Journey to Bennu – Today Sept. 8: Watch the Trailer, Watch the Earth Departure Launch Live

NASA’s OSIRIS-REx asteroid sampling spacecraft is poised for liftoff on a 7 year Journey to asteroid Bennu and Back atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is poised for liftoff on a 7 year Journey to astreroid  Bennu and Back atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is poised for liftoff on a 7 year Journey to asteroid Bennu and Back atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Today is ‘Earth Departure Day’ for OSIRIS-REx, NASA’s first mission to snatch “pristine materials” from the surface of a near Earth asteroid named Bennu and deliver them back to Earth in seven years on a mission to unlock mysteries on the formation of our Solar System and ourselves 4.5 Billion years ago.

The 4.5 Billion mile roundtrip ‘Journey to Bennu and Back’ begins today. All systems are GO for a spectacular dinner-time blastoff of NASAs OSIRIS-REx spacecraft from the Florida Space Coast.

Earth departure for NASA’s Origins, Spectral Interpretation, Resource Identification, Security – Regolith Explorer (OSIRIS-REx) spacecraft from Space Launch Complex 41 at Cape Canaveral Air Force Station on a United Launch Alliance Atlas V rocket is slated for shortly before sunset this evening, Thursday, September 8 at 7:05 p.m. EDT.

Excited spectators are filling local area hotels for this once in a lifetime mission to ‘Bennu and Back.’

Bennu is a small, carbon-rich asteroid – meaning it contains significant amounts of organic molecules, the stuff of which life is made.

Bennu is only about a third of mile in diameter, measuring 500 meters or 1,614 feet across and it crosses Earth’s orbit around the sun every six years.

You can watch the sure to be a spectacular launch live in person here in sunny Florida or live via a choice of webcasts.

NASA’s OSIRIS-REx launch coverage will be broadcast on NASA TV beginning at 4:30 p.m. EDT Sept. 8, as well as on a ULA webcast.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can watch the launch live at ULA at – www.ulalaunch.com

Today’s weather forecast remains very promising and is currently 80% GO for favorable conditions. The only concern is for cumulus clouds.

There are 3 opportunities in a row to launch OSIRIS-Rex.

In case of a delay 24 or 48 hour delay, the forecast drops only slightly to 70% GO.

Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin
Artist’s conception of NASA’s OSIRIS-REx sample return spacecraft collecting regolith samples at asteroid Bennu. Credits: NASA/Lockheed Martin

The United Launch Alliance Atlas V rocket and OSIRIS-REx spacecraft were rolled out some 1800 feet from the Vertical Integration Facility (VIF) – where the rocket is assembled- to launch pad 41 starting at about 9 a.m. yesterday morning September 7, 2018.

Watch this OSIRIS-Rex trailer from NASA Goddard illustrating the probes Earth departure launch phase:

NASAs OSIRIS-REx spacecraft is on a mission to explore asteroid Bennu and return a sample to Earth. The OSIRIS-REx launch window opens on September 8, 2016, when the spacecraft begins its two-year journey to Bennu aboard an Atlas V rocket at Cape Canaveral, Florida. After arriving at Bennu in 2018, OSIRIS-REx will spend over a year exploring the asteroid before approaching its surface to grab a sample. This pristine material, formed at the dawn of the solar system, will be returned to Earth in 2023, providing clues to Bennus origins and our own. Credit: NASA’s Goddard Space Flight Center/David Ladd

OSIRIS-REx will gather rocks and soil and bring at least a 60-gram (2.1-ounce) sample back to Earth in 2023. It has the capacity to scoop up to about 2 kg or more.

The mission will help scientists investigate how planets formed and how life began. It will also improve our understanding of asteroids that could impact Earth by measuring the Yarkovsky effect.
Bennu is an unchanged remnant from the collapse of the solar nebula and birth of our solar system some 4.5 billion years ago.

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA's Kennedy Space Center.  Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

It was chosen as the target because it is little altered over time and thus ‘pristine’ in nature.

Bennu is a near-Earth asteroid and was selected for the sample return mission because it could hold clues to the origin of the solar system and host organic molecules that may have seeded life on Earth.

NASA’s OSIRIS-REx asteroid sampling spacecraft is housed inside the payload fairing atop the  United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is housed inside the payload fairing atop the United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The 189 foot tall ULA Atlas V rocket is launching in the rare 411 configuration for only the 3rd time on this mission – which is the 65th for the Atlas V.

The Atlas 411 vehicle includes a 4-meter diameter payload fairing and one solid rocket booster that augments the first stage. The Atlas booster for this mission is powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

The strap on solids deliver approximately 500,000 pounds of thrust.

The solids will be jettisoned about 2 minutes after liftoff.

OSIRIS-REx will return the largest sample from space since the American and Soviet Union’s moon landing missions of the 1970s.

OSIRIS-REx is the third mission in NASA’s New Frontiers Program, following New Horizons to Pluto and Juno to Jupiter, which also launched on Atlas V rockets.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is responsible for overall mission management.

OSIRIS-REx complements NASA’s Asteroid Initiative – including the Asteroid Redirect Mission (ARM) which is a robotic spacecraft mission aimed at capturing a surface boulder from a different near-Earth asteroid and moving it into a stable lunar orbit for eventual up close sample collection by astronauts launched in NASA’s new Orion spacecraft. Orion will launch atop NASA’s new SLS heavy lift booster concurrently under development.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Ait Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer
………….

Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 8-9: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft is rolled out to pad 40 for launch atop a United Launch Alliance Atlas V rocket on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
NASA’s OSIRIS-REx asteroid sampling spacecraft atop a ULA Atlas V rocket prior to planned launch on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.  Credit: Julian Leek
NASA’s OSIRIS-REx asteroid sampling spacecraft atop a ULA Atlas V rocket prior to planned launch on Sept. 8, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL. Credit: Julian Leek

NASA’s InSight Lander Approved for 2018 Mars Launch

This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018. Credits: NASA/JPL-Caltech
This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018.  Credits: NASA/JPL-Caltech
This artist’s concept depicts the InSight lander on Mars after the lander’s robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018. Credits: NASA/JPL-Caltech

Top NASA managers have formally approved the launch of the agency’s InSight Lander to the Red Planet in the spring of 2018 following a postponement from this spring due to the discovery of a vacuum leak in a prime science instrument supplied by France.

The InSight missions goal is to accomplish an unprecedented study of the deep interior of the most Earth-like planet in our solar system.

NASA is now targeting a new launch window that begins May 5, 2018, for the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight). mission aimed at studying the deep interior of Mars. The Mars landing is now scheduled for Nov. 26, 2018.

InSight had originally been slated for blastoff on March 4, 2016 atop a United Launch Alliance (ULA) Atlas V rocket from Vandenberg Air Force Base, California.

But the finding of a vacuum leak in its prime science instrument, the French-built Seismic Experiment for Interior Structure (SEIS), in December 2015 forced an unavoidable two year launch postponement. Because of the immutable laws of orbital mechanics, launch opportunities to the Red Planet only occur approximately every 26 months.

InSight’s purpose is to help us understand how rocky planets – including Earth – formed and evolved. The science goal is totally unique – to “listen to the heart of Mars to find the beat of rocky planet formation.”

The revised launch date was approved by the agency’s Science Mission Directorate.

