Cassini Discovers Titan’s Glowing Atmosphere

A pair of images from NASA’s Cassini spacecraft show Titan glowing in the dark.

Titan never ceases to amaze. Saturn’s largest moon, it’s wrapped in a complex, multi-layered nitrogen-and-methane atmosphere ten times thicker than Earth’s. It has seasons and weather, as evidenced by the occasional formation of large bright clouds and, more recently, an area of open-cell convection forming over its south pole. Titan even boasts the distinction of being the only other world in the Solar System besides Earth with large amounts of liquid existing on its surface, although there in the form of exotic methane lakes and streams.

We have NASA’s Cassini spacecraft to thank for these discoveries, and now there’s one more for the ceaseless explorer to add to its list: Titan glows in the dark.

Seen above in two versions of the same calibrated raw image, acquired by Cassini on May 7, 2009, Titan hovers in front of a background field of stars which appear as blurred streaks due to the 560 seconds (about 9 1/2 minutes) exposure time and the relative motion of the spacecraft.

The image on the left shows Titan in visible light, receiving reflected sunlight off Saturn itself — “Saturnshine” — while the moon was on the ringed planet’s night side. The image on the right was processed to exclude this reflected light… and yet it still shines. (E pur si candeo?)

Read: Titan’s Surface “the Consistency of Soft, Damp Sand”

The hazy moon’s dim glow — measuring only around a millionth of a watt — comes from not only the top of its atmosphere (which was expected) but also from much deeper within, at altitudes of 300 km (190 miles).

The glow is created by chemical reactions within Titan’s atmosphere, sparked by interactions with charged particles from the Sun and Saturn’s magnetic field.

“It turns out that Titan glows in the dark – though very dimly,” said Robert West, the lead author of a recent study in the journal Geophysical Research Letters and a Cassini imaging team scientist at NASA’s Jet Propulsion Laboratory. “It’s a little like a neon sign, where electrons generated by electrical power bang into neon atoms and cause them to glow. Here we’re looking at light emitted when charged particles bang into nitrogen molecules in Titan’s atmosphere.”

The light is analogous to the airglow seen in Earth’s atmosphere, often photographed by astronauts aboard the ISS.

Still, even taking known sources of external radiation into account, Titan is glowing from within with an as-yet-unexplained light. More energetic cosmic rays may be to blame, penetrating deeper into the moon’s atmosphere, or there could be unexpected chemical reactions or phenomena at work — a little Titanic lightning, perhaps?

“This is exciting because we’ve never seen this at Titan before,” West said. “It tells us that we don’t know all there is to know about Titan and makes it even more mysterious.”

Read more on the Cassini mission page here, and see more images from Cassini on the CICLOPS imaging center site.

Images: NASA/JPL-Caltech/Space Science Institute. Inset image: Titan’s atmosphere and upper-level hydrocarbon haze, seen in June 2012. Color composite by J. Major.

Giant “Invisible” Vortex Still Remains on Saturn Following Huge Storm

In 2010, a small, bright white storm emerged on Saturn’s northern hemisphere. This storm grew until it wrapped around the planet in curly cloud structures, creating a colossal atmospheric disturbance that endured into the early part of 2012, becoming the largest storm seen on the planet since 1990. Being in orbit around the ringed planet, the Cassini spacecraft had a front row seat to watch the disturbance unfold, allowing planetary scientists an unprecedented look at this monster storm. While the storm was visible even to amateur astronomers on Earth, much of its activity took place beyond the reach of visible-light cameras and telescopes, astronomers say. Not only did huge “beacons” of hot air chase each other around the planet, but infrared observations show a giant oval vortex is still persisting as a side effect from the storm.


“It’s the first time we’ve seen anything like it on any planet in the Solar System,” said Leigh Fletcher from the University of Oxford, UK, lead author of a paper describing the unprecedented storm. “It’s extremely unusual, as we can only see the vortex at infrared wavelengths – we can’t tell that it is there simply by looking at the cloud cover.”

Fletcher and her team also used ground-based observations with the Very Large Telescope of the European Southern Observatory in Chile, and NASA’s Infrared Telescope Facility at the summit of Mauna Kea in Hawaii.

As the visible storm erupted in the roiling cloud deck of Saturn’s troposphere, waves of energy rippled hundreds of kilometers upwards, depositing their energy as the two vast ‘beacons’ of hot air in the stratosphere.

