Icy Enceladus

Saturn?s brilliant jewel, water-ice-covered Enceladus (499 kilometers, 310 miles across), is the most reflective body in the Solar System. Reflecting greater than 90% of the incident sunlight, this moon was the source of much surprise during the Voyager era. Enceladus exhibits both smooth and lightly cratered terrains that are crisscrossed here and there by linear, groove-like features. It also has characteristics similar to those of Jupiter’s moons, Ganymede and Europa, making one of Saturn’s most enigmatic moons.

Cassini will investigate its rich geologic record in a series of four planned close flybys. The first flyby is scheduled for February 17, 2005.

The image was taken in visible light with the narrow angle camera on July 3, 2004, from a distance of 1.6 million kilometers (990,000 miles) from Enceladus and at a Sun-Enceladus-spacecraft, or phase, angle of about 103 degrees. The image scale is 10 kilometers (6 miles) per pixel. The image has not been magnified.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The imaging team is based at the Space Science Institute, Boulder, Colorado.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.

Original Source: CICLOPS News Release

Tethys Revealed

Like a half-full Moon, cratered Tethys (1060 kilometers, 659 miles across) hangs before Cassini in this narrow angle camera view taken on July 3, 2004.

Voyager images showed a large fracture on Tethys about 750 kilometers (470 miles) long (not seen in this view.) Cassini will investigate this and other features on Tethys during two planned flybys, the first occurring on September 24, 2005.

The image was taken in visible light from a distance of 1.7 million kilometers (1 million miles) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of about 97 degrees. The image scale is 10 kilometers (6 miles) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The imaging team is based at the Space Science Institute, Boulder, Colorado.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.

Original Source: CICLOPS News Release

First View of Rhea

As the first artificial satellite in the Saturn system, Cassini returned images of its native siblings following a successful insertion into orbit, including this unmagnified view of Rhea (1528 kilometers, 950 miles across). Rhea is Saturn?s second largest moon, and like Dione, the Voyager spacecraft found one of its hemispheres to covered with bright, wispy streaks which may be water frost.

This view shows a heavily cratered surface, and thus it is most likely an ancient one. Many of the craters visible here have central peaks. Cassini soon will look for clues to help unlock the moon?s geologic history. The spacecraft is slated to fly by Rhea at a distance of only 500 kilometers (311 miles) on November 26, 2005.

The image was taken in visible light with the narrow angle camera on July 2, 2004, from a distance of about 990,000 kilometers (615,000 miles) from Rhea and at a Sun-Rhea-spacecraft, or phase, angle of about 109 degrees. The image scale is 6 kilometers (4 miles) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The imaging team is based at the Space Science Institute, Boulder, Colorado.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.

Original Source: CICLOPS News Release

Saturn’s Two-Faced Moon

The moon with the split personality, Iapetus, presents a puzzling appearance. One hemisphere of the moon is very dark, while the other is very bright. Whether the moon is being coated by foreign material, or being resurfaced by material from within is not yet known.

At 1436 kilometers (892 miles across), Iapetus is about 2.5 times smaller than our own Moon.

The brightness variations in this image are real. The face of Iapetus visible here was observed at a Sun-Iapetus-spacecraft, or phase, angle of about 10 degrees.

The image was taken in visible light with the narrow angle camera on July 3, 2004, from a distance of 3 million kilometers (1.8 million miles) from Iapetus. The image scale is 18 kilometers (11 miles) per pixel. The image was magnified by a factor of two to aid visibility.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The imaging team is based at the Space Science Institute, Boulder, Colorado.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.

Original Source: CICLOPS News Release

Saturn’s Southern Atmosphere

Cassini captured intriguing cloud structures on Saturn as it neared its rendezvous with the gas giant. Notable is the irregularity in the eastern edge of the dark southern polar collar. The image was taken with the narrow angle camera on May 21, 2004, from a distance of 22 million kilometers (13.7 million miles) from Saturn through a filter sensitive to absorption and scattering of sunlight in the near infrared by methane gas (centered at 727 nanometers). The image scale is 131 kilometers (81 miles) per pixel. No contrast enhancement has been performed on this image.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The imaging team is based at the Space Science Institute, Boulder, Colorado.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.

Rings Pose New Mysteries

Just two days after the Cassini spacecraft entered Saturn orbit, preliminary science results are already beginning to show a complex and fascinating planetary system.

