The Cassini Image Hall of Fame

 

[/caption]

If you’re reading this, you’re probably very well aware of the Cassini mission. Launched in 1997, the Cassini spacecraft arrived at Saturn in June of 2004 and has been faithfully returning image after beautiful image of Saturn, its rings and its very extended family of moons ever since – not to mention all the groundbreaking scientific discoveries it’s made about the Saturnian system… and our solar system as a whole. Cassini truly is a rock star in the world of robotic space exploration, and now it has its own Hall of Fame to show off some of its best work!

The Cassini mission site put up by JPL/Caltech regularly features news and images from the mission, even including the latest downlinked raw image data from the spacecraft. In this way anyone can keep up with what Cassini is seeing and when, far before the images are included in NASA’s Planetary Data System. The new Cassini Image Hall of Fame showcases the “best of the best” from the mission, and is a great way to revisit Cassini’s past discoveries. (With so much happening at Saturn, sometimes it’s easy to forget all the amazing things Cassini has brought to our attention!)

Revisit the best of the best images of Saturn

If you’re a fan of Saturn (and really, who isn’t?) be sure to check this out. With the current mission extended into 2017 there’s sure to be lots more additions to the Hall of Fame on the way, too!

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Click here to see the Hall of Fame images.

Also, be sure to visit the hard-working Cassini imaging team’s homepage at http://ciclops.org… they are the ones responsible for all these fantastic images in the first place!

 

Water, Water Everywhere… And A Few Drops For Saturn, Too!

Recent Cassini images of Saturn's moon Enceladus backlit by the sun show the fountain-like sources of the fine spray of material that towers over the south polar region. This image was taken looking more or less broadside at the "tiger stripe" fractures observed in earlier Enceladus images. It shows discrete plumes of a variety of apparent sizes above the limb (edge) of the moon. This image was acquired on Nov. 27, 2005. Image Credit: NASA/JPL/Space Science Institute

[/caption]

In 2005, NASA’s Cassini spacecraft gave us an incredible view of Enceladus chuffing out fountains of water vapor and ice. This action creates an enormous halo of gas, dust and ice that surrounds this Saturnian satellite and enables the planet’s E ring. Now Enceladus is once again in the spotlight as the only moon in the Solar System known to significantly contribute to its parent planet’s chemistry.

Earlier this year, ESA announced that its Herschel Space Observatory had observed a huge torus of water vapor around Saturn which apparently originated from Enceladus. It spans approximately 600,000 kilometers across and runs about 60,000 kilometers deep, but more so than its size is what it appears to be doing… adding water to Saturn’s upper atmosphere. Because the vapor isn’t detectable at visible wavelengths, this observation came as revelation for the Herschel scope.

“Herschel is providing dramatic new information about everything from planets in our own solar system to galaxies billions of light-years away,” said Paul Goldsmith, the NASA Herschel project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California.

While the Herschel infrared observation is new, the indication of a vapor torus around Saturn isn’t. NASA’s Voyager and Hubble missions had given astronomers clues in the past. In 1997, the European Space Agency’s Infrared Space Observatory cited water in Saturn’s atmosphere and two years later NASA’s Submillimeter Wave Astronomy Satellite confirmed it again. But this confirmation only added up to a puzzle. Water found in Saturn’s lower cloud levels couldn’t rise past the colder, upper deck… So where was the water coming from? The answer came in the form of Herschel’s observations and some very astute computer modeling.

“What’s amazing is that the model, which is one iteration in a long line of cloud models, was built without knowledge of the observation.” says Tim Cassidy, a recent post-doctoral researcher at JPL who is now at the University of Colorado’s Laboratory for Atmospheric and Space Physics, Boulder. “Those of us in this small modeling community were using data from Cassini, Voyager and the Hubble telescope, along with established physics. We weren’t expecting such detailed ‘images’ of the torus, and the match between model and data was a wonderful surprise.”