Data from Cassini’s composite infrared spectrometer (CIRS) instrument revealed the storm’s powerful discharge sent the temperature in Saturn’s stratosphere soaring 65 degrees C (150 degrees Fahrenheit, 83 kelvins) above normal.

Researchers described in a complimentary paper that will be published in the Nov. 20 issue of the Astrophysical Journal this as a “belch” of energy, as they observed a huge increase in the amount of ethylene gas in Saturn’s atmosphere, the origin of which is a mystery. Ethylene, an odorless, colorless gas, isn’t typically observed on Saturn. On Earth, it is created by natural and man-made sources.

Researchers are still is exploring the origin of the ethylene, but they have ruled out a large reservoir deep in the atmosphere.

“We’ve really never been able to see ethylene on Saturn before, so this was a complete surprise,” said Goddard’s Michael Flasar, the CIRS team lead.

The beacons were expected to cool down and dissipate, but by late April 2011 – by which time bright cloud material had encircled the entire planet – the hot spots had merged to create an enormous vortex that for a brief period exceeded even the size of Jupiter’s famous Great Red Spot.

The forceful storm generated unprecedented spikes in temperature and increased amounts of ethylene. In these two sets of measurements taken by Cassini’s composite infrared spectrometer, yellow represents the highest temperatures. Each strip maps a single molecule (top: methane, bottom: ethylene), with temperature measurements taken in the northern hemisphere, all the way around the planet. Image credit: NASA/JPL-Caltech/GSFC

Although comparisons to Jupiter’s Red Spot have been made to this storm, Saturn’s storm was much higher in the atmosphere while Jupiter’s vortex is embedded deep down in the turbulent ‘weather zone’, Fletcher said.

Also, Jupiter’s famous vortex has raged for at least 300 years. But after traversing the planet once every 120 days since May 2011, Saturn’s large beacon is cooling and shrinking. Scientists expect it to fade away completely by the end of 2013.

The question now remains as to whether Saturn’s storm-generating energy has been sapped or if there will be a repeat performance, the team said.

The outburst already caught observers by surprise by arriving during the planet’s northern hemisphere spring, years ahead of the predictably stormy summer season.

“The beauty is that Cassini will be operating until the Saturn system reaches its summer solstice in 2017, so if there is another global event like this, we’ll be there to see it,” says ESA’s Cassini project scientist Nicolas Altobelli.

Sources: JPL, ESA, NASA

Timeline: 15 Years of Cassini

The Cassini spacecraft takes an angled view toward Saturn, showing the southern reaches of the planet with the rings on a dramatic diagonal. Credit: NASA/JPL-Caltech/Space Science Institute

The Cassini mission has been a source of awe-inspiring images, surprising science and incredible longevity. Since launching on Oct. 15, 1997, the Cassini spacecraft has logged more than 6.1 billion kilometers (3.8 billion miles)of exploration – enough to circle Earth more than 152,000 times. After flying by Venus twice, Earth, and then Jupiter on its way to Saturn, Cassini pulled into orbit around the ringed planet in 2004 and has been spending its last eight years weaving around Saturn, its glittering rings and intriguing moons.

The spacecraft has sent back some 444 gigabytes of scientific data so far, including more than 300,000 images. More than 2,500 reports have been published in scientific journals based on Cassini data, describing the discovery of the plume of water ice and organic particles spewing from the moon Enceladus; the first views of the hydrocarbon-filled lakes of Saturn’s largest moon Titan; the atmospheric upheaval from a rare, monstrous storm on Saturn and many other curious phenomena.

The folks from the Cassini mission have put together a great infographic that provides a timeline of Cassini’s mission and some of its “greatest hits” — major events and discoveries. See below:

Titan’s Surface the “Consistency of Soft, Damp Sand”

Artist depiction of Huygens landing on Titan. Credit: ESA

Artist concept of the Huygens probe landing on the surface of Titan. Credit: ESA

Even though the Huygens probe landed on Titan back in 2005 and transmitted data for only about 90 minutes after touchdown, scientists are still able to eke information out about Titan from the mission, squeezing all they can from the data. The latest information comes from reconstructing the way the probe landed, and an international group of scientists say the probe “bounced, slid and wobbled” after touching down on Saturn’s moon, which provides insight into the nature of the Titan’s surface.