“Our robotic scientific explorers such as InSight are paving the way toward an ambitious journey to send humans to the Red Planet,” said Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate, in Washington, in a statement.

“It’s gratifying that we are moving forward with this important mission to help us better understand the origins of Mars and all the rocky planets, including Earth.”

NASA's InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.
NASA’s InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.

Since InSight would not have been able to carry out and fulfill its intended research objectives because of the vacuum leak in its defective SEIS seismometer instrument, NASA managers had no choice but to scrub this year’s launch. For a time its outlook for a future revival seemed potentially uncertain in light of today’s constrained budget environment.

The leak, if left uncorrected, would have rendered the flawed probe useless to carry out the unprecedented scientific research foreseen to measure the planets seismic activity and sense for “Marsquakes” to determine the nature of the Red Planet’s deep interior.

“The SEIS instrument — designed to measure ground movements as small as half the radius of a hydrogen atom — requires a perfect vacuum seal around its three main sensors in order to withstand harsh conditions on the Red Planet,” according to NASA.

The SEIS seismometer instrument was provided by the Centre National d’Études Spatiales (CNES) – the French national space agency equivalent to NASA. SEIS is one of the two primary science instruments aboard InSight. The other instrument measuring heat flow from the Martian interior is provided by the German Aerospace Center (DLR) and is named Heat Flow and Physical Properties Package (HP3). The HP3 instrument checked out perfectly.

NASA Jet Propulsion Laboratory (JPL) was assigned lead responsibility for the “replanned” mission and insuring that the SEIS instrument operates properly with no leaks.

JPL is “redesigning, developing and qualifying the instrument’s evacuated container and the electrical feedthroughs that failed previously. France’s space agency, the Centre National d’Études Spatiales (CNES), will focus on developing and delivering the key sensors for SEIS, integration of the sensors into the container, and the final integration of the instrument onto the spacecraft.”

“We’ve concluded that a replanned InSight mission for launch in 2018 is the best approach to fulfill these long-sought, high-priority science objectives,” said Jim Green, director of NASA’s Planetary Science Division.

The cost of the two-year delay and instrument redesign amounts to $153.8 million, on top of the original budget for InSight of $675 million.

NASA says this cost will not force a delay or cancellation to any current missions. However, “there may be fewer opportunities for new missions in future years, from fiscal years 2017-2020.”

Back shell of NASA's InSight spacecraft is being lowered onto the mission's lander, which is folded into its stowed configuration.  The back shell and a heat shield form the aeroshell, which will protect the lander as the spacecraft plunges into the upper atmosphere of Mars.  Launch now rescheduled to May 2018 to fix French-built seismometer.  Credit: NASA/JPL-Caltech/Lockheed Martin
Back shell of NASA’s InSight spacecraft is being lowered onto the mission’s lander, which is folded into its stowed configuration. The back shell and a heat shield form the aeroshell, which will protect the lander as the spacecraft plunges into the upper atmosphere of Mars. Launch now rescheduled to May 2018 to fix French-built seismometer. Credit: NASA/JPL-Caltech/Lockheed Martin

Lockheed Martin is the prime contractor for InSight and placed the spacecraft in storage while SEIS is fixed.

InSight is funded by NASA’s Discovery Program of low cost, focused science missions along with the science instrument funding contributions from France and Germany.

Mars has the same basic internal structure as the Earth and other terrestrial (rocky) planets. It is large enough to have pressures equivalent to those throughout the Earth's upper mantle, and it has a core with a similar fraction of it's mass. In contrast, the pressure even near the center of the Moon barely reach that just below the Earth's crust and it has a tiny, almost negligible core. The size of Mars indicates that it must have undergone many of the same separation and crystallization processes that formed the Earth's crust and core during early planetary formation.  Credit: JPL/NASA
Mars has the same basic internal structure as the Earth and other terrestrial (rocky) planets. It is large enough to have pressures equivalent to those throughout the Earth’s upper mantle, and it has a core with a similar fraction of it’s mass. In contrast, the pressure even near the center of the Moon barely reach that just below the Earth’s crust and it has a tiny, almost negligible core. The size of Mars indicates that it must have undergone many of the same separation and crystallization processes that formed the Earth’s crust and core during early planetary formation. Credit: JPL/NASA

Meanwhile, NASA is preparing to launch its big planetary mission of 2018 on Thursday of this week ! – the OSIRIS-REx asteroid sample return probe blasts off on an Atlas V on Sept 8.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 6-8: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Some Humans Just Sacrificed Their Jobs At CERN

The status of Shiva is a permanent part of the Geneva Campus at CERN. Credit: hinduismnow.org

Yes, despite what some people were clearly meant to believe, jobs are about the only thing being sacrificed at CERN recently. After a strange video depicting what was meant to look like a human sacrifice on its Geneva campus went viral, the European Organization for Nuclear Research (CERN) launched an official investigation to get to the bottom of it.

And while the video was quickly determined to be a prank – no doubt to mess with all those who think that CERN is evil and the Large Hadron Collider (LHC) is a “tool of the devil” – it has raised concerns about security on CERN campuses, not to mention the questionable senses of humor of some of its staff!

The video, which began circulating earlier this week, featured some disturbing imagery. Within the main square of CERN’s Geneva campus – which is home to the LHC-  several figures appear to be reenacting an occult ceremony. They are seen wearing black cloaks and performing rites in front of a statue of the Hindu deity Shiva – which is on permanent display at the complex.

The statue of Nataraja, the Cosmic Dancer, Dr. Aymar, DG of CERN, Dr. Anil Kakodkar, Chairman of the Indian Atomic Energy Commission and Secretary to the Government of India. Credit: CERN
Dr. Aymar, DG of CERN, and Dr. Anil Kakodkar, Chairman of the Indian Atomic Energy Commission in front of the statue of Nataraja, the Cosmic Dancer Shiva. Credit: CERN

The scene climaxes with the staged stabbing of a woman, and then ends with the one filming the scene (who appears to be recording everything from a hidden location) uttering some expletives and running off. In response, the European Organization for Nuclear Research issued a statement, claiming they would be investigating.

They also stressed that they considered this to be an “internal matter”. So while the Geneva police were aware of the incident, they will not be formally involved in the investigation. In response to a request for comment from the Agency France-Presse (AFP), a CERN spokewoman replied via email:

“These scenes were filmed on our premises but without official permission or knowledge. CERN does not condone this type of spoof, which can give rise to misunderstandings about the scientific nature of our work.”

According to this same spokeswoman, the people conducting the reenactment were likely staff. While they are not able to confirm the identities of those in the video, CERN’s security measures require that those working on their premises, of have access to their facilities, have official IDs.

The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider. Credit: CERN
The Compact Muon Solenoid (CMS) is a general-purpose detector at the Large Hadron Collider. Credit: CERN

“CERN IDs are checked systematically at each entry to the CERN site whether it is night or day,” she said. “CERN welcomes every year thousands of scientific users from all over the world and sometimes some of them let their humor go too far. This is what happened on this occasion.”

The statue used for the prank was none other than the Nataraja – a depicition of Shiva as the cosmic dancer – which is on permanent display at CERN. The statue was a gift issued by the Indian government in 2004 to celebrate the country’s long-standing relationship with the research facility.

