Sea Launches Sends Telstar 14/Estrela do Sul 1 Into Orbit

Image credit: Boeing

Sea Launch successfully launched the Telstar 14/ Estrela do Sul 1 communications satellite into orbit over the weekend. The Zenit 3SL rocket lifted off from the floating Sea Launch platform on January 10 at 0413 UTC (11:13 pm EST January 11), and the dual satellite separated from the upper stage shortly after that. The satellite will provide television, data, and communication services to the Americas and the North Atlantic Ocean.

Sea Launch Company successfully deployed Loral?s Telstar 14/Estrela do Sul 1 communications satellite into orbit tonight. All systems aboard the Space Systems/Loral 1300-series spacecraft are reported in excellent condition.

The Sea Launch Zenit-3SL rocket lifted off at 8:13 pm PDT (4:13 GMT, January 11) from the Odyssey Launch Platform, positioned at 154 degrees West Longitude, on the Equator. All systems performed nominally throughout the flight. The Block DM-SL upper stage inserted the 4,694 kg (10,350 lb) spacecraft into a high perigee geosynchronous transfer orbit right on target. As planned, a ground station in Western Australia received the spacecraft?s first signal, shortly after spacecraft separation. The spacecraft?s final orbital position will be 63 degrees West Longitude.

Jim Maser, president and general manager of Sea Launch, said after completion of the mission, ?This is the first launch of the year for the industry and it?s a great way to start the year for Sea Launch, for Loral Space & Communications and for the industry. This is our second mission for our Loral customer and the first of three Loral missions we plan to complete early this year.?

The Telstar 14/Estrela do Sul 1 satellite was built by Space Systems/Loral and will be operated by Loral Skynet do Brasil. The spacecraft carries 41 high-powered Ku-band transponders with five unique and interconnecting coverage beams. The satellite will serve growing markets such as broadcast video and cable programming, Internet backbone connectivity, VSAT data and other telecommunications services. More than fifty percent of the satellite?s power will be focused on Brazil, providing dedicated Ku-band solutions for the Brazilian marketplace. The satellite?s other beams will cover the Americas and the North Atlantic Ocean, where Connexion by Boeing? will use the satellite to support its Internet-to-aircraft service.

Sea Launch Company, LLC, headquartered in Long Beach, Calif., is a world leader in providing heavy-lift commercial launch services. This international partnership offers the most direct and cost-effective route to geostationary orbit. With the advantage of a launch site on the Equator, the reliable Zenit-3SL rocket can lift a heavier spacecraft mass or provide longer life on orbit, offering best value plus schedule assurance. For additional information and images of this successfully completed mission, visit the Sea Launch website at: www.sea-launch.com

Original Source: Boeing News Release

First Double Star Launched

Image credit: ESA

The first of two Double Star satellites was successfully launched Monday on board a Chinese Long March 2C rocket. The satellite, called TC-1, was launched from the Chinese space port at Xichang into an equatorial orbit, and the second satellite, TC-2 will launch next into a polar orbit. The two satellites will work with the previously-launched Cluster satellites to study the effect of the Sun on the Earth’s atmosphere and magnetosphere. The European Space Agency supplied 8 scientific instruments for the satellite.

This evening, the Chinese National Space Administration (CNSA) successfully launched TC-1, the first of two scientific satellites known as Double Star.

The spacecraft, called ‘Tan Ce 1’ which in Chinese means ‘Explorer 1,’ took off from the Chinese launch base in Xichang, in Sichuan province, on board a Long March 2C launcher.

ESA has contributed to the Double Star mission by providing eight on-board scientific instruments. Double Star follows the footsteps of ESA’s Cluster mission and will study closely the interaction between the solar wind and the Earth’s magnetic field.

The People’s Republic of China and ESA have a long history of scientific collaboration. The first co-operation agreement was signed in 1980, to facilitate the exchange of scientific information. Thirteen years later, the collaboration focused on a specific mission, ESA’s Cluster, to study the Earth’s magnetosphere. Then, in 1997, the CNSA invited ESA to participate in Double Star, a two-satellite mission to study the Earth’s magnetic field, but from a perspective which is different from that of Cluster and complementary to it.

An agreement to develop this joint mission was signed on 9 July 2001 by ESA’s Director General, Antonio Rodota, and Luan Enjie, Administrator of the CNSA.

ESA’s contribution to the mission includes eight scientific instruments, of which seven are spares from the Cluster mission, and support to the ground segment for four hours each day via ESA’s satellite tracking station in Villafranca, Spain.