“A spike in the acceleration data suggests that during the first wobble, the probe likely encountered a pebble protruding by around 2 cm from the surface of Titan, and may have even pushed it into the ground, suggesting that the surface had a consistency of soft, damp sand,” describes Dr. Stefan Schröder of the Max Planck Institute for Solar System Research, lead author of a paper recently published in Planetary and Space Science.

An animation of the landing is below.

Schröder and his team were able to reconstruct the landing by analyzing data from different instruments that were active during the impact, and in particular they looked for changes in the acceleration experienced by the probe.

The instrument data were compared with results from computer simulations and a drop test using a model of Huygens designed to replicate the landing.

The scientists think that Huygens landed in something similar to a flood plain on Earth, but that it was dry at the time. The analysis reveals that, on first contact with Titan’s surface, Huygens dug a hole 12 cm deep, before bouncing out onto a flat surface.

The probe, tilted by about 10 degrees in the direction of motion, then slid 30–40 cm across the surface.

It slowed due to friction with the surface and, upon coming to its final resting place, wobbled back and forth five times. Motion subsided about 10 seconds after touchdown.

Earlier studies of data from Huygens determined the surface of Titan to be quite soft. The new study goes one step farther, the team said, to demonstrate that if something put little pressure on the surface, the surface was hard, but if an object put more pressure on the surface, it sank in significantly.

“It is like snow that has been frozen on top,” said Erich Karkoschka, a co-author at the University of Arizona, Tucson. “If you walk carefully, you can walk as on a solid surface, but if you step on the snow a little too hard, you break in very deeply.”

Had the probe impacted a wet, mud-like substance, its instruments would have recorded a “splat” with no further indication of bouncing or sliding. The surface must have therefore been soft enough to allow the probe to make a sizable depression, but hard enough to support Huygens rocking back and forth.

This raw image was returned by the Descent Imager/Spectral Radiometer camera onboard the European Space Agency’s Huygens probe after the probe descended through the atmosphere of Titan. It shows the surface of Titan with ice blocks strewn around. Credit: ESA/NASA/University of Arizona

“We also see in the Huygens landing data evidence of a ‘fluffy’ dust-like material – most likely organic aerosols that are known to drizzle out of the Titan atmosphere – being thrown up into the atmosphere and suspended there for around four seconds after the impact,” said Schröder.

Since the dust was easily lifted, it was most likely dry, suggesting that there had not been any rain of liquid ethane or methane for some time prior to the landing.

“You don’t get rain very often on Titan,” said Karkoschka, explaining that heavy downpours of liquid methane may occur decades or centuries apart. “When they do occur, they carve the channels we see in the pictures Huygens recorded as it approached the surface. The top layer at the landing site was completely dry, suggesting it hadn’t rained in a long time,” he added.

Karkoschka said that when Huygens landed, its downward-shining lamp warmed up the ground and caused methane to evaporate,” Karkoschka explained. “That tells us that just below the surface, the ground probably was wet.”

It has been suggested in earlier studies that the Huygens probe landed near the edge of one of Titan’s hydrocarbon lakes. Several hundred lakes and seas have been observed with the Cassini orbiter’s radar instruments, but with surface temperatures of minus 179 degrees Celsius (minus 290 degrees Fahrenheit), Titan does not have bodies of water. Instead, liquid hydrocarbons in the form of methane and ethane are present on the moon’s surface, with complex carbons making up dunes and other features on the surface.

Source: ESA

Saturn Shows Off Its Shadow

Take a look up at the enormous shadow cast by Saturn onto its own rings in this raw image, acquired by NASA’s Cassini spacecraft on September 18, 2012.

Cassini captured this image from below Saturn’s ring plane at a distance of 1,393,386 miles (2,242,437 kilometers). It shows not only the gas giant’s shadow but also the wispy nature of the rings, which, although complex, extensive and highly reflective (the light seen on Saturn above is reflected light from the rings!) they are still very thin — less than a mile (about 1 km) on average and in some places as little as thirty feet (10 meters) thick.

Seen in the right light, some of the thin innermost rings can seem to nearly disappear entirely — especially when backlit by Saturn itself.