Needless to say, there’s likely to be some hell to pay once the prankster’s are identified. While the prank does seem to have a sense of irony to it – as if its specifically mocking tho conspiracy theorists who think evil things go on there – the last thing CERN wants is negative publicity, or people conducting pranks that involve sacred artwork!

If you haven’t seen the footage, be sure to check out this snippet from NewsBeatSocial below:

Further Reading: The Gaurdian

Juno Snaps Final View of Jovian System Ahead of ‘Independence Day’ Orbital Insertion Fireworks Tonight – Watch Live

This is the final view taken by the JunoCam instrument on NASA's Juno spacecraft before Juno's instruments were powered down in preparation for orbit insertion. Juno obtained this color view on June 29, 2016, at a distance of 3.3 million miles (5.3 million kilometers) from Jupiter. See timelapse movie below. Credits: NASA/JPL-Caltech/MSSS
This is the final view taken by the JunoCam instrument on NASA's Juno spacecraft before Juno's instruments were powered down in preparation for orbit insertion. Juno obtained this color view on June 29, 2016, at a distance of 3.3 million miles (5.3 million kilometers) from Jupiter.  Credit:  Credits: NASA/JPL-Caltech/MSSS
This is the final view taken by the JunoCam instrument on NASA’s Juno spacecraft before Juno’s instruments were powered down in preparation for orbit insertion. Juno obtained this color view on June 29, 2016, at a distance of 3.3 million miles (5.3 million kilometers) from Jupiter. See timelapse movie below. Credits: NASA/JPL-Caltech/MSSS

After a nearly 5 year odyssey across the solar system, NASA’s solar powered Juno orbiter is all set to ignite its main engine late tonight and set off a powerful charge of do-or-die fireworks on America’s ‘Independence Day’ required to place the probe into orbit around Jupiter – the ‘King of the Planets.’

To achieve orbit, Juno must will perform a suspenseful maneuver known as ‘Jupiter Orbit Insertion’ or JOI tonight, Monday, July 4, upon which the entire mission and its fundamental science hinges. There are no second chances!

You can be part of all the excitement and tension building up to and during that moment, which is just hours away – and experience the ‘Joy of JOI’ by tuning into NASA TV tonight!

Watch the live webcast on NASA TV featuring the top scientists and NASA officials starting at 10:30 p.m. EDT (7:30 p.m. PST, 0230 GMT) – direct from NASA’s Jet Propulsion Laboratory: https://www.nasa.gov/nasatv

Illustration of NASA's Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA's Jet Propulsion Laboratory.
Illustration of NASA’s Juno spacecraft firing its main engine to slow down and go into orbit around Jupiter. Lockheed Martin built the Juno spacecraft for NASA’s Jet Propulsion Laboratory. Credit: NASA/Lockheed Martin

And for a breathtaking warm-up act, Juno’s on board public outreach JunoCam camera snapped a final gorgeous view of the Jovian system showing Jupiter and its four largest moons, dancing around the largest planet in our solar system.

The newly released color image was taken on June 29, 2016, at a distance of 3.3 million miles (5.3 million kilometers) from Jupiter – just before the probe went into autopilot mode.

It shows a dramatic view of the clouds bands of Jupiter, dominating a spectacular scene that includes the giant planet’s four largest moons — Io, Europa, Ganymede and Callisto.

NASA also released this new time-lapse JunoCam movie today:

Video caption: Juno’s Approach to Jupiter: After nearly five years traveling through space to its destination, NASA’s Juno spacecraft will arrive in orbit around Jupiter on July 4, 2016. This video shows a peek of what the spacecraft saw as it closed in on its destination. Credits: NASA/JPL-Caltech/MSSS

The spacecraft is approaching Jupiter over its north pole, affording an unprecedented perspective on the Jovian system – “which looks like a mini solar system,” said Juno Principal Investigator and chief scientist Scott Bolton, from the Southwest Research Institute (SwRI) in San Antonio, Tx, at today’s media briefing at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“The deep interior of Jupiter is nearly unknown. That’s what we are trying to learn about.”

The 35-minute-long main engine burn is preprogrammed to start at 11:18 p.m. EDT (8:18 p.m. PST, 0318 GMT). It is scheduled to last until approximately 11:53 p.m. (8:53 p.m. PST, 0353 GMT).

Juno mission briefing July 4, 2016 at JPL by Jim Green, Scott Bolton, Rick Nybakken and Heidi Becker.  Credit: Roland Keller
Juno mission briefing July 4, 2016 at JPL by Jim Green, Scott Bolton, Rick Nybakken and Heidi Becker. Credit: Roland Keller/rkeusa.blogspot.com

All of the science instruments were turned off on June 30 to keep the focus on the nail-biting insertion maneuver and preserve battery power, said Bolton. Solar powered Juno is pointed away from the sun during the engine firing.

JOI is required to slow the spacecraft so it can be captured into the gas giant’s orbit as it closes in over the north pole.

Initially the spacecraft will enter a long, looping polar orbit lasting about 53 days. That highly elliptical orbit will quickly be trimmed to 14 days for the science orbits.

The orbits are designed to minimize contact with Jupiter’s extremely intense radiation belts. The science instruments are shielded inside a ½ thick vault built of Titanium to protect them from the utterly deadly radiation – of some 20,000,000 rads.

Artist's concept of NASA's Juno spacecraft crossing the orbits of Jupiter's four largest moons -- Callisto, Gaynmede, Europa and Io -- on its approach to Jupiter. Credits: NASA/JPL-Caltech
Artist’s concept of NASA’s Juno spacecraft crossing the orbits of Jupiter’s four largest moons — Callisto, Gaynmede, Europa and Io — on its approach to Jupiter.
Credits: NASA/JPL-Caltech

Juno is the fastest spacecraft ever to arrive at Jupiter and is moving at over 165,000 mph relative to Earth and 130,000 mph relative to Jupiter.

After a five-year and 2.8 Billion kilometer (1.7 Billion mile) outbound trek to the Jovian system and the largest planet in our solar system and an intervening Earth flyby speed boost, the moment of truth for Juno is now inexorably at hand.

Signals traveling at the speed of light take 48 minutes to reach Earth, said Rick Nybakken, Juno project manager from NASA’s Jet Propulsion Laboratory, at the media briefing.

So the main engine burn, which is fully automated, will already be over for some 13 minutes before the first indications of the outcome reach Earth via a series of Doppler shifts and tones. It is about 540 million miles (869 million kilometers) from Earth.

“By the time the burn is complete, we won’t even hear about it until 13 minutes later.”

“The engine burn will slow Juno by 542 meters/second (1,212 mph) and is fully automated as it approaches over Jupiter’s North Pole,” explained Nybakken.

“The long five year cruise enabled us to really learn about the spacecraft and how it operates.”

As it travels through space, the basketball court sized Juno is spinning like a windmill with its 3 giant solar arrays.

“Juno is also the farthest mission to rely on solar power. The solar panels are 60 square meters in size. And although they provide only 1/25th the power at Earth, they still provide over 500 watts of power at Jupiter.”

Rick Nybakken, Juno project manager at JPL illustrates how Juno will enter orbit around Jupiter during Juno mission briefing on July 4, 2016 at JPL. Credit: Roland Keller
Rick Nybakken, Juno project manager at JPL illustrates how Juno will enter orbit around Jupiter during Juno mission briefing on July 4, 2016 at JPL. Credit: Roland Keller/rkeusa.blogspot.com

The protective cover that shields Juno’s main engine from micrometeorites and interstellar dust was opened on June 20.