Through these simulations, researchers hypothesized that much of the water in the torus was simply lost to space and some is pulled back by gravity to add material to Saturn’s rings. However, it’s the 3-5% that made it back to Saturn’s atmosphere that’s the most interesting. Just how much water vapor is out there? Thanks to combining information from both Herschel and the Ultraviolet Imaging Spectrograph (UVIS) instrument aboard the Cassini spacecraft, we’ve learned that about 12,000 kilograms is being ejected from Enceladus every minute. Can you image how much that would add up to in the period of a year… or more?!

“With the Herschel measurements of the torus from 2009 and 2010 and our cloud model, we were able to calculate a source rate for water vapor coming from Enceladus,” said Cassidy. “It agrees very closely with the UVIS finding, which used a completely different method.”

“We can see the water leaving Enceladus and we can detect the end product — atomic oxygen — in the Saturn system,” said Cassini UVIS science team member Candy Hansen, of the Planetary Science Institute, Tucson, Ariz. “It’s very nice with Herschel to track where it goes in the meantime.”

A tiny percentage adds up to some mighty big numbers, and the water molecules from the torus impact Saturn’s atmosphere to a great degree by contributing hydrogen and oxygen.

“When water hangs out in the torus, it is subject to the processes that dissociate water molecules,” said Hansen, “first to hydrogen and hydroxide, and then the hydroxide dissociates into hydrogen and atomic oxygen.” This oxygen is dispersed through the Saturn system. “Cassini discovered atomic oxygen on its approach to Saturn, before it went into orbit insertion. At the time, no one knew where it was coming from. Now we do.”

Very few days go by that we don’t learn something new about the Solar System and its inner workings. Thanks to observations like those done by the Herschel Space Observatory and missions like Cassini-Huygens, we’re able to further understand the dynamics behind the beauty… and how a tiny player can carry a major role.

“The profound effect this little moon Enceladus has on Saturn and its environment is astonishing,” said Hansen.

Original Story Source: JPL News Release.

Cassini’s Majestic Saturn Moon Quintet

A quintet of Saturn's moons come together in the Cassini spacecraft's field of view for this portrait. From left to right: Janus, Pandora, Enceladus, Mimas and Rhea. Credit: NASA/JPL-Caltech/Space Science Institute

[/caption]

Check out this gorgeous new portrait of a Saturnian moon quintet taken by Earths’ emissary – NASA’s Cassini Orbiter. The moons are majestically poised along a backdrop of Saturn’s rings, fit for an artist’s canvas.

Janus, Pandora, Enceladus, Mimas and Rhea are nearly lined up (from left to right) in this view acquired by Cassini at a distance of approximately 684,000 miles (1.1 million kilometers) from Rhea and 1.1 million miles (1.8 million kilometers) from Enceladus.

The newly released image was taken by Cassini’s narrow angle camera on July 29, 2011. Image scale is about 4 miles (7 kilometers) per pixel on Rhea and 7 miles (11 kilometers) per pixel on Enceladus.

Cassini will stage a close flyby of Enceledus – Satarn’s geyser spewing moon – in about two weeks, swooping within 99 km

Moon Facts from JPL:
Janus (179 kilometers, or 111 miles across) is on the far left. Pandora (81 kilometers, or 50 miles across) orbits between the A ring and the thin F ring near the middle of the image. Brightly reflective Enceladus (504 kilometers, or 313 miles across) appears above the center of the image. Saturn’s second largest moon, Rhea (1,528 kilometers, or 949 miles across), is bisected by the right edge of the image. The smaller moon Mimas (396 kilometers, or 246 miles across) can be seen beyond Rhea also on the right side of the image.

This view looks toward the northern, sunlit side of the rings from just above the ring plane. Rhea is closest to Cassini here. The rings are beyond Rhea and Mimas. Enceladus is beyond the rings.