One early result intriguing scientists concerns Saturn?s Cassini Division, the large gap between the A and B rings. While Saturn?s rings are almost exclusively composed of water ice, new findings show the Cassini Division contains relatively more “dirt” than ice. Further, the particles between the rings seem remarkably similar to the dark material that scientists saw on Saturn?s moon, Phoebe. These dark particles refuel the theory that the rings might be the remnants of a moon. The F ring was also found to contain more dirt.

Another instrument on Cassini has detected large quantities of oxygen at the edge of the rings. Scientists are still trying to understand these results, but they think the oxygen may be left over from a collision that occurred as recently as January of this year.

“In just two days, our ideas about the rings have been expanded tremendously,” said Dr. Linda Spilker, of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., deputy project scientist for the Cassini-Huygens mission. “The Phoebe-like material is a big surprise. What puzzles us is that the A and B rings are so clean and the Cassini Division between them appears so dirty.”

The visual and infrared mapping spectrometer onboard Cassini revealed the dirt mixed with the ice in the Cassini Division and in other small gaps in the rings, as well as in the F ring.

“The surprising fingerprint in the data is that the dirt appears similar to what we saw at Phoebe. In the next several months we will be looking for the origin of this material,” said Dr. Roger Clark, of the U.S. Geological Survey, Denver, Colo., and a member of the Cassini science team.

Cassini’s ultraviolet imaging instrument detected the sudden and surprising increase in the amount of atomic oxygen at the edge of the rings. The finding leads scientists to hypothesize that something may have collided with the main rings, producing the excess oxygen.

Dr. Donald Shemansky of the University of Southern California, Los Angeles, co-investigator for Cassini’s ultraviolet imaging spectrograph instrument, said, “What is surprising is the evidence of a strong, sudden event during the observation period causing substantial variation in the oxygen distribution and abundance.” Although atomic oxygen has not been previously observed, its presence is not a surprise because hydroxyl was discovered earlier from Hubble Space Telescope observations, and these chemicals are both products of water chemistry.

Cassini’s examination of Saturn’s atmosphere began while the spacecraft was still approaching the planet. Winds on Saturn near the equator decrease dramatically with altitude above the cloud tops. The winds fall off by as much 140 meters per second (approximately 300 miles per hour) over an altitude range of 300 kilometers (approximately 200 miles) in the upper stratosphere. This is the first time winds have been measured at altitudes so high in Saturn’s atmosphere.

“We are finally defining the wind field in three dimensions, and it is very complex,” said Dr. Michael Flasar of NASA Goddard Space Flight Center, Greenbelt, Md., principal investigator for Cassini’s composite infrared spectrometer. “Temperature maps obtained now that Cassini is orbiting Saturn are expected to show more detail, helping us to unravel the riddles of Saturn’s winds above the cloud tops.”

Early Friday (Pacific Time), Cassini imaged Saturn?s largest moon Titan, one of the prime targets for the mission. Titan is thought to harbor simple organic compounds that may be important in understanding the chemical building blocks that led to life on Earth. Although too cold to support life now, Titan serves as a frozen vault to see what early Earth might have been like. Scientists will receive the new data and images from Titan later Friday.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. JPL designed, developed and assembled the Cassini orbiter.

For the latest images and more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini.

Original Source: NASA/JPL News Release

Cassini Makes Its First Titan Flyby

The Cassini spacecraft has revealed surface details of Saturn’s moon Titan and imaged a huge cloud of gas surrounding the planet-sized moon.

Cassini gathered data before and during a distant flyby of the orange moon yesterday. Titan’s dense atmosphere is opaque at most wavelengths, but the spacecraft captured some surface details, including a possible crater, through wavelengths in which the atmosphere is clear.

“Although the initial images appear bland and hard to interpret, we’re happy to report that, with a combination of instruments, we have indeed seen Titan’s surface with unprecedented clarity. We also look forward to future, much closer flybys and use of radar for much greater levels of surface detail,” said Dr. Dennis Matson of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., project scientist for the international Cassini-Huygens mission.

Cassini’s visible and infrared mapping spectrometer pierced the smog that enshrouds Titan. This instrument, capable of mapping mineral and chemical features of the moon, reveals an exotic surface bearing a variety of materials in the south and a circular feature that may be a crater in the north. Near-infrared colors, some three times redder than the human eye can see, reveal the surface with unusual clarity.