During a 20 month long science mission – entailing 37 orbits lasting 14 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution.

“Jupiter is the Rosetta Stone of our solar system,” says Bolton. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

During the orbits, Juno will probe beneath the obscuring cloud cover of Jupiter and study its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.

The $1.1 Billion Juno was launched on Aug. 5, 2011 from Cape Canaveral, Florida atop the most powerful version of the Atlas V rocket augmented by 5 solid rocket boosters and built by United Launch Alliance (ULA). That same Atlas V 551 version just launched MUOS-5 for the US Navy on June 24.

The Juno spacecraft was built by prime contractor Lockheed Martin in Denver.

Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com
Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com

Along the way Juno made a return trip to Earth on Oct. 9, 2013 for a flyby gravity assist speed boost that enabled the trek to Jupiter.

The flyby provided 70% of the velocity compared to the Atlas V launch, said Nybakken.

During the Earth flyby (EFB), the science team observed Earth using most of Juno’s nine science instruments since the slingshot also serves as an important dress rehearsal and key test of the spacecraft’s instruments, systems and flight operations teams.

Juno also went into safe mode – something the team must avoid during JOI.

What lessons were learned from the safe mode event and applied to JOI, I asked?

“We had the battery at 50% state of charge during the EFB and didn’t accurately predict the sag on the battery when we went into eclipse. We now have a validated high fidelity power model which would have predicted that sag and we would have increased the battery voltage,” Nybakken told Universe Today

“It will not happen at JOI as we don’t go into eclipse and are at 100% SOC. Plus the instruments are off which increases our power margins.”

Junocam also took some striking images of Earth as it sped over Argentina, South America and the South Atlantic Ocean and came within 347 miles (560 kilometers) of the surface.

For example the dazzling portrait of our Home Planet high over the South American coastline and the Atlantic Ocean.

For a hint of what’s to come, see our colorized Junocam mosaic of land, sea and swirling clouds, created by Ken Kremer and Marco Di Lorenzo

NASA's Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina,  South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
NASA’s Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina, South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

The last NASA spacecraft to orbit Jupiter was Galileo in 1995. It explored the Jovian system until 2003.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Infographic about Juno’s Jupiter Orbit Insertion (JOI) maneuver on July 4, 2016.   Credit: NASA/Lockheed Martin
Infographic about Juno’s Jupiter Orbit Insertion (JOI) maneuver on July 4, 2016. Credit: NASA/Lockheed Martin

Huge Plasma Tsunamis Hitting Earth Explains Third Van Allen Belt

This is an illustration to explain the dynamics of the ultra-relativistic third Van Allen radiation belt. Credit: Andy Kale
This is an illustration to explain the dynamics of the ultra-relativistic third Van Allen radiation belt. Credit: Andy Kale

The dynamic relationship between Earth and the Sun two sides. The warmth from the Sun makes life on Earth possible, but the rest of the Sun’s intense energy pummels the Earth, and could destroy all life, given the chance. But thanks to our magnetosphere, we are safe.

The magnetosphere is our protective shield. It’s created by the rotation of the molten outer core of the Earth, composed largely of iron and nickel. It absorbs and deflects plasma from the solar wind. The interactions between the magnetosphere and the solar wind are what create the beautiful auroras at Earth’s poles.

Visualization of the solar wind encountering Earth's magnetic "defenses" known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet's nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL
Visualization of the solar wind encountering Earth’s magnetic “defenses” known as the magnetosphere. Clouds of southward-pointing plasma are able to peel back layers of the Sun-facing bubble and stack them into layers on the planet’s nightside (center, right). The layers can be squeezed tightly enough to reconnect and deliver solar electrons (yellow sparkles) directly into the upper atmosphere to create the aurora. Credit: JPL

In the inner regions of Earth’s magnetosphere are the Van Allen belts, named after their discoverer James Van Allen. They consist of charged particles, mostly from the Sun, and are held in place by the magnetosphere. Usually, there are two such belts.

The Van Allen radiation belts surrounding Earth. Image: NASA
The Van Allen radiation belts surrounding Earth. Image: NASA

But the output from the Sun is not stable. There are periods of intense energy output from the Sun, and when that happens, a third, transient belt can be created. Up until now, the nature of this third belt has been a puzzle. New research from the University of Alberta has shown how this phenomena can happen.

Researchers have shown how a so-called “space tsunami” can create this third belt. Intense ultra-low frequency plasma waves can transport the outer part of the radiation belt into interplanetary space, and create the third, transient belt.

The lead author for this study is physics professor Ian Mann from the University of Alberta, and former Canada Research Chair in Space Physics. “Remarkably, we observed huge plasma waves,” said Mann. “Rather like a space tsunami, they slosh the radiation belts around and very rapidly wash away the outer part of the belt, explaining the structure of the enigmatic third radiation belt.”

This new research also sheds light on how these “tsunamis” help reduce the threat of radiation to satellites during other space storms. “Space radiation poses a threat to the operation of the satellite infrastructure upon which our twenty-first century technological society relies,” adds Mann. “Understanding how such radiation is energized and lost is one of the biggest challenges for space research.”

It’s not just satellites that are at risk of radiation though. When solar wind is most active, it can create extremely energetic space storms. They in turn create intense radiation in the Van Allen belts, which drive electrical currents that could damage our power grids here on Earth. These types of storms have the potential to cause trillions of dollars worth of damage.

A better understanding of this space radiation, and an ability to forecast it, are turning out to be very important to our satellite operations, and to our exploration of space.

The Van Allen belts were discovered in 1958, and classified into an inner and an outer belt.

The Van Allen Belts around Earth. The inner red belt is mostly protons, and the outer blue belt is mostly electrons. Image Credit: NASA
The Van Allen Belts around Earth. The inner red belt is mostly protons, and the outer blue belt is mostly electrons. Image Credit: NASA

In 2013, probes reported a third belt which had never before been seen. It lasted a few weeks, then vanished, and its cause was not known. Thanks to Mann and his team, we now know what was behind that third belt.

“We have discovered a very elegant explanation for the dynamics of the third belt,” says Mann. “Our results show a remarkable simplicity in belt response once the dominant processes are accurately specified.”

An understanding of the radiation in and around Earth and the Van Allen belts is of growing importance to us, as we expand our presence in space. Our technological society relies increasingly on satellite communications, and on GPS satellites. Radiation in the form of high-energy electrons can wreak havoc on satellites. In fact, this type of radiation is sometimes referred to as a satellite killer. Satellites require robust design to be protected from them.

Organizations like the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) and the International Living with a Star (ILWS) Program are attempts to address the threat that radiation poses to our system of satellites.

Mammals Were Already Flourishing When The Axe Fell On The Dinosaurs

It's long been thought that a giant asteroid, which broke up long ago in the main asteroid belt between Mars and Jupiter, eventually made its way to Earth and led to the extinction of the dinosaurs. New studies say that the dinosaurs may have been facing extinction before the asteroid strike, and that mammals were already on the rise. Image credit: NASA/JPL-Caltech

It’s an apocryphal image. The ignorant faces of the dinosaurs, roaring helplessly at their fate, and looking skyward as an asteroid plunged to Earth. And the sneaky, clever little mammals coming out of their hiding holes to take their rightful place. If you grew up reading about this version of things, you’re not alone.