The simple graphic below shows dozens of Saturn’s moons – not to scale. So far 62 have been discovered and 53 have been officially named.

Saturn’s moons. Click on link below to learn more about each moon. Credit: NASA/JPL

Learn more about Saturn’s moons at this link

List of Saturn’s officially named moons:
Aegaeon, Aegir, Albiorix, Anthe, Atlas, Bebhionn, Bergelmir, Bestla, Calypso, Daphnis, Dione, Enceladus, Epimetheus, Erriapus, Farbauti, Fenrir, Fornjot, Greip, Hati, Helene, Hyperion, Hyrrokkin, Iapetus, Ijiraq, Janus, Jarnsaxa, Kari, Kiviuq, Loge, Methone, Mimas, Mundilfari, Narvi, Paaliaq, Pallene, Pan, Pandora, Phoebe, Polydeuces, Prometheus, Rhea, Siarnaq, Skadi, Skoll, Surtur, Suttung, Tarqeq, Tarvos, Telesto, Tethys, Thrym, Titan and Ymir.

A Close Look at Saturn’s Sponge Moon

This raw, unprocessed image of Hyperion was taken on August 25, 2011 and received on Earth August 26, 2011. Image credit: NASA/JPL-Caltech/Space Science Institute

[/caption]

It might be one of the weirdest-looking moons in the solar system: Saturn’s moon Hyperion looks like a giant sponge. Additionally, its eccentric orbit makes it subject to gravitational forces from Saturn, so it is just tumbling along, almost out of control. Just yesterday, August 25, 2011, the Cassini spacecraft made a relatively close flyby of Hyperion (24,000 km 15,000 miles away) and took some amazing images.

“Hyperion is a small moon … just 168 miles across (270 kilometers)… orbiting between Titan and Iapetus,” said Carolyn Porco in an email. Porco is the Cassini imaging team lead. “It has an irregular shape and surface appearance, and it rotates chaotically as it tumbles along in orbit, making it impossible to say just exactly what terrain we would image during this flyby.”

See some more of the shots below:


Side view taken by NASA's Cassini spacecraft of Saturn's moon Hyperion. Image credit: NASA/JPL-Caltech/Space Science Institute

Scientists say this flyby’s closeness has likely allowed Cassini’s cameras to map new territory. At the very least, it will help scientists improve color measurements of the moon. It will also help them determine how the moon’s brightness changes as lighting and viewing conditions change, which can provide insight into the texture of the surface. The color measurements provide additional information about different materials on the moon’s deeply pitted surface.

A darker view of Hyperion. Credit: NASA/JPL-Caltech/Space Science Institute
NASA's Cassini spacecraft obtained this unprocessed image of Saturn's moon Hyperion on Aug. 25, 2011. Image credit: NASA/JPL-Caltech/Space Science Institute

The next closest pass of Hyperion is coming up again soon: Sept. 16, 2011, when it passes the tumbling moon at a distance of about 36,000 miles (58,000 kilometers).

See more raw images at the CICLOPS website.

How Did Jupiter Shape Our Solar System?

Shortly after forming, Jupiter was slowly pulled toward the sun. Saturn was also pulled in and eventually, their fates became linked. When Jupiter was about where Mars is now, the pair turned and moved away from the sun. Scientists have referred to this as the "Grand Tack," a reference to the sailing maneuver. Credit: NASA/GSFC

[/caption]

Jupiter hasn’t always been in the same place in our solar system. Early in the history of our solar system, Jupiter moved inward towards the sun, almost to where Mars currently orbits now, and then back out to its current position.

The migration through our solar system of Jupiter had some major effects on our solar system. Some of the effects of Jupiter’s wanderings include effects on the asteroid belt and the stunted growth of Mars.

What other effects did Jupiter’s migration have on the early solar system and how did scientists make this discovery?