“At some wavelengths, we see dark regions of relatively pure water ice and brighter regions with a much higher amount of non-ice materials, such as simple hydrocarbons. This is different from what we expected. It’s preliminary, but it may change the way we interpret light and dark areas on Titan,” said JPL’s Dr. Kevin Baines, Cassini science-team member. “A methane cloud is visible near the south pole. It’s made of unusually large particles compared to the typical haze particles surrounding the moon, suggesting a dynamically active atmosphere there.”

This is the first time scientists are able to map the mineralogy of Titan. Using hundreds of wavelengths, many of which have never been used in Titan imaging before, they are creating a global map showing distributions of hydrocarbon-rich regions and areas of icy material.

Cassini’s camera also sees through the haze in some wavelengths. “We’re seeing a totally alien surface,” said Dr. Elizabeth Turtle of the University of Arizona, Tucson. “There are linear features, circular features, curvilinear features. These suggest geologic activity on Titan, but we really don’t know how to interpret them yet. We’ve got some exciting work cut out for us.”

Since entering orbit, Cassini has also provided the first view of a vast swarm of hydrogen molecules surrounding Titan well beyond the top of Titan’s atmosphere. Cassini’s magnetospheric imaging instrument, first of its kind on any interplanetary mission, provided images of the huge cloud sweeping along with Titan in orbit around Saturn. The cloud is so big that Saturn and its rings would fit within it. “The top of Titan’s atmosphere is being bombarded by highly energetic particles in Saturn’s radiation belts, and that is knocking away this neutral gas,” said Dr. Stamatios Krimigis of Johns Hopkins Applied Physics Laboratory, Laurel, Md., principal investigator for the magnetospheric imager. “In effect, Titan is gradually losing material from the top of its atmosphere, and that material is being dragged around Saturn.”

The study of Titan, Saturn’s largest moon, is one of the major goals of the Cassini-Huygens mission. Titan may preserve in deep-freeze many chemical compounds that preceded life on Earth. Friday’s flyby at a closest distance of 339,000 kilometers (210,600 miles) provided Cassini’s best look at Titan so far, but over the next four years, the orbiter will execute 45 Titan flybys as close as approximately 950 kilometers (590 miles). This will permit high-resolution mapping of the moon’s surface with an imaging radar instrument, which can see through the opaque haze of Titan’s upper atmosphere. In January 2005, the Huygens probe that is now attached to Cassini will descend through Titan’s atmosphere to the surface.

During the ring plane crossing, the radio and plasma wave science instrument on Cassini measured little puffs of plasma produced by dust impacts. While crossing the plane of Saturn’s rings, the instrument detected up to 680 dust hits per second. “The particles are comparable in size to particles in cigarette smoke,” said Dr. Don Gurnett of the University of Iowa, Iowa City, principal investigator for the instrument. “When we crossed the ring plane, we had roughly 100,000 total dust hits to the spacecraft in less than five minutes. We converted these into audible sounds that resemble hail hitting a tin roof.”

The spacecraft reported no unusual activity due to the hits and performed flawlessly, successfully going into orbit around Saturn on June 30. The engine burn for entering orbit went so well that mission managers have decided to forgo an orbital-adjustment maneuver scheduled for today.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. JPL designed, developed and assembled the Cassini orbiter.

For the latest images and more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini.

Original Source: NASA/JPL News Release

Saturn’s Rings Up Close

This is a narrow-angle camera image of Saturn’s rings taken after the successful completion of the orbit insertion burn when the spacecraft had crossed the ring plane and was looking upwards at the lit face of the rings. The image shows details in the Encke gap (325 kilometers, 202 miles wide) in Saturn’s A ring. The center of the gap lies at a distance of 133,600 kilometers (83,000 miles) from Saturn. The image shows a ring in the center of the gap. The wavy inner edge of the gap and the wake-like structures emanating from its inner edge are caused by the tiny moon Pan that orbits in the middle of the gap. Two fainter ring features are also visible in the gap region.

Cassini was approximately 195,000 kilometers (121,000 miles) above the ringplane when the image was obtained. Image scale is approximately 1 kilometer per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. The imaging team is based at the Space Science Institute, Boulder, Colorado.

