, perfectly circular orbit. The tap from a high powered laser and the plasma jet generated would push the cubesat out, farther away from Earth (higher in altitude) and into a more elliptical orbit.
This might seem like a horrible idea during the time the cubesat spends at a higher altitude, but as it comes half circle, it clips the atmosphere at a lower altitude since the ellipse is warped due adjustments by the laser. Since a low altitude corresponds to more drag, the cubesat slows down and locks into a lower orbit. This is why highly elliptical orbits are called transfer orbits, as they change lanes on the highway of space. Now, with the transfer orbit complete, the cubesat is slowed enough so that its orbit can no longer be achieved by the cubesat. The cubesat then falls out of the sky.
The meat of the research for LODR deals with the atmosphere as the laser can become unfocused if the atmospheric turbulence is not addressed. LODR is complicated because the turbulence in the atmosphere causes distortions like those you see above a road on a hot summer’s day or like those you see when looking through a glass bottle. This complication is in addition to the aiming ahead needed to hit a target, just like the aiming ahead needed to hit a running player in dodgeball.
There are two ways to cancel turbulence. First, one can shine a laser at a known spot in the atmosphere, exciting the sodium atoms at that location. Knowing the height of this dot in the sky, the system can then flex the reflecting mirror to bring the dot into focus moment-by-moment. It can then fire freely.
A second way involves the use of a Phase Conjugate (PC) mirror, otherwise known as a retroflector, which could automatically undo turbulence by sending light who’s phase variation has been reversed. That is to say it will send back an “oppositely distorted” laser beam whose distortion is un-done by the atmosphere creating a sharp laser beam.
LODR is not a silver bullet. Wired reports that “the main criticism of such a project would come from the international community, which might fear that a powerful enough laser could be used for military purposes such as hitting enemy satellites.” Wired then conducted an interview with Kessler; NASA’s former Senior Scientist for Orbital Debris Research who said, because of the politics involved, “any laser proposal is dead on arrival.” However, Phipps asserts to Wired that “If we get the right international cooperation, no one would believe the laser to be a weapon in sheep’s clothing.”
There are still unaddressed problems, as Kessler points out, hitting the wrong part of a space object would have disastrous results. “You might hit the wrong part of a satellite or could vaporize enough to cause it to explode.” In spite of that, careful study of the object could avoid any danger.
An unusual October storm dumped wet heavy snow across much of the Northeast US over the weekend, as much as 32 inches (81 centimeters) in some areas. Nicknamed “Snowtober,” the storm left as many as 3 million people without power at the snowstorm’s peak, and was blamed for the deaths of at least 10 people. In this images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite, a swath of snow sweeps from West Virginia northeastward to Maine, as seen on Oct. 30, 2011. Clouds hover east and west of the snow, blocking the satellite sensor’s view of western Pennsylvania and parts of the Atlantic Ocean.
The storm broke snowfall-total records in many cities, with strong winds and heavy tree damage as the heavy snow easily clung to trees which still had their leaves, snapping branches and power lines.
The National Polar-orbiting Operational Environmental Satellite System Preparatory Project, or NPP, launched successfully on a Delta 2 rocket early today at at 5:48 a.m. EDT 09:48 GMT (or precisely at 2:48:01.828 a.m. PDT, according to NASA’s Twitter feed). The next generation satellite will measure both global climate changes and key weather variables, as well as test new technologies for future Earth observing satellites.
The spacecraft has also successfully separated and is now in orbit. The separation video is below.
[/caption]
When it comes to space flight pedigrees, few companies have one that can compare to Aerojet’s. The California-based company has a resume on space operations that is as lengthy as it is impressive. Universe Today sat down with Julie Van Kleeck – the firm’s vice-president of space and launch systems business unit.
Van Kleeck spoke extensively about the company’s rich history, its legacy of accomplishments – as well as what it has planned for space missions of the future.
Universe Today:Hi Julie, thanks for taking the time to chat with us today.
Van Kleeck: “My pleasure!”
Universe Today:How long has Aerojet been in business and what exactly is it that your company produces?