Views like the one above are once again possible because of Cassini’s new orbit, which takes it high above and below the ring plane, providing a new perspective for studying Saturn and its moons. Ultimately by next April the spacecraft will be orbiting Saturn at an inclination of about 62 degrees — that’d be like an orbit around Earth that goes from Alaska to the northernmost tip of Antarctica. (Find out how Cassini alters its orbit here.)

With this viewpoint Cassini will get some great views of Saturn’s north and south poles, which are gradually moving into their summer and winter seasons, respectively, during the ringed planet’s 29.5-Earth-year orbital period.

After more than 8 years in orbit Cassini is still fascinating us with enthralling images of Saturn on a regular basis. Read more about the Cassini mission here.

Cassini spots shepherd moons Pan (within the Encke Gap) and Prometheus (along the inner edge of the F ring) in an image acquired on Sept. 18, 2012

Images: NASA/JPL/Space Science Institute.

Lunar and Planetary Conjunction on August 21, 2012

Last night — if you were in a good location — the Moon, Spica, Mars, Saturn all came together in a lunar/planetary/stellar conjunction. My attempts to see it and capture it failed because of trees (the conjunction took place low on the horizon), but thank goodness for our astrophotographer friends! John Chumack caught the event from his observatory in Ohio (his specs: Canon Rebel Xsi 85mm Lens at F5.6, ISO 400, 1 second exposure) and Ian Musgrave captured the view in Australia, below.

The line-up of the Moon, Mars (top middle), Saturn (right) and the star Spica (left) imaged on 22 August 2012 at 6:45 pm ACST from Adelaide, Australia. Image taken with a Canon IXUS at ASA 400, 15 second exposure. Credit: Ian Musgrave

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

See the “Martian Triangle” in the Sky Tonight!

If — like me — you’ve been focusing on all the great images and news coming from the Mars Science Laboratory, perhaps you’ve missed the great view of the “Martian Triangle,” now visible in the night sky at twilight! Astrophotographer John Chumack hasn’t missed the view. This image is from August 6, 2012 from his observatory in Yellow Springs, Ohio.

The Martian Triangle show starts at twilight, and you can find it by looking low in the southwestern sky. The star at the top is actually the planet Saturn, the star on the bottom left is Spica, and the bright spot on bottom right is the planet Mars. And remember, somewhere in your field of view, there’s a few spacecraft on and around Mars and another orbiting Saturn.

John took this image with a modified Canon Rebel Xsi DSLR and a 47mm Lens, at F5.6, ISO 800, 10 second exposure. See more of John’s wonderful astrophotos at his Flickr page or at his website, Galactic Images.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Bolt from the Blue: Giant Flash of Lightning Seen in Saturn’s Storm

An enormous storm that wrapped its way around Saturn’s northern hemisphere during the first half of 2011 wasn’t just a churning belt of high-speed winds; it also generated some monster flashes of lightning as well — one of which was captured on camera by the Cassini spacecraft!

Check it out…


The image above was created from Cassini raw images acquired in red, green, and blue color channels and assembled to create a somewhat “true-color” image of Saturn. The image shows the storm as it looked on February 25, 2011, a couple of months after it was first noticed by amateur astronomers on the ground. (The circle at upper left illustrates the comparative size of Earth.)

Read: Studying Saturn’s Super Storm

These images were acquired by Cassini almost two weeks later, on March 6, the first showing a bright blue flash of lightning within the storm, along the eastern edge of a large eddy. The second image, taken 30 minutes later, does not have any visible flash.

Because the flash was only visible in blue light (and there was no red channel data) the images are false color. Near-infrared replaced the visible red channel.

Based on the image resolution (12 miles/20 km per pixel) the size of the lightning flash is estimated to be about 120 miles (200 km) wide — as large as the strongest lightning seen on Earth. And like on Earth, Saturn’s lightning is thought to originate deeper in the atmosphere, at the level where water droplets freeze.

Although the 2011 northern storm was a great feature to observe, this wasn’t the first time lightning had been spotted on Saturn. Cassini had observed flashes on the ringed planet in August of 2009 as well, allowing scientists to create the first movie of lightning flashing on another planet.

Since its arrival at Saturn in 2004, Cassini has detected 10 lightning storms on Saturn — although with up to 10 flashes per second and eventually covering an area of 2 billion square miles (4 billion sq. km) the 2011 storm was by far the largest ever seen.