For more information about the Cassini-Huygens mission, visit http://saturn.jpl.nasa.gov and the Cassini imaging team home page, http://ciclops.org.

Original Source: CICLOPS News Release

Cassini Arrives at Saturn Safely

After a seven-year cruise through the Solar System, the joint NASA/ESA/ASI Cassini-Huygens spacecraft last night successfully entered orbit around Saturn.

The Cassini orbiter is now ready to begin its four-year survey of the planet and its moons, while the Huygens probe will be prepared for the next major mission milestone: its release toward the largest moon, Titan, in December.

?This shows international space co-operation at its best,? said ESA?s Director of Science, Prof. David Southwood, after confirmation of the orbit insertion. ?Few deep space planetary missions have carried the hopes of such a large community of scientists and space enthusiasts around the world. Congratulations to the teams in the US and Europe who made this possible and to all participants in the programme, who have a lot to do over the years ahead.?

The Saturn Orbit Insertion was the last and most critical manoeuvre performed by the spacecraft to achieve its operational orbit. If it had failed, the spacecraft would have just flown past Saturn and got lost in the outer Solar System.

Cassini-Huygens was launched from Cape Canaveral, Florida, on 15 October 1997, atop a Titan 4B/Centaur, the most powerful expendable launch vehicle in the US fleet at the time. To reach Saturn it had to perform a series of gravity assist manoeuvres around Venus (April 1998 and June 1999), Earth (August 1999) and Jupiter (December 2000).

Last night, Cassini-Huygens approached Saturn from below the plane of its rings. Using its high-gain antenna dish as a shield to protect its fragile body from dust impacts, it first crossed the ring plane at 02:03 UT, some 158 500 kilometres from the centre of Saturn, in the gap that separates the F ring from the G ring. About 25 minutes later, at 02:36 UT, the probe fired one of its twin main engines for a 96-minute burn to enter orbit. The signal confirming this ignition took 84 minutes to reach Earth, some 1500 million kilometres from Saturn.

The burn went smoothly and reduced Cassini-Huygens?s relative velocity to Saturn while the probe passed only 19 000 kilometres from the planet?s upper clouds. After completion of the burn, the probe was tilted first toward Earth to confirm insertion and then toward Saturn?s rings in order to take close-up pictures as it flew only a few thousand kilometres above them. This was a unique opportunity to attempt to discriminate individual components within the rings, as Cassini is not planned to come this close to them again. The orbiter?s instruments also took advantage of its proximity to the planet to make an in-depth study of its atmosphere and environment.

A second crossing of the ring plane took place at 05:50 UT.

The spacecraft is in perfect shape to begin its tour of the Saturnian system with at least 76 orbits around the ringed planet and 52 close encounters with seven of its 31 known moons. This tour actually began before insertion with a close fly-by of an eighth moon, Phoebe, on 11 June. The primary target for Cassini-Huygens will be the largest of these moons, Titan, with a first fly-by at an altitude of 1200 kilometres on 26 October.

During the coming months, ESA?s scientists will prepare for the release of their main contribution to the mission, the Huygens probe, which will be released on 25 December to enter the atmosphere of Titan on 14 January 2005. Built for ESA by an industrial team led by Alcatel Space, this 320 kilogram probe carries six science instruments to analyse and characterise the atmosphere and its dynamics during its descent. If the probe survives the impact on reaching the surface, it will also analyse the physical properties of its environment after landing.

Actually bigger than Mercury, Titan features a hazy nitrogen-rich atmosphere containing carbon-based compounds. The chemical environment on Titan is thought to be similar to that of Earth before life, although colder (-180?C) and lacking liquid water. The in situ results from Huygens, combined with global observations from repeated fly-bys of Titan by the Cassini orbiter, are expected to help us understand the evolution of the early Earth’s atmosphere and provide clues about the mechanisms that led to the dawn of life on our planet.

The Cassini orbiter, the largest and most complex deep-space vehicle ever launched, carries 12 science instruments developed by US and international teams to conduct in-depth studies of Saturn, Titan, the icy moons, the ring system and the magnetospheric environment. Two of the orbiter?s instruments were provided by Europe.