The line of reasoning says that mammals were present during the dinosaur’s reign, but their potential to thrive was suppressed by the dinosaurs, which were supremely evolved to dominate conditions on Earth at the time. It took the extinction of the dinosaurs to allow mammals to flourish. But according to new studies, that might not have been the case. As it turns out, mammals may have been well on their way to displacing the dinos long before the Chicxulub meteor hastened the dinosaur’s demise.

One such study, from researchers at the Universities of Southampton and Chicago, focused on hundreds of fossilized mammal teeth. As you know if you’ve been paying attention to how you eat, different teeth have different purposes. Carnivores have sharp teeth designed to rip and shred flesh, while herbivores have duller teeth for grinding up vegetation. Omnivores, like us, have a bit of both. That’s a simplification, of course, but its generally true.

What this study showed is that mammals with varied diets began to appear 10 to 20 million years before the dinosaurs were extinguished. It focused on early therian mammals, which are the ones that gave rise to the modern marsupials (ones with pouches) and placentals (ones where a fetus is carried inside the uterus). The third class of mammal, monotremes, were egg-laying mammals like the platypus.

In recent years, more and more early mammal fossils have been discovered, and they show that mammals were well on their way to diversifying long before the dinosaurs disappeared. The mammal fossil record also shows that mammal diversity suffered from the meteor strike, but mammals recovered and diversified into a greater number of species in the new conditions.

Another study, by Manabu Sakamoto and Chris Venditti from the University of Reading, and by Michael Benton from the University of Briston, shows that the opposite is true for dinosaurs. For tens of millions of years before their extinction, dinosaur species were becoming extinct and new species were not taking their place. This made the dinosaurs more vulnerable to extinction, whereas the diversifying mammals were in a better position to thrive, regardless of dinosaur extinction.

The main threat posed by the asteroid strike was the climate change that followed it. With greater species diversity in place immediately preceding the strike, mammals had a greater probability to survive the changing climate than did their dinosaur counterparts.

Evolutionary biologist and co-author of the study, Dr. Chris Venditti, told BBC News, “The current widespread view is that dinosaurs were reigning strong right up to the impact that hit the Earth – and it’s the impact that drove their final extinction,” he said. “And while that’s certainly true, what we found was that they were on the decline long before that.”

This image shows a very faint circular outline of the Chicxulub crater, site of the asteroid strike that finished off the dinosaurs. After 65 million years, it is barely visible. Image: NASA/JPL
This image shows a very faint circular outline of the Chicxulub crater, site of the asteroid strike that finished off the dinosaurs. After 65 million years, it is barely visible. Image: NASA/JPL

“If they were reigning strong perhaps they would have fared much better than they did,” said Venditti. Dinosaurs had been around for 160 million years and had faced pressures and had dips in their diversity before.

This begs the question, why were dinosaurs in decline?

It likely all revolves around the environmental conditions. At the dawn of the dinosaurs 230 million years ago, Earth was a warm, lush place. Not just near the equators, but all the way to the poles. And there was one single continent, called Pangaea. But it’s the nature of things to change, and change it did.

The climate cooled, the sea level changed, and the dinosaurs were facing new environmental pressures. And as the record shows, the dinosaurs were losing species faster than they could replace them. Chicxulub was more than they could recover from.

Study co-author Mike Benton also talked to the BBC about this study. He said, “World climates were getting cooler all the time. Dinosaurs rely on quite warm climates and mammals are better adapted to the cold.”

“So there might have been a switch over in any case without the asteroid impact.”

Looking back on the older narrative, that the asteroid strike wiped out the dinosaurs, and mammals took their place and became dominant, it looks a little simplistic. But it has a nice narrative hook, and there is the matter of the cataclysmic asteroid strike, which no doubt had a huge effect on life on Earth, any way you want to slice it.

It’s possible that had the asteroid not struck, or had struck a few million years earlier or later, Earth would be a much different place. Perhaps we would not be here, and maybe intelligent dinosaurs would be in our place.

We’ll never know, of course, but it’s a fun narrative.

Mars Stink To Be Duplicated For Earthbound Humans

Thanks to the rovers Spirit, Opportunity, and Curiosity, everyone knows what Mars looks like. But what does it smell like? Image: NASA/JPL-Caltech/MSSS
Thanks to the rovers Spirit, Opportunity, and Curiosity, everyone knows what Mars looks like. But what does it smell like? Image: NASA/JPL-Caltech/MSSS

Intellectual curiosity is a great gift. It’s fulfilling to ponder the great questions of existence: Will the Universe die of heat death after it’s expanded for billions and billions (and billions) more years? Is there something outside of our Universe? What’s on the other side of a black hole?…and…What does Mars smell like?

Seriously.

What may seem to be a frivolous question at first is actually quite interesting once your intellectual curiosity is engaged. The Martian atmosphere itself is much different than Earth’s. Our various robotic visitors to Mars have revealed an atmosphere rich in carbon dioxide (96%). Not much to smell there. But the surface of Mars is also much different than Earth, and contains sulfur, acids, magnesium, iron and chlorine compounds. What might that smell like?

We know that odours have a powerful effect on memory. How might colonists respond to an odour so different from what they’re used to? How might they respond to the odour of Mars once they’ve returned to Earth after a Mars mission? Recreating the smell of Mars for returning colonists might yield interesting results.

The olfactory nerve has a powerful connection to areas of the brain involved in arousal and attention. Can this connection be exploited to help Martian colonists? Image: Patrick J. Lynch CC BY 2.5
The olfactory nerve has a powerful connection to areas of the brain involved in arousal and attention. Can this connection be exploited to help Martian colonists? Image: Patrick J. Lynch CC BY 2.5

Obviously, colonists wouldn’t be breathing the Martian atmosphere. But some essence of Mars would be present in their living quarters, most likely.

After walking on the Moon, Apollo astronauts noticed that they had tracked some Moon dust back into the lander with them. When they removed their helmets, they were able to smell the Moon: a spent gunpowder smell, or a wet ash smell like a campfire that had been put out. The same thing may happen on Mars, no matter how careful people are.

The International Space Station (ISS) has its own particular smell. According to NASA astronaut Don Pettit, the ISS smells like a combined machine shop/engine room/laboratory. But the ISS isn’t a colony, and it isn’t exposed to other worlds. Everything astronauts can smell inside the ISS they can smell back on Earth.

Mars is different. Not just the smell, but because it’s so far away. In the ISS, astronauts can look down and see Earth whenever they want. They can see their country of origin, and see familiar geography. On Mars, none of that is possible. Martians will be dealing with extreme isolation.

How this isolation might affect people spending long periods of time on Mars is an intriguing and important question. And how odors play a part in this is likewise intriguing.

The effects of social isolation are well-understood. It can lead to depression, insomnia, anxiety, fatigue, boredom and emotional instability. These are garden variety problems that everyone faces at some point, but added all together they’re a potent mix that could produce serious mental illness.

Add to that the fact that Martian colonists won’t even be able to see Earth, let alone the fact of the shrunken, pale Sun, and suddenly the psychological burden of colonizing Mars comes into sharper focus. It’ll take a multi-pronged approach to help colonists cope with all of this.

