Earth’s Oxygen Could be Making the Moon Rust

Enhanced map of hematite (red) on Moon using a spheric projection (nearside only). Credit: Shuai Li

It takes oxygen to make iron rust. So when scientists discovered hematite spread widely through lunar high latitudes, they were surprised. How did that happen?

A new study suggests that oxygen from Earth could be playing a role in rusting the Moon.

Continue reading “Earth’s Oxygen Could be Making the Moon Rust”

Nancy Roman Telescope’s Primary 2.4-Meter Mirror is Ready

Artist's impression of the Nancy Grace Roman Space Telescope, named after NASA’s first Chief of Astronomy. This spacecraft will orbit at SEL2, far from Earth. Credits: NASA
Artist's impression of the Nancy Grace Roman Space Telescope, named after NASA’s first Chief of Astronomy. This spacecraft will orbit at SEL2, far from Earth. Credits: NASA

The Nancy Roman Telescope has reached another milestone in its development. NASA has announced that the space telescope’s primary mirror is now complete. The 2.4 meter (7.9 ft) mirror took less time to develop than other mirrors because it wasn’t built from scratch. It’s a re-shaped and re-surfaced mirror that came from the National Reconnaissance Office.

Continue reading “Nancy Roman Telescope’s Primary 2.4-Meter Mirror is Ready”

A Huge Ring-Like Structure on Ganymede Might be the Result of an Enormous Impact

Jupiter's moon Ganymede is the largest moon in the Solar System and may have an ocean sandwiched between two layers of ice. But how warm is that ocean? Image Credit: By National Oceanic and Atmospheric Administration Public Domain, https://commons.wikimedia.org/w/index.php?curid=8070396

Ganymede’s surface is a bit of a puzzle for planetary scientists. About two-thirds of its surface is covered in lighter terrain, while the remainder is darker. Both types of terrain are ancient, with the lighter portion being slightly younger. The two types of terrain are spread around the moon, and the darker terrain contains concurrent furrows.

For the most part, scientists think that the furrows were caused by tectonic activity, possibly related to tidal heating as the moon went through unstable orbital resonances in the past.

But a new study says that a massive impact might be responsible for all those furrows.

Continue reading “A Huge Ring-Like Structure on Ganymede Might be the Result of an Enormous Impact”

There’s One Cloud on Mars That’s Over 1800 km Long

A mysteriously long, thin cloud has again appeared over the 20-km high Arsia Mons volcano on Mars. Image Credit: ESA/GCP/UPV/EHU Bilbao

Mars’ massive cloud is back.

Every year during Mars’ summer solstice, a cloud of water ice forms on the leeward side of Arsia Mons, one of Mars’ largest extinct volcanoes. The cloud can grow to be up to 1800 km (1120 miles) long. It forms each morning, then disappears the same day, only to reappear the next morning. Researchers have named it the Arsia Mons Elongated Cloud (AMEC).

Continue reading “There’s One Cloud on Mars That’s Over 1800 km Long”

Microbes Were Dormant for Over 100 Million Years, But They Were Able to Spring Back to Life

Magnified image showing microbes revived from 101.5-million-year-old sediment. Image Credit:Japan Agency for Marine-Earth Science and Technology

At the bottom of the ocean in the South Pacific Gyre, there’s a sediment layer that is among the most nutrient-starved environments on Earth. Because of conditions in that area, there’s almost no “marine snow”—the shower of organic debris common in the ocean—that falls to the ocean floor. Without all that organic debris falling to the floor, there’s a severe lack of nutrients there, and that makes this one of the least hospitable places on Earth.

A team of researchers took sediment samples from that area, and extracted 101.5 million year old microbes. When they “fed” those microbes, they sprang back to life.

The results are expanding our knowledge of microbial life and how long it can be dormant when conditions force it to be.

Continue reading “Microbes Were Dormant for Over 100 Million Years, But They Were Able to Spring Back to Life”

A Group of Meteorites All Came From a Destroyed Planetesimal With a Magnetic Core

Samples from a rare meteorite family, including the one shown here, reveal that their parent planetesimal, formed in the earliest stages of the solar system, was a complex, layered object, with a molten core and solid crust similar to Earth. Photo credit: Carl Agee, Institute of Meteoritics, University of New Mexico. Background edited by MIT News.

Before our Solar System had planets, it had planetesimals. Scientists think that most of the meteorites that have struck Earth are fragments of these planetesimals. Scientists also think that these planetesimals either melted completely, very early in their history, or that they remained as little more than collections of rocks, or “rubble piles.”

But one family of meteorites, that have been found spread around the world, appear to come from a planetesimal that bucked that trend.

Continue reading “A Group of Meteorites All Came From a Destroyed Planetesimal With a Magnetic Core”

Radishes Can Likely Grow in Lunar Regolith

Radishes in the section with the least water germinated first and best.Image Credit: NASA/JPL-Caltech

For many of us, gardening has been a therapeutic distraction during this time of pandemic quarantine. But some researchers from the Jet Propulsion Lab have been gardening at home with a specific goal in mind: growing food on the Moon.

Continue reading “Radishes Can Likely Grow in Lunar Regolith”

What Cracked the Earth’s Outer Shell and Started its Plate Tectonics?

A snapshot of a model from the new work, showing the late stages of growth and coalescence of a new global fracture network. Fractures are in black / shadow, and colors show stresses (pink color denotes tensile stress, blue color denotes compressive stress). Image Credit: Tang et al, 2020.

Earth’s lithosphere is made up of seven large tectonic plates and a number of smaller ones. The theory of plate tectonics that describes how these plates move is about 50 years old. But there’s never really been an understanding of how this system developed, and how the Earth’s shell split into separate plates and started moving.

Now a group of researchers have a possible explanation.

Continue reading “What Cracked the Earth’s Outer Shell and Started its Plate Tectonics?”

Astronomers Do the Math to Figure Out Exactly When Johannes Vermeer Painted this, More than 350 Years Ago

View of Delft is a famous oil painting by the Dutch Master Johannes Vermeer, painted ca. 1660–1661. Image Credit: By Johannes Vermeer - www.mauritshuis.nl : Home : Info : : Image, Public Domain, https://commons.wikimedia.org/w/index.php?curid=50398

Most of us will be forgotten only a generation or two after we pass. But some few of us will be remembered: great scientists, leaders, or generals, for example. But we can add history’s great artists to that list, and one in particular: Johannes Vermeer.

Vermeer was largely ignored during the two centures that followed his death, and died as other painters often did: penniless. But as more time has passed, the Dutch Baroque painter has grown in reputation, as historians increasingly recognize him as a master.

Continue reading “Astronomers Do the Math to Figure Out Exactly When Johannes Vermeer Painted this, More than 350 Years Ago”

Astronomers Have Mapped Out an Enormous Structure in the Universe Called the South Pole Wall

A projection of the South Pole Wall in celestial coordinates. Image Credit: Pomarède et al, 2020.

Galaxies aren’t spread evenly throughout space. They exist in groups, clusters, and superclusters. Our own Milky Way galaxy exists in an impossibly vast structure called the Laniakea supercluster. Laniakea was defined in 2014, and it contains over 100,000 galaxies.

Now a team of astronomers have discovered another immense feature beyond Laniakea, called the South Pole Wall.

Continue reading “Astronomers Have Mapped Out an Enormous Structure in the Universe Called the South Pole Wall”