In a research paper published in the July 14th issue of Nature, First author Kevin Walsh and his team created a model of the early solar system which helps explain Jupiter’s migration. The team’s model shows that Jupiter formed at a distance of around 3.5 A.U (Jupiter is currently just over 5 A.U from the sun) and was pulled inward by currents in the gas clouds that still surrounded the sun at the time. Over time, Jupiter moved inward slowly, nearly reaching the same distance from the sun as the current orbit of Mars, which hadn’t formed yet.

“We theorize that Jupiter stopped migrating toward the sun because of Saturn,” said Avi Mandell, one of the paper’s co-authors. The team’s data showed that Jupiter and Saturn both migrated inward and then outward. In the case of Jupiter, the gas giant settled into its current orbit at just over 5 a.u. Saturn ended its initial outward movement at around 7 A.U, but later moved even further to its current position around 9.5 A.U.

Astronomers have had long-standing questions regarding the mixed composition of the asteroid belt, which includes rocky and icy bodies. One other puzzle of our solar system’s evolution is what caused Mars to not develop to a size comparable to Earth or Venus.

Artist's conception of early planetary formation from gas and dust around a young star. Image Credit: NASA/JPL-Caltech

Regarding the asteroid belt, Mandell explained, “Jupiter’s migration process was slow, so when it neared the asteroid belt, it was not a violent collision but more of a do-si-do, with Jupiter deflecting the objects and essentially switching places with the asteroid belt.”

Jupiter’s slow movement caused more of a gentle “nudging” of the asteroid belt when it passed through on its inward movement. When Jupiter moved back outward, the planet moved past the location it originally formed. One side-effect of caused by Jupiter moving further out from its original formation area is that it entered the region of our early solar system where icy objects were. Jupiter pushed many of the icy objects inward towards the sun, causing them to end up in the asteroid belt.

“With the Grand Tack model, we actually set out to explain the formation of a small Mars, and in doing so, we had to account for the asteroid belt,” said Walsh. “To our surprise, the model’s explanation of the asteroid belt became one of the nicest results and helps us understand that region better than we did before.”

With regards to Mars, in theory Mars should have had a larger supply gas and dust, having formed further from the sun than Earth. If the model Walsh and his team developed is correct, Jupiter foray into the inner solar system would have scattered the material around 1.5 A.U.

Mandell added, “Why Mars is so small has been the unsolvable problem in the formation of our solar system. It was the team’s initial motivation for developing a new model of the formation of the solar system.”

An interesting scenario unfolds with Jupiter scattering material between 1 and 1.5 AU. Instead of the higher concentration of planet-building materials being further out, the high concentration led to Earth and Venus forming in a material-rich region.

The model Walsh and his team developed brings new insight into the relationship between the inner planets, our asteroid belt and Jupiter. The knowledge learned not only will allow scientists to better understand our solar system, but helps explain the formation of planets in other star systems. Walsh also mentioned, “Knowing that our own planets moved around a lot in the past makes our solar system much more like our neighbors than we previously thought. We’re not an outlier anymore.”

If you’d like to access the paper (subscription or paid/university access required), you can do so at: http://www.nature.com/nature/journal/v475/n7355/full/nature10201.html

Source: NASA Solar System News, Nature

Cassini Focuses In On Two Moons

Image of Tethys and Titan taken in green visible light on July 14th 2011. Image Credit: NASA/JPL-Caltech/Space Science Institute

[/caption]

In this new image from the Cassini Imaging Team Saturn’s moon Titan looks a little out of focus compared to the sharp, cratered surface of Tethys, seen in the foreground. But that’s only because Titan’s hazy atmosphere makes the moon look blurry. Titan’s current atmosphere is thought to resemble Earth’s early atmosphere, so we could be looking at an analog of early Earth.

And so, the Cassini mission is sharpening our understanding of Saturn and all its moons, but it might help us understand our own planet, as well.