Image credits: NASA / JPL-Caltech / Space Science Institute. Top composite by J. Major. Video: JPL

Surprising Swirls Above Titan’s South Pole

View of Titan's South Pole, showing a vortex. Credit: NASA

Thanks to Cassini’s new vantage point granted by its inclined orbit researchers have gotten a new look at the south pole of Titan, Saturn’s largest moon. What they’ve recently discovered is a swirling vortex of gas forming over the moon’s pole, likely the result of the approach of winter on Titan’s southern hemisphere.

What we’re seeing here is thought to be an open cell convection process in Titan’s upper atmosphere. In open cells, air sinks in the center of the cell and rises at the edge, forming clouds at cell edges. However, because the scientists can’t see the layer underneath the layer visible in these new images, they don’t know what other mechanisms may be at work.

A stable atmospheric event that’s found here on Earth as well, open cell convection can be compared to the action of boiling water.

Titan has already been seen to have a thicker area of high-altitude haze over its north pole, and as autumn progresses toward winter in Titan’s south during the course of Saturn’s 29.7-year-long orbit this may very well be the beginnings of a southern polar hood.

An animation of this southern vortex can be found here.

“We suspect that this maelstrom, clearly forming now over the south pole and spinning more than forty times faster than the moon’s solid body, may be a harbinger of what will ultimately become a south polar hood as autumn there turns to winter.  Of course, only time will tell.”

– Carolyn Porco, Cassini Imaging Team Leader

Discoveries like this are prime examples of why it was so important for Cassini to have an extended, long-duration mission around Saturn, so that seasonal changes in the planet and moons could be closely observed. New seasons bring new surprises!

The southern vortex structure was also captured in raw images acquired by Cassini on June 28. A color-composite made from three of those raw images is below (the vortex can be seen at center just right of the terminator):

You can find more images from Cassini on the CICLOPS Imaging Team site.

Image credits: NASA/JPL/Space Science Institute. Bottom RGB composite by Jason Major.

The Return of the Rings!

Now that Cassini has gone off on a new trajectory taking it above and below the equatorial plane of Saturn, we’re back to getting some fantastic views of the rings — the likes of which haven’t been seen in over two and a half years!

The image above shows portions of the thin, ropy F ring and the outer A ring, which is split by the 202-mile (325-km) -wide Encke gap. The shepherd moon Pan can be seen cruising along in the gap along with several thin ringlets. Near the A ring’s outer edge is a narrower space called the Keeler gap — this is the home of the smaller shepherd moon Daphnis, which isn’t visible here (but is one of my personal favorites!)

The scalloped pattern on the inner edge of the Encke gap downstream from Pan and a spiral pattern moving inwards from that edge are created by the 12.5-mile-wide (20-km-wide) moon’s gravitational influence.

Other features that have returned for an encore performance are the so-called propellers, spiral sprays of icy ring material created by tiny micro-moons within the rings. Individually too small to discern (less than half a mile in diameter) these propeller moons kick up large clumps of reflective ring particles with their gravity as they travel through the rings, revealing their positions.

The three images above show a propeller within the A ring. Nicknamed “Sikorsky” after Russian-American aviator Igor Sikorsky, the entire structure is about 30 miles (50 km) across and is one of the more well-studied propellers.

Scientists are eager to understand the interactions of propellers in Saturn’s rings as they may hold a key to the evolution of similar systems, such as solar systems forming from disks of matter.

See a video of a propeller orbiting within the rings here, and here’s an image of one that’s large enough to cast a shadow!

“One of the main contributing factors to the enormous success we on the Cassini mission have enjoyed in the exploration of Saturn is the capability to view the planet and the bodies around it from a variety of directions,” Cassini Imaging Team Leader Carolyn Porco wrote earlier today. “Setting the spacecraft high into orbit above Saturn’s equator provides us direct views of the equatorial and middle latitudes on the planet and its moons, while guiding it to high inclination above the equator plane affords the opportunity to view the polar regions of these bodies and be treated to vertigo-inducing shots of the planet’s glorious rings.”

As always, keep up with the latest Cassini news on the mission site here, and read more about these images on the CICLOPS imaging team page here.

Image credits: NASA / JPL / Space Science Institute.