There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs

A three-dimensional cross-section of the hydrothermal system in the Chicxulub impact crater and its seafloor vents. The system has the potential for harboring microbial life. Illustration by Victor O. Leshyk for the Lunar and Planetary Institute.

How did life arise on Earth? How did it survive the Hadean eon, a time when repeated massive impacts excavated craters thousands of kilometres in diameter into the Earth’s surface? Those impacts turned the Earth into a hellish place, where the oceans turned to steam, and the atmosphere was filled with rock vapour. How could any living thing have survived?

Ironically, those same devastating impacts may have created a vast subterranean haven for Earth’s early life. Down amongst all those chambers and pathways, pumped full of mineral-rich water, primitive life found the shelter and the energy needed to keep life on Earth going. And the evidence comes from the most well-known extinction event on Earth: the Chicxulub impact event.

Continue reading “There’s a Vast Microbial Ecosystem Underneath the Crater that Wiped Out the Dinosaurs”

Galaxies Grew Quickly and Early On in the Universe

Artist's illustration of a galaxy in the early universe that is very dusty and shows the first signs of a rotationally supported disk. In this image, the red color represents gas, and blue/brown represents dust as seen in radio waves with ALMA. Many other galaxies are visible in the background, based on optical data from VLT and Subaru. Credit: B. Saxton NRAO/AUI/NSF, ESO, NASA/STScI; NAOJ/Subaru

The behaviour of galaxies in the early Universe attracts a lot of attention from researchers. In fact, everything about the early Universe is under intense scientific scrutiny for obvious reasons. But unlike the Universe’s first stars, which have all died long ago, the galaxies we see around us—including our own—have been here since the early days.

Current scientific thinking says that in the early days of the Universe, the galaxies grew slowly, taking billions of years to become what they are now. But new observations show that might not be the case.

Continue reading “Galaxies Grew Quickly and Early On in the Universe”

Scientists in Japan Have Found a Detailed Record of the Earth’s Last Magnetic Reversal, 773,000 Years Ago

Earth Observation has come a long way. But if satellites could orbit closer to Earth, in VLEO, then our observations would be a lot better. Image Credit: NASA Earth Observatory.

Every 200,000 to 300,000 years Earth’s magnetic poles reverse. What was once the north pole becomes the south, and vice versa. It’s a time of invisible upheaval.

The last reversal was unusual because it was so long ago. For some reason, the poles have remained oriented the way they are now for about three-quarters of a million years. A new study has revealed some of the detail of that reversal.

Continue reading “Scientists in Japan Have Found a Detailed Record of the Earth’s Last Magnetic Reversal, 773,000 Years Ago”

Mixing Science and Art, One Painting at a Time

Oil painting of Jupiter by Laci Shea Brock.

All her life, Laci Shea Brock has needed to be creative and inventive. So, perhaps it’s not completely surprising that in addition to pursuing her PhD in planetary sciences and astrophysics, she’s also a talented artist.

“My Dad says I’ve always had a paintbrush in my hand,” Brock said, “and I’ve always been inspired by space and nature.

Continue reading “Mixing Science and Art, One Painting at a Time”

Astronomers Find the Hollowed-Out Shell of a Dwarf Galaxy that Collided With the Milky Way Billions of Years Ago

The Karl Jansky Very Large Array at night, with the Milky Way visible in the sky. Credit: NRAO/AUI/NSF; J. Hellerman

In 2005 astronomers found a dense grouping of stars in the Virgo constellation. It looked like a star cluster, except further surveys showed that some of the stars are moving towards us, and some are moving away. That finding was unexpected and suggested the Stream was no simple star cluster.

A 2019 study showed that the grouping of stars is no star cluster at all; instead, it’s the hollowed-out shell of a dwarf spheroidal galaxy that merged with the Milky Way. It’s called the Virgo Overdensity (VOD) or the Virgo Stellar Stream.

A new study involving some of the same researchers shows how and when the merger occurred and identifies other shells from the same merger.

Continue reading “Astronomers Find the Hollowed-Out Shell of a Dwarf Galaxy that Collided With the Milky Way Billions of Years Ago”

What Would a Realistic Space Battle Look Like?