At just over 1,000 kilometers in diameter, Tethys is believed to be almost entirely comprised of water ice, based on density estimates. Titan, at just over 5,000 kilometers in diameter is notable for being the second largest moon in our solar system, as well as having an atmosphere 1 1/2 times thicker than Earth. Titan is also known to have an active “liquid cycle” made up of various hydrocarbons, making Titan the second body in the solar system to have stable liquid on its surface.

The camera view is aimed at the Saturn-facing side of Titan and at the area between the trailing hemisphere and anti-Saturn side of Tethys. Not shown in frame is Saturn, which would be far to the left, from the perspective shown in the image.

The image was acquired with Cassini’s narrow-angle camera, in green visible light, on July 14, 2011. At a distance of roughly 3 million kilometers, the image scale for Titan is 19 kilometers per pixel. With Tethys at a distance of about 2 million kilometers, the image scale is roughly 11 kilometers per pixel.

If you’d like to learn more about the extended Cassini “solstice” mission, you can read more at: http://saturn.jpl.nasa.gov/mission/introduction/

Source: Cassini Solstice Mission Images

Cassini Captures a Menagerie of Moons

This Cassini raw image shows a portion of Saturn's rings along with several moons. How many can you find? Credit: NASA/JPL/Space Science Institute

[/caption]

This stunning new Cassini image was captured on July 29, 2011, and shows a portion of Saturn’s rings along with several moons dotting the view. How many moons can you find, and can you name them?

See below for a color version of this image, put together by our own Jason Major!

Saturns moons and rings, in color. Credit: NASA / JPL / SSI. Edited by Jason Major. Click for larger version.

Jason shares on his Flickr page the process of how he edited the image. As Jason says, it’s a moon flash mob!

See the Cassini Solstice Mission raw images page for a larger view.

Hat tip to Stu Atkinson

Enceladus Rains Water on Saturn

At least four distinct plumes of water ice spew out from the south polar region of Saturn's moon Enceladus. Credit: NASA/JPL/Space Science Institute

[/caption]

It’s raining on Saturn! Well, kind of. Actually, not really. But there’s some really cool news about Saturn, Enceladus and water – great topics, all. The bubbly water shooting from the moon Enceladus is responsible for the “mystery” water that was found in Saturn’s upper atmosphere several years ago. Observations with the Herschel space observatory has shown that water ice from geysers on Enceladus forms a giant ring of water vapor around Saturn.

Astronomers from the ESA’s Infrared Observatory discovered the presence of trace amounts of water in Saturn’s atmosphere back in 1997, but couldn’t really find an explanation for why it was there and how it got there. Water vapor can’t be seen in visible light, but Herschel’s infrared vision was able to track down the source of the water vapor.

Enceladus expels around 250 kg of water vapor every second, through a collection of jets from the south polar region known as the Tiger Stripes because of their distinctive surface markings. Much of the ice ends up in orbit around Saturn, creating the hazy E ring in which Enceladus resides.

But a small amount reaches Saturn – about 3% to 5% of Enceladus’s ejected water ends up on the home planet of Saturn.

Phil Plait, The Bad Astronomer figured out that a decent rain shower on Earth is 7,000,000,000,000 times heavier than the rainfall on Saturn. So, not a lot of water makes it to Saturn.

But the fact that a moon is having an effect on its planet is unprecedented, as far as we know.

“There is no analogy to this behaviour on Earth,” said Paul Hartogh, Max-Planck-Institut für Sonnensystemforschung, in Germany, who led the collaboration on the analysis of these results. “No significant quantities of water enter our atmosphere from space. This is unique to Saturn.”

The running theory is that Enceladus has a liquid subsurface ocean of Perrier-like bubbly (and maybe salty) water. No one knows yet how much water lies beneath the moon’s surface, but it is thought that the pressure from the rock and ice layers above combined with heat from within force the water up through the Tiger Stripes. When this water reaches the surface it instantly freezes, sending plumes of ice particles hundreds of miles into space.