Van Kleeck: “We’ve been in the space business – since there was a space program – so since at least the 50s. We’ve dealt with both launch systems as well as space maneuvering systems, those components that enable spacecraft to move while in space.”
Universe Today:What about in terms of human space flight, when did Aerojet get involved with that?
Van Kleeck: “We first started working on the manned side of the house back during the Gemini Program, from there we progressed to Apollo, then shuttle and we hope to be involved with SLS (Space Launch System) as well.”
Universe Today: I understand that your company also has an extensive history when it comes to unmanned missions as well, care to tell us a bit about that?
Van Kleeck: “We have been on every discovery mission that has ever been launched, we have touched every part of space that you can touch.”
Universe Today:Some aerospace companies only produce one product or service, why is Aerojet’s list of offerings so diversified?
Van Kleeck: “We’re quite different than our competitors in that we provide a very wide-range of products to our customers. We’ve provided the liquid engines that went on Titan and now we provide the solids that go on the Atlas V launch vehicle as well as the small chemical and electrical propulsion systems that are utilized on some satellites.”
Universe Today:Does this mean that Aerojet places more importance on one space flight system over others?
Van Kleeck: “We view each of the products that we produce as equally important. Having said that, the fact that Aerojet offers a diversity of products and understands each of them well – sets us apart from our competitors. Firms that only produce one type of product tend to work to sell just that one product, whereas Aerojet’s extensive catalog of services allows us to be more objective when offering those services to our customers.”
Universe Today:When you look back, what is one of the most interesting projects that Aerojet has been involved with?
Van Kleeck: “I think as I look back over the past decade, New Horizons comes to mind, it was the first Atlas to launch with five solids on it. I look at that mission in particular as a major accomplish for not just us – but the country as well.”
Universe Today:What does the future hold for Aerojet?
Van Kleeck: ”We’re working on the Orion crew capsule right now with both liquid propulsion for it as well as solid propulsion for the abort test motor. We’re very much looking forward to seeing Orion fly in the coming years. We are currently putting into place the basic infrastructure to support human space exploration. We are working with both commercial crewed as well as Robert Bigelow to provide propulsion systems that work with their individual system – because no one system fits everyone. We are pleased to be offer systems for a wide variety of space exploration efforts.”
Universe Today:Julie, thanks for taking the time to chat with us today!
Van Kleeck: “No problem at all – it was my pleasure!”
Aerojet’s products will be on full display Nov. 25 as, if everything goes as planned the Mars Science Laboratory (MSL) rover Curiosity is set to launch on that day. Four of the company’s solid rocket motors or SRMs will help power the Curiosity rover on its way to the red planet.
For a taste of what Aerojet’s SRMs provide – please view the NASA video below.
A new satellite that will test key technologies and instruments for the next generation of climate and weather-monitoring satellites is scheduled to launch on Friday, Oct. 28, 2011. The NPOESS Preparatory Project (NPP) mission has a planned liftoff from Vandenberg Air Force Base in California at 5:48 a.m. EDT/2:48 a.m. PDT.
NASA put out this video last week and we missed covering it, but this is a very interesting little video that takes you on a narrated global tour of tens of millions of fires detected from space between July 2002 and July 2011. Yes, that’s right, tens of millions of fires on Earth, and these aren’t tiny little campfires — they are big enough to be seen from space. The video was created from new satellite data visualizations, and is combined with satellite views of vegetation and snow cover to show how fires relate to seasonal changes. The research helps scientists understand how fire affects our environment on local, regional and global scales. Continue reading “As the World Burns: Satellites Watch Fires Around the World”
The German Aerospace Center (DLR) has identified the ROSAT’s satellite final resting place as the Bay of Bengal, off South Asia. The minivan-sized satellite re-entered the atmosphere at 0150 GMT on Sunday, October 23, 2011 (9:50 p.m. EDT on Oct. 22) and any pieces of the 21-year old satellite that survived the fiery trip likely crashed into the water. However, the ROSAT_Re-entry Twitter feed reports there is still some ambiguity, and re-entry likely took place sometime between 01:50 and 01:51, with error bar of plus or minus 7 minutes. That could make a huge difference in where debris landed. (Updated with new map, below.)