An air-to-air left side view of an F-15 Eagle aircraft releasing an anti-satellite (ASAT) missile during a test. Credit: USAF

Science fiction space movies can do a poor job of educating people about space. In the movies, hot-shot pilots direct their dueling space ships through space as if they’re flying through an atmosphere. They bank and turn and perform loops and rolls, maybe throw in a quick Immelman, as if they’re subject to Earth’s gravity. Is that realistic?

No.

In reality, a space battle is likely to look much different. With an increasing presence in space, and the potential for future conflict, is it time to think about what an actual space battle would look like?

Continue reading “What Would a Realistic Space Battle Look Like?”

Wow, Betelgeuse Might Be 25% Closer than Previously Believed

The red supergiant Betelgeuse. Its activity can be confounding, and new research suggests that the star could've consumed a smaller companion star. Image credit: Hubble Space Telescope. Image Credit: ALMA (ESO/NAOJ/NRAO)/E. O’Gorman/P. Kervella

In the last year, Betelgeuse has experienced two episodes of dimming. Normally, it’s one of the ten brightest stars in the sky, and astrophysicists and astronomers got busy trying to understand what was happening with the red supergiant. Different research came up with some possible answers: Enormous starspots, a build-up of dust, pre-supernova convulsions.

Now a new study is introducing another wrinkle into our understanding of Betelgeuse. The authors say that Betelgeuse is both smaller and closer than previously thought.

Continue reading “Wow, Betelgeuse Might Be 25% Closer than Previously Believed”

Here’s a Clever Idea, Looking for the Shadows of Trees On Exoplanets to Detect Multicellular Life

Exoplanet Kepler 62f would need an atmosphere rich in carbon dioxide for water to be in liquid form. Artist's Illustration: NASA Ames/JPL-Caltech/T. Pyle

That’s the kind of headline that can leave us scratching our heads. How can you see tree shadows on other worlds, when those planets are tens or hundreds of light years—or even further—away. As it turns out, there might be a way to do it.

One team of researchers thinks that the idea could potentially be used to answer one of humanity’s long-standing questions: Are we alone?

Continue reading “Here’s a Clever Idea, Looking for the Shadows of Trees On Exoplanets to Detect Multicellular Life”

Machine Learning Software is Now Doing the Exhausting Task of Counting Craters On Mars

The tiny black speck in the lower left corner of this image within the red circle is a cluster of recently formed craters spotted on Mars using a new machine-learning algorithm. This image was taken by the Context Camera aboard NASA's Mars Reconnaissance Orbiter in a region called Noctis Fossae, located at latitude -3.213, longitude: 259.415. Image Credit: NASA/JPL-Caltech/MSSS

Does the life of an astronomer or planetary scientists seem exciting?

Sitting in an observatory, sipping warm cocoa, with high-tech tools at your disposal as you work diligently, surfing along on the wavefront of human knowledge, surrounded by fine, bright people. Then one day—Eureka!—all your hard work and the work of your colleagues pays off, and you deliver to humanity a critical piece of knowledge. A chunk of knowledge that settles a scientific debate, or that ties a nice bow on a burgeoning theory, bringing it all together. Conferences…tenure…Nobel Prize?

Well, maybe in your first year of university you might imagine something like that. But science is work. And as we all know, not every minute of one’s working life is super-exciting and gratifying.

Sometimes it can be dull and repetitious.

Continue reading “Machine Learning Software is Now Doing the Exhausting Task of Counting Craters On Mars”

Chitin Could be the Perfect Building Material on Mars

An artist's illustration of a Mars settlement. Image: Bryan Versteeg/MarsOne
An artist's illustration of an early Mars settlement. Credit: Bryan Versteeg/MarsOne

It’s hard to deny that we’re heading for a future with a human presence on Mars. But to develop sustained presence, there are an enormous number of technical problems to be worked out. One of those problems concerns manufacturing and building.

We can’t send everything people will need to Mars. We’ll need some way to build structures, and tools and other things.

Continue reading “Chitin Could be the Perfect Building Material on Mars”