Today’s launch sees the culmination of these joint efforts and marks another important step in the collaboration between CNSA and ESA. The instruments on board Double Star are the first ever European ones to be flown on a Chinese satellite. Together with those built by Chinese scientists, they will work in synergy with those mounted on board the four Cluster spacecraft.

The positions and orbit of the two Double Star satellites have been carefully defined to allow the study of the magnetosphere on a larger scale than that possible with Cluster alone. An example of this co-ordinated activity is the study of the substorms producing the bright aurorae.

The exact region where they form is still unclear but the simultaneous high-resolution measurements to be made by Double Star and Cluster are expected to give an answer.

Professor David Southwood, the Director of ESA’s Scientific Programme, said: “Double Star is a win-win project. Not only will European scientists participate in a new mission, at a very low cost, but they will also see an increased scientific return from the four ESA Cluster satellites. Chinese scientists will equally benefit of this, since they already participate in the Cluster mission. These are the great advantages of an historic international collaboration.”

Original Source: ESA News Release

Soyuz Launches Israeli Satellite

Image credit: Arianespace

A Soyuz rocket with a Fregat upper stage successfully launched Israel’s AMOS 2 telecommunications satellite on Saturday. The launch occurred at 2130 UTC (4:30 pm EST) from the Baikonur Cosmodrome, and was jointly managed by Arianespace and Starsem. AMOS 2 will supply the Middle East, Europe and Eastern US with satellite broadcasting. This was the 1,684th mission for the Soyuz family of vehicles.

The 1,684th launch of a Soyuz family rocket (using the Soyuz-Fregat version) took place at the Baikonur Cosmodrome in Kazakhstan. The launcher lifted off as scheduled at 2:30 a.m. local time on December 28 (i.e. 21:30 UTC on Saturday December 27, 10:30 p.m. Paris time on December 27).

Starsem, Arianespace and their Russian partners confirmed that the Fregat upper stage accurately injected the Amos 2 satellite into the targeted orbit. This was the Soyuz launcher’s first geostationary transfer orbit (GTO) mission. Three successive burns of the Fregat upper stage were performed to inject the Amos 2 spacecraft on its transfer orbit 6 hours and 45 minutes after lift-off.

To comply with Israel Aircraft Industries’ (IAI) requirements, Arianespace and Starsem had decided, in agreement with Israeli operator, Spacecom Ltd., that the Amos 2 spacecraft launch, initially planned by an Ariane 5, would be performed by a Soyuz launch vehicle. This decision reflects the policy set up by Arianespace and Starsem to meet customers’ needs, providing enhanced flexibility based on a family of launch vehicles.

Today’s launch was also the 12th carried out by Starsem, which is responsible for international marketing of the Soyuz launcher, as well as for its operation. Starsem’s shareholders are Arianespace, EADS, the Russian Aviation and Space Agency and the Samara Space Center.

The new successful Soyuz launch clearly reflects the industrial capabilities of the Samara Space Center as well as the availability of the Russian teams in charge of Soyuz operation, managed by the Russian Aviation and Space Agency.

In 1996, Arianespace had already launched the first Israeli communications satellite, Amos 1. Co-located with Amos 1, at 4 degrees West over the Gulf of Guinea, Amos 2 will provide additional high-power transmission capacity for Europe, the Middle East and the East Coast of the United States. The satellite was designed and built by MBT Space Division of IAI. Weighing 1,374 kg at liftoff and equipped with 14 transponders, Amos 2 will be operated by Spacecom Ltd.

Original Source: Arianespace News Release

Delta II Launches GPS Satellite

Image credit: Boeing

A Boeing Delta II rocket successfully launched a Global Positioning System satellite for the US Air Force on December 21. The rocket lifted off from Cape Canaveral at 0805 UTC (3:05 EST), and the satellite was deployed 68 minutes later. The satellite, designated GPS IIR-10 was the tenth of 21 IIR class GPS satellites that Boeing will be responsible for launching. The next scheduled Delta launch will also be carrying a GPS satellite; it’s expected to lift off in early 2004.

A Boeing [NYSE: BA] Delta II rocket has successfully deployed a Global Positioning System (GPS) satellite for the U.S. Air Force. This satellite, GPS IIR-10, was the tenth of 21 IIR class GPS satellites Boeing will launch for the Air Force.