No sightings of any debris have been reported. Most of ROSAT’s parts were expected to burn up in the atmosphere, but up to 30 fragments weighing a total of 1.87 tons (1.7 metric tons) may have crashed.
The Bay of Bengal is located between India and Myanmar.
Yesterday, some estimations put the satellite as possibly re-entering over Northern Thailand, but again, no debris was reported. DLR now says the more precise determination of the time and location of re-entry was based on the evaluation of data provided by international partners, including the USA’s Space Command.
“With the re-entry of ROSAT, one of the most successful German scientific space missions has been brought to its ultimate conclusion. The dedication of all those involved at DLR and our national and international partners was exemplary; they are all deserving of my sincere thank you,” said Johann-Dietrich Wörner, Chairman of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Executive Board.
It’s the dead zone. Approximately 22,000 miles above the Earth, $300 million worth of retired satellites are simply taking up space in geosynchronous orbit. Like anything a bit elderly, they might have problems, but they’re far from useless. There are a hundred willing volunteers waiting to be retrofitted, and all they need is the wave of a magic wand to come back to life. The DARPA Phoenix program might just be the answer.
Communication satellites in geosynchronous orbit (GEO) enable vital interchanges between warfighters. When one fails, it means an expensive replacement. But what remains isn’t a burned-out shell – it’s still a viable piece of equipment which often contains still usable antennae, solar arrays and other components. The only problem is that we haven’t figured out a way to recycle them. Now DARPA’s Phoenix program is offering an answer by developing the technology necessary to “harvest” these non-working satellites and their working parts. “If this program is successful, space debris becomes space resource,” said DARPA Director, Regina E. Dugan.
However, as easy as the idea might sound, it’s going to take a lot of cooperation from a variety of applied sciences. For example, incorporating the robotics which allows a doctor to perform telesurgery from a remote location to the advanced remote imaging systems used for offshore drilling which views the ocean floor thousands of feet underwater. If this technology could be re-engineered to work at zero gravity, high-vacuum and under an intense radiation environment, it’s entirely possible to re-purpose retired GEO satellites.
“Satellites in GEO are not designed to be disassembled or repaired, so it’s not a matter of simply removing some nuts and bolts,” said David Barnhart, DARPA program manager. “This requires new remote imaging and robotics technology and special tools to grip, cut, and modify complex systems, since existing joints are usually molded or welded. Another challenge is developing new remote operating procedures to hold two parts together so a third robotic ‘hand’ can join them with a third part, such as a fastener, all in zero gravity. For a person operating such robotics, the complexity is similar to trying to assemble via remote control multiple Legos at the same time while looking through a telescope.”
Now enter DARPA’s System F6 – the master satellite. It will host affordable, smaller scale electronics and structural models that provide on-board control. These smaller units will be able to communicate with each other and the master satellite – working together to harness the potential of the retired satellite’s assets. Right now, the Phoenix program is looking for the automation technology for creating a new breed of “satlets,” or nanosatellites. These can be sent into space much more economically through existing commercial satellite launches and then robotically attached to the elderly satellites to create new systems.
System F6 (Future, Fast, Flexible, Fractionated, Free-Flying Spacecraft United by Information Exchange) will be fascinating in itself… a hive of wirelessly-interconnected modules capable of communicating with each other – sharing resources among themselves and utilizing resources found elsewhere within the cluster. “The program is predicated on the development of open interface standards—from the physical wireless link layer through the network protocol stack, including the real-time resource sharing middleware and cluster flight logic—to enable the emergence of a space “global commons” which would enhance the mutual security posture of all participants through interdependence.” says the DARPA team. “A key program goal is the industry-wide promulgation of these open interface standards for the sustainment and development of future fractionated systems.”
Right now the Phoenix program is looking for high tech expertise needed to develop a payload orbital delivery system. The PODS units will be needed to safely house the satlets during launch. The next step is an independent servicing station which will be placed in GEO and connected to PODS. The service module will be home to equipment such as mechanical arms and remote vision systems… the virtual “operating” center to make the DARPA Phoenix program a success.