The Universe is Constantly Bathing you in Radiation. Incredibly, This Could be Used for Medical Diagnosis

A cluster of massive stars seen with the Hubble Space Telescope. The cluster is surrounded by clouds of interstellar gas and dust called a nebula. The nebula, located 20,000 light-years away in the constellation Carina, contains the central cluster of huge, hot stars, called NGC 3603. Recent research shows that galactic cosmic rays flowing into our solar system originate in clusters like these. Credits: NASA/U. Virginia/INAF, Bologna, Italy/USRA/Ames/STScI/AURA

Walk into any modern hospital, and you’ll find a medical imaging department. Medical imaging uses x-rays, magnetic resonance imaging (MRI), and other arcane-sounding methods like positron emission tomography (PET) to image the body’s interior for analysis and diagnosis. To a non-specialist, these techniques can sound almost otherwordly. But in one way or another, these technologies rely on natural phenomena, including radiation, to do their thing.

Now a new study suggests that the Universe’s naturally occurring radiation could be used in medical imaging and could be particularly useful when it comes to COVID-19. The type of radiation in question is cosmic rays.

Continue reading “The Universe is Constantly Bathing you in Radiation. Incredibly, This Could be Used for Medical Diagnosis”

New Technique to Search for Life, Whether or not it’s Similar to Earth Life

Artist’s impression of a sunset seen from the surface of an Earth-like exoplanet. Credit: ESO/L. Calçada

In 1960, the first survey dedicated to the Search for Extraterrestrial Intelligence (SETI) was mounted at the Green Bank Observatory in West Virginia. This was Project Ozma, which was the brainchild of famed astronomer and SETI pioneer Frank Drake (for whom the Drake Equation is named). Since then, the collective efforts to find evidence of life beyond Earth have coalesced to create a new field of study known as astrobiology.

The search for extraterrestrial life has been the subject of renewed interest thanks to the thousands of exoplanets that have been discovered in recent years. Unfortunately, our efforts are still heavily constrained by our limited frame of reference. However, a new tool developed by a team of researchers from the University of Glasgow and Arizona State University (ASU) could point the way towards life in all of its forms!

Continue reading “New Technique to Search for Life, Whether or not it’s Similar to Earth Life”

Tree Rings Reveal 1,000 Years of Solar Activity

Solar activity over the last 1000 years (blue, with error interval in white), sunspot records (red curve) going back less than 400 years. The background shows a typical eleven-?year cycle of the sun. CREDIT ETH Zürich

The Sun has a lot of rhythm and goes through different cycles of activity. The most well-known cycle might be the Schwabe cycle, which has an 11-year cadence. But what about cycles with much longer time scales? How can scientists understand them?

As it turns out, the Sun has left some hidden clues in tree rings.

Continue reading “Tree Rings Reveal 1,000 Years of Solar Activity”

It Took 50 Nights of Observations to Capture New Data on the Magellanic Clouds

Part of the SMASH dataset showing an unprecedented wide-angle view of the Large Magellanic Cloud. Image Credit: CTIO/NOIRLab/NSF/AURA/SMASH/D. Nidever (Montana State University) Acknowledgment: Image processing: Travis Rector (University of Alaska Anchorage), Mahdi Zamani & Davide de Martin

The Magellanic Clouds are two of our closest neighbours, in galactic terms. The pair of irregular dwarf galaxies were drawn into the Milky Way’s orbit in the distant past, and we’ve been looking up at them since the dawn of humanity. Some of our ancestors even gathered pigments and created images of them in petroglyphs and cave paintings.

Following in the footsteps of those ancient artists, astronomers recently used the Dark Energy Camera (DECam) to capture an in-depth portrait of the pair of galaxies.

Continue reading “It Took 50 Nights of Observations to Capture New Data on the Magellanic Clouds”

One of the Building Blocks of Life Can Form in the Harsh Environment of Deep Space Itself. No Star Required

A new study from the University of Edinburgh suggests that life could be distributed throughout the cosmos by interstellar dust. Credit: ESO/R. Fosbury (ST-ECF)

In many ways, stars are the engines of creation. Their energy drives a whole host of processes necessary for life. Scientists thought that stellar radiation is needed to create compounds like the amino acid glycine, one of the building blocks of life.