Liftoff of the Delta II occurred at 3:05 a.m. EST from Space Launch Complex 17A, Cape Canaveral Air Force Station, Fla. The deployment sequence was completed in 68 minutes at 4:13 a.m. EST.

The GPS satellite, which will orbit nearly 11,000 miles above the Earth, was launched aboard a Delta II 7925-9.5 vehicle.

?Our Delta team has done an outstanding job in supporting the customer, by providing another flawless launch,? said Dan Collins, vice president and program manager, Delta Programs, for Boeing. ?This successful `Delta launch re-affirms our pride in being a part of the GPS program, which is so vital to our nation?s national security.?

Operated by U.S. Air Force Space Command, the GPS constellation provides precise navigation and timing to worldwide military and civilian users 24-hours a day, in all weather conditions. For the warfighter, GPS has enabled the development and use of cost-effective precision guided munitions, and is considered a major component of DoD?s transformational architecture plans.

The next Delta II mission will carry the GPS IIR-11satellite, with the launch scheduled for the first quarter of 2004 from SLC-17B, Cape Canaveral Air Force Station, Fla.

Boeing Launch Services Inc., based in Huntington Beach, Calif., is responsible for the marketing and sales of the Sea Launch and Delta family of launch vehicles to Boeing national security, civil space and commercial customers.
A unit of The Boeing Company, Integrated Defense Systems is one of the world?s largest space and defense businesses. Headquartered in St. Louis, Boeing Integrated Defense Systems is a $25 billion business. It provides systems solutions to its global military, government, and commercial customers. It is a leading provider of intelligence surveillance, and reconnaissance; the world?s largest military aircraft manufacturer; the world?s largest satellite manufacturer and a leading provider of space-based communications; the primary systems integrator for U.S. missile defense; NASA?s largest contractor; and a global leader in launch services.

Original Source: Boeing News Release

Atlas Launches Navy Communications Satellite

Image credit: Boeing

A Lockheed Martin Atlas III rocket carried a Navy communications satellite onto orbit on Thursday morning. The Atlas III lifted off at 0230 UTC (9:30 pm EST), and it placed the UHF Follow-On (UFO) satellite into an elliptical transfer orbit approximately 32 minutes later. The launch was delayed from Monday because a boltcutter on a liquid oxygen valve needed to be replaced. This was the 68th consecutive successful launch for the Atlas rocket.

A Lockheed Martin-built Atlas III rocket carried a Navy communications satellite into orbit tonight, ending the year on a high note for International Launch Services (ILS), with six successful missions.

The Atlas III launch vehicle left the pad at 9:30 p.m. EST (02:30 Dec. 18 GMT), depositing the satellite into an elliptical transfer orbit about 32 minutes later. The satellite is the 11th in the series called UHF Follow-On (UFO), based on the 601 model built by Boeing Satellite Systems (BSS). Atlas vehicles have launched all 11 UFO satellites, beginning in 1993. The program is managed by the Navy Space and Naval Warfare Systems Command (SPAWAR).

Mark Albrecht, president of McLean-Va.,-based ILS, said: ?Through the UFO program, we have developed a long-standing synergy among the three partners ? BSS as the prime contractor, building the satellites and contracting with ILS for the launches, on behalf of the Navy. ILS and the Lockheed Martin Atlas launch team are proud to have played a part in providing vital communications capabilities worldwide to America?s military.?

Albrecht added: ?SPAWAR had the foresight 15 years ago to model its acquisition of the satellites and launches on largely commercial terms. The UHF Follow-On contract is the largest single contract for the commercial Atlas launch program. It was a tremendous boost to establish Atlas in the early days of its commercial launch business.?

A follow-on program could reunite some of the partners. Lockheed Martin (NYSE:LMT) is leading a team that includes Boeing and General Dynamics, competing to develop the follow-on to UFO called Mobile User Objective System.

Tonight?s rocket, the Atlas III, is one of three Atlas models currently being flown. It is a transitional vehicle between the Atlas II series that has been flying since 1991, and the powerful Atlas V, which made its debut successfully in 2002. The Atlas II, III and V families have achieved 100 percent success through 68 consecutive launches. Just two weeks ago, on Dec. 2, an Atlas IIAS rocket successfully launched another military payload. That mission was for the National Reconnaissance Office, and was launched from Vandenberg Air Force Base, Calif.