The total width of the torus is more than 10 times the radius of Saturn, yet it is only about one Saturn radius thick. Enceladus orbits the planet at a distance of about four Saturn radii, replenishing the torus with its jets of water.

The water in Saturn’s upper atmosphere is ultimately transported to lower levels, where it condenses. But scientists say the amounts are so tiny that the resulting clouds are not observable.

Again, despite its enormous size, this torus has it has escaped detection until now because of how water vapor is transparent to visible light but not at the infrared wavelengths Herschel was designed to see.

“Herschel has proved its worth again. These are observations that only Herschel can make,” says Göran Pilbratt, ESA Herschel Project Scientist. “ESA’s Infrared Space Observatory found the water vapour in Saturn’s atmosphere. Then NASA/ESA’s Cassini/Huygens mission found the jets of Enceladus. Now Herschel has shown how to fit all these observations together.”

Read the team’s paper here.

Source: ESA

The Sights And Sounds of Saturn’s Super Storm

The huge storm churning through the atmosphere in Saturn's northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI

[/caption]

It’s five hundred times bigger than any anything like it observed by the Cassini Mission in the last two years. It’s encompassing approximately 2 billion square miles (4 billion square kilometers) of Saturn’s surface. It’s releasing lightning bolts at a rate of ten per second and it’s happening ten times more frequently than other storms monitored since 2004. It’s so intense that’s it’s even visible in larger amateur telescopes. Just what is it? A Saturn Super Storm…

“Last December, a remarkable thing happened at Saturn. A massive, hissing, lightning-producing storm violently erupted in the northern mid-latitudes of Saturn’s atmosphere and grew to gargantuan proportions.” says Carolyn Porco. “By the end of January, it had wrapped itself entirely around the planet, developing an enormous degree of wavy, even sensuous, details, reminiscent of the clouds on Jupiter.”

Known as “Great White Spots”, these huge storms aren’t new to Saturn – they are common each Saturnian year. While they are common to the ringed planet’s northern summer, right now it’s northern spring. This makes the Saturn Super Storm an early – and unexpected – arrival.

“Prior to the planet’s August 2009 northern vernal equinox, when the sun was shining in the southern hemisphere, the location of all observed storm activity on Saturn was a band encircling the planet at 35 degrees south latitude that imaging scientists had dubbed `Storm Alley’. Well, to our great puzzlement, this new storm — now 500 times larger than any previously seen by Cassini at Saturn and 8 times the surface area of Earth — has erupted at 35 degrees /north/ latitude.” says Ms. Porco. “The shadow cast by Saturn’s rings has a strong seasonal effect, and it is possible that the switch to powerful storms now being located in the northern hemisphere is related to the change of seasons and the changing position of Saturn’s ring shadow. But why the obvious hemispheric symmetry in storm eruption exists is not yet known.”

NASA’s Cassini spacecraft was listening to the sounds of the storm, too. Much like our terrestrial lightning causes a static effect on an AM radio, Saturn creates a phenomena known as Saturn electrostatic discharges. Check out this audio file of the action!

“The storm is also a prodigious source of radio noise, which comes from lightning deep in the planet’s atmosphere. As on Earth, the lightning is produced in the water clouds, where falling rain and hail generate electricity. The mystery is why Saturn stores energy for decades and releases it all at once. This behavior is unlike that at Jupiter and Earth, which have numerous storms occurring at any one time.” explains Dr. Porco.

NASA's Cassini spacecraft captures a composite near-true-color view of the huge storm churning through the atmosphere in Saturn's northern hemisphere. Image credit: NASA/JPL-Caltech/SSI

Violent, yes… But incredibly beautiful. This false color image reveals clouds at different altitudes as seen by the Cassini spacecraft from a distance of approximately 1.5 million miles (2.4 million kilometers). Blue represents high and semi-transparent. Yellow and white are optically thick at high altitudes. Green is intermediate, while red and brown are low altitude unobscured by high clouds. Last, but not least is dark blue – a thin haze with nothing but Saturn below it. Scientists theorize the lightning is formed at the base cloud layer where water ice is covered by crystallized ammonia.