But a new study has found that glycine detected in comets formed in deep interstellar space when there was no stellar energy.

Continue reading “One of the Building Blocks of Life Can Form in the Harsh Environment of Deep Space Itself. No Star Required”

There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs

A three-dimensional cross-section of the hydrothermal system in the Chicxulub impact crater and its seafloor vents. The system has the potential for harboring microbial life. Illustration by Victor O. Leshyk for the Lunar and Planetary Institute.

How did life arise on Earth? How did it survive the Hadean eon, a time when repeated massive impacts excavated craters thousands of kilometres in diameter into the Earth’s surface? Those impacts turned the Earth into a hellish place, where the oceans turned to steam, and the atmosphere was filled with rock vapour. How could any living thing have survived?

Ironically, those same devastating impacts may have created a vast subterranean haven for Earth’s early life. Down amongst all those chambers and pathways, pumped full of mineral-rich water, primitive life found the shelter and the energy needed to keep life on Earth going. And the evidence comes from the most well-known extinction event on Earth: the Chicxulub impact event.

Continue reading “There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs”

Galaxies Grew Quickly and Early On in the Universe

Artist's illustration of a galaxy in the early universe that is very dusty and shows the first signs of a rotationally supported disk. In this image, the red color represents gas, and blue/brown represents dust as seen in radio waves with ALMA. Many other galaxies are visible in the background, based on optical data from VLT and Subaru. Credit: B. Saxton NRAO/AUI/NSF, ESO, NASA/STScI; NAOJ/Subaru

The behaviour of galaxies in the early Universe attracts a lot of attention from researchers. In fact, everything about the early Universe is under intense scientific scrutiny for obvious reasons. But unlike the Universe’s first stars, which have all died long ago, the galaxies we see around us—including our own—have been here since the early days.

Current scientific thinking says that in the early days of the Universe, the galaxies grew slowly, taking billions of years to become what they are now. But new observations show that might not be the case.

Continue reading “Galaxies Grew Quickly and Early On in the Universe”

Scientists in Japan Have Found a Detailed Record of the Earth’s Last Magnetic Reversal, 773,000 Years Ago

Earth Observation has come a long way. But if satellites could orbit closer to Earth, in VLEO, then our observations would be a lot better. Image Credit: NASA Earth Observatory.

Every 200,000 to 300,000 years Earth’s magnetic poles reverse. What was once the north pole becomes the south, and vice versa. It’s a time of invisible upheaval.

The last reversal was unusual because it was so long ago. For some reason, the poles have remained oriented the way they are now for about three-quarters of a million years. A new study has revealed some of the detail of that reversal.

Continue reading “Scientists in Japan Have Found a Detailed Record of the Earth’s Last Magnetic Reversal, 773,000 Years Ago”

Mixing Science and Art, One Painting at a Time

Oil painting of Jupiter by Laci Shea Brock.

All her life, Laci Shea Brock has needed to be creative and inventive. So, perhaps it’s not completely surprising that in addition to pursuing her PhD in planetary sciences and astrophysics, she’s also a talented artist.

“My Dad says I’ve always had a paintbrush in my hand,” Brock said, “and I’ve always been inspired by space and nature.

Continue reading “Mixing Science and Art, One Painting at a Time”

Astronomers Find the Hollowed-Out Shell of a Dwarf Galaxy that Collided With the Milky Way Billions of Years Ago

The Karl Jansky Very Large Array at night, with the Milky Way visible in the sky. Credit: NRAO/AUI/NSF; J. Hellerman

In 2005 astronomers found a dense grouping of stars in the Virgo constellation. It looked like a star cluster, except further surveys showed that some of the stars are moving towards us, and some are moving away. That finding was unexpected and suggested the Stream was no simple star cluster.

A 2019 study showed that the grouping of stars is no star cluster at all; instead, it’s the hollowed-out shell of a dwarf spheroidal galaxy that merged with the Milky Way. It’s called the Virgo Overdensity (VOD) or the Virgo Stellar Stream.

A new study involving some of the same researchers shows how and when the merger occurred and identifies other shells from the same merger.

Continue reading “Astronomers Find the Hollowed-Out Shell of a Dwarf Galaxy that Collided With the Milky Way Billions of Years Ago”