The Atlas III builds upon the pressure-stabilized booster design of the Atlas II, but uses the Russian RD-180 main engine with variable thrust control. The Atlas V also uses the RD-180, with a structurally stabilized Common Core Booster. Up to five solid rocket boosters can be strapped on for additional lift capability. Lockheed Martin (NYSE: LMT) developed the Atlas V series for both commercial missions and the U.S. Air Force?s Evolved Expendable Launch Vehicle (EELV) program. ILS? Atlas rockets and their Centaur upper stages are built by Lockheed Martin Space Systems Co. ? Space & Strategic Missiles Operations, at facilities in Denver, Colo.; Harlingen, Texas; and San Diego, Calif.

ILS is a joint venture of Lockheed Martin Corp. and Khrunichev State Research and Production Space Center of Russia. ILS, based in McLean, Va., markets and manages the missions for the Atlas rockets and the Russian Proton launch vehicles. ILS offers the broadest range of launch services in the world along with products with the highest reliability in the industry.

Original Source: ILS News Release

Boeing CEO Resigns

Image credit: Boeing

Boeing chairman and CEO Phil Condit announced his resignation this week after a flurry of scandals rocked the company over the last few weeks. His departure follows the company’s CFO, Michael Sears, who was investigated for unethical conduct in the hiring of an Air Force official this year. Boeing was also hit with ethics violations from the Pentagon after it was revealed that the company had stolen a competitor’s documents during a bid for space launch services. Condit himself isn’t under investigation, however.

announced today that its board of directors has accepted the resignation of Phil Condit, 62, as chairman and CEO. After thorough deliberations, the board decided that a new structure for the leadership of the company is needed and named Lewis E. Platt, 62, as non-executive chairman and Harry C. Stonecipher, 67, as president and CEO, effective immediately.

Both Platt and Stonecipher are experienced leaders who are knowledgeable about the company?s operations and strategy. Platt has been a member of Boeing?s board of directors for four years; he is a retired chairman of the board, president and CEO of Hewlett-Packard Company. Stonecipher retired from Boeing in 2002 after working closely with Condit for five years in several roles, including vice chairman, president and chief operating officer. Stonecipher also has served as a Boeing director for six years.

“Boeing is advancing on several of the most important programs in its history and I offered my resignation as a way to put the distractions and controversies of the past year behind us, and to place the focus on our performance,” Condit said. “I am proud of the strategies that have transformed Boeing into the world?s largest aerospace company, and I have the highest regard and respect for Lew and Harry. They each possess the knowledge, experience and leadership to take this company to the next level. I will watch the progress of Boeing with great pride.”

“The board appreciates that Phil acted with characteristic dignity and selflessness in recognizing that his resignation was for the good of the company,” said the new chairman, Lew Platt. “We accepted his decision with sadness, but also with the knowledge that changes needed to be made. The board is confident that the new leadership will bring a renewed focus on execution and performance.

“The board is in unanimous agreement that the company has been pursuing the right transformation strategy and that Boeing is in excellent financial condition,” he said.

“As the non-executive chairman, I will bring to bear the full strength and perspective of the board in guiding the company and assisting Harry in any way he requests. Harry will be responsible for executing our strategy and running every aspect of the company,” Platt said.

“Boeing has a solid foundation for the future ? strong businesses, valuable assets, and thousands of hard-working, dedicated people ? and we are all deeply grateful to Phil for his contributions and accomplishments,” Stonecipher said.

“We have the right strategy. The task before us is to execute. We need to strengthen our reputation with our customers, employees, investors and the communities in which we operate. Lew and I, and the entire board, are determined that the events of the last year no longer obscure the company?s strengths or distract us from what we need to do. Boeing is a great company with tremendous capabilities to define the future in each of our markets and deliver consistent, profitable growth,” said Stonecipher.

Lew Platt joined Hewlett-Packard in 1966 in the medical products operations and went on to manage various parts of HP?s computer business. He became an executive vice president in 1987 and retired in 1999 after serving seven years as chairman, CEO and president of HP. He was the CEO of Kendall-Jackson Wine Estates from 2000 to mid-2001.

Platt earned his bachelor?s degree in mechanical engineering from Cornell University and has a master?s degree in business administration from the Wharton School of Business, University of Pennsylvania. He serves on the boards of 7-Eleven, The Packard Foundation and the Wharton School.

Harry Stonecipher?s aerospace career spans more than 47 years from his start at General Motors? Allison Division as a lab technician to being elected vice chairman of The Boeing Company in 2001. In 1960, he joined General Electric?s aircraft engine operations, and progressed through a series of engineering and program positions, ending up running the division from 1984 to 1987.