Part of this approach may involve recreating the smell of Mars and exposing colonists to it during their pre-colonization training. And thanks to a technology called “Headspace“, it may be possible to recreate the smell of Mars here on Earth. Spectroscopic measurements of the Martian atmosphere could be relayed back to Earth and the Martian aroma could be recreated in a lab.

Perhaps the smell of Mars can be used prior to departure to help inoculate colonists to some of the hazards of Martian isolation.

Who knows for sure? There may be an interesting revelation hidden in the smell of Mars. How that smell could be used to prepare colonists for their time on Mars, and how returning astronauts respond to the smell of Mars, recreated for them back on Earth, could tell us something important about how our brains work.

Intellectual curiosity says its worth pondering.

Tutankhamun’s Meteorite Blade

The Egyptian Pyramids; instantly recognizable to almost anyone. Image: Armstrong White, CC BY 2.0
The Egyptian Pyramids; instantly recognizable to almost anyone. Image: Armstrong White, CC BY 2.0

The spread of metallurgy in different civilizations is a keen point of interest for historians and archaeologists. It helps chart the rise and fall of different cultures. There are even names for the different ages corresponding to increasingly sophisticated metallurgical technologies: the Stone Age, the Bronze Age, and the Iron Age.

But sometimes, a piece of evidence surfaces that doesn’t fit our understanding of a civilization.

Probably the most iconic ancient civilization in all of history is ancient Egypt. Its pyramids are instantly recognizable to almost anyone. When King Tutankhamun’s almost intact tomb was discovered in 1922, it was a treasure trove of artifacts. And though the tomb, and King Tut, are most well-known for the golden death mask, it’s another, little-known artifact that has perhaps the most intriguing story: King Tut’s iron dagger.

King Tutankhamun's Golden Death Mask, one of the most stunning human artifacts in existence. Image: Carsten Frenzl, CC BY 2.0
King Tutankhamun’s Golden Death Mask, one of the most stunning human artifacts in existence. Image: Carsten Frenzl, CC BY 2.0

King Tut’s iron-bladed dagger wasn’t discovered until 1925, three years after the tomb was discovered. It was hidden in the wrappings surrounding Tut’s mummy. It’s mere existence was a puzzle, because King Tut reigned in 1332–1323 BC, 600 years before the Egyptians developed iron smelting technology.

King Tut's iron dagger was concealed in the wrappings surrounding the boy-king's mummy. Image: Daniela Comelli/Polytechnic University of Milan
King Tut’s iron dagger was concealed in the wrappings surrounding the boy-king’s mummy. Image: Daniela Comelli/Polytechnic University of Milan

It was long thought, but never proven, that the blade may be made of meteorite iron. In the past, tests have produced inconclusive results. But according to a new study led by Daniela Comelli, of the Polytechnic University of Milan, and published in the Journal of Meteoritics and Planetary Science, there is no doubt that a meteorite was the source of iron for the blade.

The team of scientists behind the study used a technique called x-ray fluorescence spectrometry to determine the chemical composition of the blade. This technique aims x-rays at an artifact, then determines its composition by the spectrum of colors given off. Those results were then compared with 11 other meteorites.

In the dagger’s case, the results indicated Fe plus 10.8 wt% Ni and 0.58 wt% Co. This couldn’t be a coincidence, since iron meteorites are mostly made of Fe (Iron) and Ni (Nickel), with minor quantities of Co (Cobalt), P (Phosphorus), S (Sulphur), and C (Carbon). Iron found in the Earth’s crust has almost no Ni content.

Testing of Egyptian artifacts is a tricky business. Egypt is highly protective of their archaeological resources. This study was possible only because of advances in portable x-ray fluorescence spectrometry, which meant the dagger didn’t have to be taken to a lab and could be tested at the Egyptian Museum of Cairo.

Iron objects were rare in Egypt at that time, and were considered more valuable than gold. They were mostly decorative, probably because ancient Egyptians found iron very difficult to work. It requires a very high heat to work with, which was not possible in ancient Egypt.

Iron meteorites like this one would have attracted the attention of ancient Egyptians. This one is the Bendego meteorite from Brazil. Image: Jorge Andrade - Flickr: National Museum, Rio de Janeiro CC BY 2.0
Iron meteorites like this one would have attracted the attention of ancient Egyptians. This one is the Bendego meteorite from Brazil. Image: Jorge Andrade – Flickr: National Museum, Rio de Janeiro CC BY 2.0

Even without the ability to heat and work iron, a great deal of craftsmanship went into the blade. The dagger itself had to be hammered into shape, and it features a decorated golden handle and a rounded rock crystal knob. It’s golden sheath is decorated with a jackal’s head and a pattern of feathers and lilies.

Ancient Egyptians probably new what they were working with. They called meteorite iron from the sky in one hieroglyph. Whether they knew with absolute certainty that their iron meteorites came from the sky, and what that might have meant, they did value the iron. As the authors of the study say, “…our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects.”

The authors go on to say, “Moreover, the high manufacturing quality of Tutankhamun’s dagger blade, in comparison with other simple-shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun’s time.”

New ‘Einstein Ring’ Discovered By Dark Energy Camera

The "Canarias Einstein Ring." The green-blue ring is the source galaxy, the red one in the middle is the lens galaxy. The lens galaxy has such strong gravity, that it distorts the light from the source galaxy into a ring. Because the two galaxies are aligned, the source galaxy appears almost circular. Image: This composite image is made up from several images taken with the DECam camera on the Blanco 4m telescope at the Cerro Tololo Observatory in Chile.
The "Canarias Einstein Ring." The green-blue ring is the source galaxy, the red one in the middle is the lens galaxy. The lens galaxy has such strong gravity, that it distorts the light from the source galaxy into a ring. Because the two galaxies are aligned, the source galaxy appears almost circular. Image: This composite image is made up from several images taken with the DECam camera on the Blanco 4m telescope at the Cerro Tololo Observatory in Chile.

A rare object called an Einstein Ring has been discovered by a team in the Stellar Populations group at the Instituto de Astrofísica de Canarias (IAC) in Spain. An Einstein Ring is a specific type of gravitational lensing.

Einstein’s Theory of General Relativity predicted the phenomena of gravitational lensing. Gravitational lensing tells us that instead of travelling in a straight line, light from a source can be bent by a massive object, like a black hole or a galaxy, which itself bends space time.

Einstein’s General Relativity was published in 1915, but a few years before that, in 1912, Einstein predicted the bending of light. Russian physicist Orest Chwolson was the first to mention the ring effect in scientific literature in 1924, which is why the rings are also called Einstein-Chwolson rings.

Gravitational lensing is fairly well-known, and many gravitational lenses have been observed. Einstein rings are rarer, because the observer, source, and lens all have to be aligned. Einstein himself thought that one would never be observed at all. “Of course, there is no hope of observing this phenomenon directly,” Einstein wrote in 1936.

The team behind the recent discovery was led by PhD student Margherita Bettinelli at the University of La Laguna, and Antonio Aparicio and Sebastian Hidalgo of the Stellar Populations group at the Instituto de Astrofísica de Canarias (IAC) in Spain. Because of the rarity of these objects, and the strong scientific interest in them, this one was given a name: The Canarias Einstein Ring.