?More than twenty years have passed since Pioneer 11 and the Voyagers gave us a first glimpse of Saturn, as they crossed this complex system in only a few days,? explained Prof. Southwood, who is also principal investigator for Cassini?s magnetometer. ?Now, with Cassini, we are here to stay, watch and investigate. And with Huygens we will go even deeper and further, not only plunging into an extraterrestrial atmosphere but also an atmosphere like the early Earth?s. This means we are travelling billions of years back into our own past to investigate one of the Universe?s best kept secrets: where we came from.?

The Cassini-Huygens mission is a co-operation between NASA, ESA, the European Space Agency and ASI, the Italian space agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASA?s Office of Space Science, Washington.

Original Source: ESA News Release

Cassini Will Arrive Today

Saturn is now a day away for the Cassini spacecraft, a seasoned traveler that began its journey nearly seven years ago.

On June 30 at 7:36 p.m. Pacific Time (10:36 p.m. EDT), Cassini will begin executing a series of commands to enter orbit around the ringed planet. The spacecraft will fire its main engine for a crucial 96 minutes to slow down and be captured in orbit about Saturn.

Besides launch, orbit insertion is the next most critical part of the mission. “Everything has to go just right. The burn must occur for all 96 minutes, the turns must occur at the right time, the computers must keep the sequence going even in the event something unexpected should happen,” said Robert T. Mitchell, program manager for the Cassini-Huygens mission at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “The spacecraft has been programmed to continue even in the event of an emergency. With a one-way light time of 1 hour and 24 minutes, we had to teach the spacecraft to take care of itself. We don’t want Cassini to call home if a problem arises, we want it to keep going. That is precisely what we’ve told the spacecraft: Don’t stop, keep going until you’ve put in all 96 minutes of burn,” he said.

During the orbit insertion, Cassini will fly closer to Saturn than at any other time during the spacecraft’s planned four-year tour of Saturn. This provides an unprecedented opportunity to study the planet and rings at close range. It will pass approximately 20,000 kilometers (12,427 miles) above Saturn’s cloud tops, closer than any other spacecraft in history. It will also be flying about 10 times closer to the rings than at any other point in the mission

Cassini carries 12 instruments that will study the planet, rings and moons in extensive detail. Riding aboard Cassini is a second spacecraft, the Huygens probe, built by the European Space Agency. It carries half a dozen instruments that will study Titan, Saturn’s largest moon, a prime target for both Cassini and the Huygens probe. Titan is the only moon in the solar system to have a dense atmosphere and resembles the early Earth in deep freeze.

“In a sense, Cassini and the Huygens probe are like time machines that will take us back to examine a world we’ve never seen before, a world that may resemble what our own world was like 4.5 billion years ago,” said Dr. Jean-Pierre Lebreton of the European Space Agency, who is mission manager and project scientist for the Huygens probe.

Eighty-five minutes before the engine burn, Cassini will rotate to point its main antenna dish forward. The Italian-built antenna, 4 meters (13 feet) in diameter, will offer shielding against dust particles the spacecraft may hit as it crosses a gap in the rings. The spacecraft will continue transmitting a monotone “carrier” signal with a secondary antenna for tracking from Earth. Cassini will pass twice through a known gap between the F and G rings, first while ascending shortly before the burn, then while descending shortly after the burn.

The engine burn will slow the spacecraft by 626 meters per second (1,400 miles per hour). Five science instruments will be on during the burn, and others will be used shortly after the engine cuts off. The magnetometer will measure the strength and direction of the magnetic field to understand the physics of Saturn’s magnetic dynamics. Lightning may also be detected. Another instrument will provide a record of the dust hits as the spacecraft flies through the ring plane. These observations may tell scientists the size of these tiny particles and the thickness of that ring region. The remote sensing instruments will assess the rings’ composition, temperature, and structure. Then the spacecraft will be oriented for the outbound ring plane crossing. After crossing the ring plane in the descending mode, Cassini will look back at the sunlit face of the rings to take more data before turning to Earth to transmit its data.

“Should something happen during the burn, the science sequence will stop,” said Dr. Dennis Matson, project scientist for the Cassini-Huygens mission at JPL. “We are prepared to live with this outcome. Getting into orbit is the priority. Getting the science is extra credit.”

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Office of Space Science, Washington, D.C. JPL designed, developed and assembled the Cassini orbiter. For the latest images and more information about the Cassini-Huygens mission, visit http://www.nasa.gov/cassini.

Original Source: NASA/JPL News Release