In 1987, Stonecipher left GE to join Sundstrand and shortly thereafter became president and chief operating officer. He became president and CEO in 1989 and assumed the additional office of chairman in 1991. During his seven and a half years at Sundstrand, Stonecipher repaired the company?s seriously damaged customer relationship with the U.S. Department of Defense.

Stonecipher joined McDonnell Douglas in 1994 as president and CEO. In his short 33 months at the aerospace company he increased the financial performance of the enterprise, saw a four-fold increase in the share price, and led the merger with Boeing in 1997. At completion of the merger, Stonecipher was elected president and chief operating officer and a member of Boeing?s board.

He has a bachelor?s degree in physics from Tennessee Technological University and serves on the board of directors of PACCAR, Inc.

Original Source: Boeing News Release

Atlas Launches Classified Payload

Image credit: ILS

An Atlas IIAS rocket lifted off from Vandenberg Air Force Base, California this morning at 1004 UTC (5:04 am EST), carrying a classified payload for the National Reconnaissance Office. Although no details about the payload were disclosed, industry experts believe it was probably contained two or three Naval Ocean Surveillance System (NOSS) spacecraft, which track and identify boats on the ocean. This was the 67th consecutive successful Atlas flight.

An Atlas IIAS rocket successfully lifted off today at 2:04 a.m. PST (10:04 GMT) from this West Coast launch site, releasing a national security payload into transfer orbit 74 minutes later.

The launch was provided by McLean, Va.-based International Launch Services (ILS), from Vandenberg Space Launch Complex 3E, for the U.S. Air Force and the National Reconnaissance Office (NRO). Designated AC-164, this was the fourth Atlas mission this year, and the 67th consecutive successful Atlas flight. It also was ILS? fifth mission of 2003.

?ILS is honored to have a major role in enhancing our nation?s security, having now launched five NRO payloads,? said ILS President Mark Albrecht. ?ILS and Lockheed Martin share a long and valued partnership with the Office of Space Launch, and we take great pride in providing mission success.?

Albrecht added: ?Now we?re working toward NRO launches in 2004, 2005 and beyond, on Atlas III and Atlas V boosters from both Cape Canaveral, Fla., and from Vandenberg. With Atlas V capability at both coasts, we look forward to meeting NRO mission requirements well into the next decade.?

Lockheed Martin Corp. builds the Atlas family of rockets. Today?s vehicle, the Atlas IIAS, can lift 8,200 pounds to geosynchronous transfer orbit. The Atlas III can lift up to 9,920 pounds, and the current -production Atlas V is available in a range of configurations to lift payloads up to 19,000 pounds. Today?s mission was the final West Coast flight of the Atlas IIAS vehicle. Lockheed Martin soon will begin refurbishing Complex 3E, to accommodate Atlas V operations starting in 2005.

The Atlas V family is designed both for ILS commercial missions and to meet the U.S. Air Force requirements for the Evolved Expendable Launch Vehicle (EELV). The Atlas V vehicle has flown three commercial missions, all successfully. The first U.S. government Atlas V mission is set for 2005 with the Wideband Gapfiller Satellite #2 for the Air Force.

ILS is a joint venture of Lockheed Martin Corp. that markets and manages government and commercial missions on the Atlas rocket to customers worldwide. The company is headquartered near Washington, D.C.

The Atlas rockets and their Centaur upper stages are built by Lockheed Martin Space Systems Company in Denver, Colo.; Harlingen, Texas; and San Diego, Calif.

Original Source: ILS News Release

Japanese Rocket Destroyed Shortly After Launch

Image credit: JAXA

The Japanese space program suffered a setback on Saturday when a booster failed to detach from an H2-A rocket. Operators forced the rocket to self destruct, as it wouldn’t be able to reach its intended orbit with the additional weight of the booster. The rocket was carrying two spy satellites which were intended to keep an eye on North Korea’s rocket program. Prior to Saturday’s failure, the H2-A rocket had launched five consecutive times safely, but insurance companies will probably require six safe launches before covering commercial launches.

The Japan Aerospace Exploration Agency (JAXA) launched the H-IIA Launch Vehicle No 6 (H-IIA F6) with the information gathering satellite #2 (IGS) onboard from the Tanegashima Space Center at 13:33 on November 29, 2003 (Japan Standard Time). However, the vehicle failed to jettison one of its two Solid Rocket Boosters (SRB-As). H-IIA F6 was consequently destroyed by a destruction command from the ground at 13:43:53 as the vehicle did not gain enough height and speed due to the failure.