There are three components to an Einstein Ring. The first is the observer, which in this case means telescopes here on Earth. The second is the lens galaxy, a massive galaxy with enormous gravity. This gravity warps space-time so that not only are objects drawn to it, but light itself is forced to travel along a curved path. The lens lies between Earth and the third component, the source galaxy. The light from the source galaxy is bent into a ring form by the power of the lens galaxy.

When all three components are aligned precisely, which is very rare, the light from the source galaxy is formed into a circle with the lens galaxy right in the centre. The circle won’t be perfect; it will have irregularities that reflect irregularities in the gravitational force of the lens galaxy.

Another Einstein Ring. This one is named LRG 3-757. This one was discovered by the Sloan Digital Sky Survey, but this image was captured by Hubble's Wide Field Camera 3. Image: NASA/Hubble/ESA
Another Einstein Ring. This one is named LRG 3-757. This one was discovered by the Sloan Digital Sky Survey, but this image was captured by Hubble’s Wide Field Camera 3. Image: NASA/Hubble/ESA

The objects are more than just pretty artifacts of nature. They can tell scientists things about the nature of the lens galaxy. Antonio Aparicio, one of the IAC astrophysicists involved in the research said, “Studying these phenomena gives us especially relevant information about the composition of the source galaxy, and also about the structure of the gravitational field and of the dark matter in the lens galaxy.”

Looking at these objects is like looking back in time, too. The source galaxy is 10 billion light years from Earth. Expansion of the Universe means that the light has taken 8.5 billion light years to reach us. That’s why the ring is blue; that long ago, the source galaxy was young, full of hot blue stars.

The lens itself is much closer to us, but still very distant. It’s 6 billion light years away. Star formation in that galaxy likely came to a halt, and its stellar population is now old.

The discovery of the Canarias Einstein Ring was a happy accident. Bettinelli was pouring over data from what’s known as the Dark Energy Camera (DECam) of the 4m Blanco Telescope at the Cerro Tololo Observatory, in Chile. She was studying the stellar population of the Sculptor dwarf galaxy for her PhD when the Einstein Ring caught her attention. Other members of the Stellar Population Group then used OSIRIS spectrograph on the Gran Telescopio CANARIAS (GTC) to observe and analyze it further.

Alien Minds Part III: The Octopus’s Garden and the Country of the Blind

METI logo
The logo of the METI International Puerto Rico workshop. At the center is Charles Darwin, the nineteenth century British naturalist whose theory of evolution is central to assessing the likelihood and nature of extraterrestrial intelligence. To the left is the octopus, a creature that evolved sophisticated cognition and perception along an evolutionary path quite different from that of humans. To the right is the peacock, whose elaborate tail feathers evolved by sexual selection, a process that may also have been of central importance to the evolution of human intelligence. METI International, used with permisson.

In our galaxy, there may be, at least, tens of billions of habitable planets, with conditions suitable for liquid water on their surfaces. There may be habitable moons as well. On an unknown number of those worlds, life may have arisen. On an unknown fraction of life-bearing worlds, life may have evolved into complex multicellular, sexually reproducing forms.

During its habitable period, a world with complex life might produce hundreds of millions of evolutionary lineages. One or a few of them might fortuitously encounter special circumstances that triggered runaway growth of their intelligence. These favored few, if they exist, might have built technological civilizations capable of signaling their presence across interstellar distances, or detecting and deciphering a message we send their way. What might such alien minds be like? What senses might they use? How might we communicate with them?

METI International
METI International

The purposes of the newly created METI (Messaging to ExtraTerrestrial Intelligence) International include fostering multidisciplinary research in the design and transmission of interstellar messages, and building a global community of scholars from the natural sciences, social sciences, humanities, and arts concerned with the origin, distribution, and future of life in the universe.

On May 18 the organization sponsored a workshop which included presentations by biologists, psychologists, cognitive scientists, and linguists. This is the third and final installment of a series of articles about the workshop.

In previous installments, we’ve discussed some ideas about the evolution of intelligence that were featured at the workshop. Here we’ll see whether our Earthly experience can provide us with any clues about how we might communicate with aliens.

Many of the animals that we are most familiar with from daily life, like humans, cats, dogs, birds, fishes, and frogs are vertebrates, or animals with backbones. They are all descended from a common ancestor and share a nervous system organized according to the same basic plan.

Molluscs are another major group of animals that have been evolving separately from vertebrates for more than 600 million years. Although most molluscs, like slugs, snails, and shellfish, have fairly simple nervous systems, one group; the cephalopods, have evolved a much more sophisticated one.

the common octopus
The common octopus, Octopus vulgaris, Is a cephalopod mollusc, has evolved sophisticated cognition and perception along a very different evolutionary path than have human beings and our relatives. The brain is located between the eyes. The large bulbous structure below the eyes is the mantle, a muscular organ involved in swimming. Public domain.

Cephalopods include octopuses, squids, and cuttlefishes. They show cognitive and perceptual abilities rivaling those of our close vertebrate kin. Since this nervous system has a different evolutionary history than of the vertebrates, it is organized in a way completely different from our own. It can give us a glimpse of the similarities and differences we might expect between aliens and ourselves.

David Gire, an associate professor of psychology at the University of Washington, and researcher Dominic Sivitilli gave a presentation on cephalopods at the Puerto Rico workshop. Although these animals have a sophisticated brain, their nervous systems are much more decentralized than that of familiar animals. In the octopus, sensing and moving are controlled locally in the arms, which together contain as many nerve cells, or neurons, as the brain.

David Gire
Dr. David Gire is an Assistant Professor in the Department of Psychology at the University of Washington and a behavioral neuroscientist. He presented at the Puerto Rico workshop on cephalopod intelligence.

The animal’s eight arms are extraordinarily sensitive. Each containing hundreds of suckers, with thousands of sensory receptors on each one. By comparison, the human finger has only 241 sensory receptors per square centimeter. Many of these receptors sense chemicals, corresponding roughly to our senses of taste and smell. Much of this sensory information is processed locally in the arms. When an arm is severed from an octopus’s body, it continues to show simple behaviors on its own, and can even avoid threats. The octopus’s brain simply acts to coordinate the behaviors of its arms.

Cephalopods have acute vision. Although their eyes evolved separately from those of vertebrates, they nonetheless bear an eerie resemblance. They have a unique ability to change the pattern and color of their skin using pigment cells that are under direct control of their nervous systems. This provides them with the most sophisticated camouflage system of any animal on Earth, and is also used for social signaling.

Despite the sophisticated cognitive abilities it exhibits in the lab, the octopus is largely solitary.
Cephalopod groups exchange useful information by observing one another, but otherwise exhibit only limited social cooperation. Many current theories of the evolution of sophisticated intelligence, like Miller’s sapiosexual hypothesis, which was featured in the second installment, assume that social cooperation and competition play a central role in the evolution of complicated brains. Since cephalopods have evolved much more impressive cognitive abilities than other molluscs, their limited social behavior is surprising.

Dominic Sivitilli
Dominic Sivitilli is a post-baccalaureate researcher in the laboratory of David Gire, studying responses to chemical signals by the octopus. He is the co-presenter of a talk on cephalopod cogntition at the METI International Puerto Rico conference. METI International used with permission.