“This storm is thrilling because it shows how shifting seasons and solar illumination can dramatically stir up the weather on Saturn,” said Georg Fischer, a radio and plasma wave science team member at the Austrian Academy of Sciences in Graz. “We have been observing storms on Saturn for almost seven years, so tracking a storm so different from the others has put us at the edge of our seats.”

Original Story Source: JPL / NASA News.

Enceladus’ Salty Surprise

Enceladus' signature ice geysers in action. NASA / JPL / SSI

 

[/caption]

Researchers on the Cassini mission team have identified large salt grains in the plumes emanating from Saturn’s icy satellite Enceladus, making an even stronger case for the existence of a salty liquid ocean beneath the moon’s frozen surface.

Cassini first discovered the jets of water ice particles in 2005; since then scientists have been trying to learn more about how they behave, what they are made of and – most importantly – where they are coming from. The running theory is that Enceladus has a liquid subsurface ocean of as-of-yet undetermined depth and volume, and pressure from the rock and ice layers above combined with heat from within force the water up through surface cracks near the moon’s south pole. When this water reaches the surface it instantly freezes, sending plumes of ice particles hundreds of miles into space.

Enceladus inside the E ring

Much of the ice ends up in orbit around Saturn, creating the hazy E ring in which Enceladus resides.

Although the discovery of the plumes initially came as a surprise, it’s the growing possibility of liquid water that’s really intriguing – especially that far out in the Solar System and on a little 504-km-wide moon barely the width of Arizona. What’s keeping Enceladus’ water from freezing as hard as rock? It could be tidal forces from Saturn, it could be internal heat from its core, a combination of both – or something else entirely… astronomers are still hard at work on this mystery.

Now, using data obtained from flybys in 2008 and 2009 during which Cassini flew directly through the plumes, researchers have found that the particles in the jets closest to the moon contain large sodium- and potassium-rich salt grains. This is the best evidence yet of the existence of liquid salt water inside Enceladus – a salty underground ocean.

“There currently is no plausible way to produce a steady outflow of salt-rich grains from solid ice across all the tiger stripes other than salt water under Enceladus’s icy surface.”

– Frank Postberg, Cassini team scientist, University of Heidelberg, Germany

Looking down into a jetting "tiger stripe"

If there indeed is a reservoir of liquid water, it must be pretty extensive since the numerous plumes are constantly spraying water vapor at a rate of 200 kg (400 pounds) every second – and at several times the speed of sound! The plumes are ejected from points within long, deep fissures that slash across Enceladus’ south pole, dubbed “tiger stripes”.

Recently the tiger stripe region has also been found to be emanating a surprising amount of heat, even further supporting a liquid water interior – as well as an internal source of energy. And where there’s liquid water, heat energy and organic chemicals – all of which seem to exist on Enceladus – there’s also a case for the existence of life.

“This finding is a crucial new piece of evidence showing that environmental conditions favorable to the emergence of life can be sustained on icy bodies orbiting gas giant planets.”

– Nicolas Altobelli, ESA project scientist for Cassini

Enceladus has intrigued scientists for many years, and every time Cassini takes a closer look some new bit of information is revealed… we can only imagine what other secrets this little world may hold. Thankfully Cassini is going strong and more than happy to keep on investigating!

“Without an orbiter like Cassini to fly close to Saturn and its moons — to taste salt and feel the bombardment of ice grains — scientists would never have known how interesting these outer solar system worlds are.”

– Linda Spilker, Cassini project scientist at JPL

The findings were published in this week’s issue of the journal Nature.

Read more in the NASA press release here.

Image credits: NASA / JPL / Space Science Institute

__________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor or on Facebook for the most up-to-date astronomy awesomeness!