JAXA has established an accident investigation team led by President Yamanouchi and is investigating the cause of the accident. JAXA will provide additional information when it becomes available.

Spacedev Puts a Satellite Up for Sale on eBay

Image credit: SpaceDev

Satellite manufacturer SpaceDev announced today that it has put a satellite up for sale on the Internet auction site eBay. The high bidder will win a spacecraft built by SpaceDev, or an interested party can just “Buy it Now” for $9.5 million USD. The auction begins on Monday, November 10 and ends 10 days later. The default satellite will come with an Earth observation camera, but the winning bidder can supply additional payloads, name the satellite, and attend the launch.

SpaceDev (OTCBB: SPDV) is auctioning a world exclusive private space mission on eBay. This first of its kind eBay auction is being listed for the ten-day period of 8:00 PM (PST) Monday, November 10, through 8:00 PM (PST) Thursday, November 20th.

The SpaceDev space mission auction is at:

http://cgi.ebay.com/ws/eBayISAPI.dll?ViewItem&item=2572382454&category=45046&rd=1

Most earth orbiting small satellite missions can cost $25 million or more, not including the launch. To demonstrate the affordability of private space missions, SpaceDev has posted a ?Buy it Now? price of $9.5 million. The high bidder will win a spacecraft based on SpaceDev?s Maneuvering and orbit Transfer Vehicle (MTV?).

?I founded SpaceDev to accelerate the development of space, to get the public involved in space and to have fun,? said Jim Benson, SpaceDev founder and CEO. ?With our successful launch and operation of CHIPSat earlier this year, and after being competitively selected to provide safe hybrid rocket propulsion for manned space flight, we are offering this unique space mission to the public.?

The high bidder has the right to supply his or her own payload, to name the SpaceDev MTV? satellite and to name the mission. The winning bidder, which could be an individual, company or government agency, can also be involved in the mission design, satellite assembly and testing (including putting small personal items on the spacecraft), can attend the launch, and can participate in on-orbit operations.

The nominal payload is a camera that provides a view of the launch separation on-orbit, a buyer-controlled camera on the spacecraft looking back down on earth and into space 24 hours a day, or the buyer can supply a SpaceDev-approved payload. The microsatellite camera can be operated over the Internet by the winning bidder, similar to SpaceDev?s CHIPSat microsat, which is the world?s first orbiting node on the Internet. Specific terms are included in the eBay auction listing. Search eBay for ?SpaceDev.?

Original Source: SpaceDev News Release

Contact Lost with Japanese Satellite

Image credit: JAXA

Ground controllers have lost contact with Midori 2, a $587 million environmental research satellite launched in December last year. The Japanese/US spacecraft didn’t check in on Saturday when it flew over a ground station; shortly after that it went into safe mode, and then all telemetry was lost. Controllers are trying to recover contact with the satellite, but it will probably be difficult because it’s not even sending out telemetry data. Midori 2 was supposed to last at least 3 years and use five scientific instruments to gather data about water vapour, ocean winds, sea temperatures, sea ice, and marine vegetation.

The Japan Aerospace Exploration Agency (JAXA) failed to receive earth observation data from its Advanced Earth Observing Satellite II, Midori-II, at its Earth Observation Center in Saitama Prefecture at 7:28 a.m. on October 25, 2003 (Japan Standard Time, JST). At 8:49 a.m. (JST), JAXA checked the operational status of Midori-II, and found it was switched to a light load mode (in which all observation equipment is automatically turned off to minimize power consumption) due to an unknown anomaly. Around 8:55 a.m. (JST), communications between the satellite and ground stations became unstable, and telemetry data was not received.

JAXA’s Katsuura Tracking and Communication Station also failed to receive telemetry data twice (9:23 and 11:05 a.m. JST.)
JAXA is currently analyzing earlier acquired telemetry data. The analysis of power generation data by the solar array paddle revealed that generated power has decreased from 6kW to 1kW.
We are doing our utmost to have Midori-II return to normal operation mode by continuing to analyze telemetry data and by working to understand the current condition of the satellite at our domestic and overseas tracking stations.

JAXA formed the ?Midori-II anomaly investigation team,? led by the president of JAXA, to lead the investigation.

Original Source: JAXA News Release