Maybe the limited social behavior of cephalopods really does set limits on their intelligence. However, Gire and Sivitilli speculate that perhaps “an intelligence capable of technological development could exist with minimum social acuity”, and the cephalopod ability to socially share information is enough. The individuals of such an alien collective, they suppose, might possess no sense of self or other.

Besides Gire and Sivitilli, Anna Dornhaus, whose ideas were featured in the first installment, also thinks that alien creatures might function together as a collective mind. Social insects, in some respects, actually do. She doubts, though, that such an entities could evolve human-like technological intelligence without something like Miller’s sapiosexuality to trigger a runaway explosion of intelligence.

But if non-sapiosexual alien technological civilizations do exist, we might find them impossible to comprehend. Given this possible gulf of incomprehension about social structure, Gire and Stivitilli suppose that the most we might aspire to accomplish in terms of interstellar communication is an exchange of mutually useful and comprehensible astronomical information.

Workshop presenter Alfred Kracher, a retired staff scientist at the Ames Laboratory of the University of Iowa, supposes that “the mental giants of the Milky Way are probably artificially intelligent machines… It would be interesting to find evidence of them, if they exist”, he writes, “but then what?” Kracher supposes that if they have emancipated themselves and evolved away from their makers, “they will have nothing in common with organic life forms, human or extraterrestrial. There is no chance of mutual understanding”. We will be able to understand aliens, he maintains, only if “it turns out that the evolution of extraterrestrial life forms is highly convergent with our own”.

Peter Todd, a professor of psychology from Indiana University, holds out hope that such convergence may actually occur. Earthly animals must solve a variety of basic problems that are presented by the physical and biological world that they inhabit.

They must effectively navigate through a world of surfaces, barriers and objects, finding food and shelter, and avoiding predators, parasites, toxins. Extraterrestrial organisms, if they evolve in an Earth-like environment, would face a generally similar set of problems. They may well arrive at similar solutions, just as the octopus evolved eyes similar to ours.

In evolution here on Earth, Todd notes, brain systems originally evolved to solve these basic physical and biological problems appear to have been re-purposed to solve new and more difficult problems, as some animals evolved to solve the problems of living and finding mates as members of societies, and then as one particular ape species went on to evolve conceptual reasoning and language. For example, disgust at bad food, useful for avoiding disease, may have been become the foundation for sexual disgust to avoid bad mates, moral disgust to avoid bad clan mates, and intellectual disgust to avoid dubious ideas.

If alien brains evolved solutions similar to the ones our brains did for negotiating the physical and biological world, they they might also have been re-purposed in similar ways. Alien minds might not be wholly different from ours, and thus hope exists for a degree of mutual understanding.

In the early 1970’s the Pioneer 10 and 11 spacecraft were launched on the first exploratory missions to the planet Jupiter and beyond. When their missions were completed, these two probes became the first objects made by humans to escape the sun’s gravitational pull and hurtle into interstellar space.

Because of the remote possibility that the spacecraft might someday be found by extraterrestrials, a team of scientists and scholars lead by Carl Sagan emplaced a message on the vehicle, etched on a metal plaque. The message consisted, in part, of a line drawing of a man and a woman. Later, the Voyager 1 and 2 spacecraft carried a message that consisted, in part, of a series of 116 digital images encoded on a phonographic record.

Use of images in interstellar messages
The use of images in interstellar communication. In 1977, NASA launched the Voyager 1 and 2 spacecraft on a mission to explore the outer solar system. Destined to wander interstellar space forever following the completion of their mission, each spacecraft carried an interstellar message encoded on a phonographic record. The message, designed by SETI pioneers Carl Sagan and Frank Drake and their collaborators, included 116 digital images. This image is intended to show extraterrestrials how human beings eat and drink. Will extraterrestrials understand such images? The limited quality of the image reflects the state of digital imaging technology in the 70’s National Astronomy and Ionosphere Center, public domain.

The assumption that aliens would see and understand images seems reasonable, since the octopus evolved an eye so similar to our own. And that’s not all. The evolutionary biologists Luitfried Von Salvini-Plawen and Ernst Mayr showed that eyes, of various sorts, have evolved forty separate times on Earth, and vision is typically a dominant sense for large, land dwelling animals. Still, there are animals that function without it, and our earliest mammalian ancestors were nocturnal. Could it be that there are aliens that lack vision, and could not understand a message based on images?

In his short story, The Country of the Blind, the great science fiction writer H. G. Wells imagined an isolated mountain village whose inhabitants had been blind for fifteen generations after a disease destroyed their vision.

A lost mountain climber, finding the village, imagines that with his power of vision, he can easily become their king. But the villagers have adapted thoroughly to a life based on touch, hearing, and smell. Instead of being impressed by their visitor’s claim that he can ‘see’, they find it incomprehensible. They begin to believe he is insane. And when they seek to ‘cure’ him by removing two strange globular growths from the front of his head, he flees.

Mexican blind cavefish
The Mexican blind cavefish (Astyanax mexicanus) has lived in the total darkness of a cave system in central Mexico for more than a million years, and has evolved the loss of its eyes. Astyanax possess a sense that land dwelling animals lack. The lateral line sense, which is present in all fishes, allows these animals to sense their near surroundings based on pressure differences in fields of water flow around their bodies. They also have an acute sense of taste, with taste receptors on their bodies as well as in their mouths. The evolution of cave dwelling intelligent life is probably unlikely, since large brains are metabolically expensive, and food is scarce in caves. On the surface, plants capture energy from sunlight and form the base of the food chain. State Museum of Natural History, Karlsruhe.

Could their really be an alien country of the blind whose inhabitants function without vision? Workshop presenter Dr. Sheri Wells-Jensen, an associate professor of Linguistics at Bowling Green State University, doesn’t need to imagine the country of the blind, because, in a sense, she lives there. She is blind, and believes that creatures without vision could achieve a level of technology sufficient to send interstellar messages. “Sighted people”, she writes, “tend to overestimate the amount and quality of information gathered by vision alone”.
Sheri Wells Jensen
Dr. Sheri Wells-Jensen is an associate professor of linguistics at Bowling Green State University. She presented at talk at the Puerto Rico workshop on alternative perceptual systems and interstellar communications. METI International, used with permission.

Bats and dolphins image their dimly lit environments with a kind of naturally occurring sonar called echolocation. Blind human beings can also learn to echolocate, using tongue clicks or claps as emitted signals and analyzing the returning echoes by hearing. Some can do so well enough to ride a bicycle at a moderate pace through an unfamiliar neighborhood. A human can develop the touch sensitivity needed to read braille in four months. A blind marine biologist can proficiently distinguish the species of mollusc shells by touch.

Wells-Jensen posits a hypothetical civilization which she calls the Krikkits, who lack vision but possess sensory abilities otherwise similar to those of human beings. Could such beings build a technological society? Drawing on her knowledge of the blind community and a series of experiments, she thinks they could.

Finding food would present few special difficulties, since blind naturalists can identify many plant species by touch. Agriculture could be conducted as modern blind gardeners do it, by marking crops using stakes and piles of rock, and harvesting by feel. The combination of a stick used as a cane to probe the path ahead and echolocation make traveling by foot effective and safe. A loadstone compass would further aid navigational abilities. The Krikkits might use snares rather than spears or arrows to trap animals, making tools by touch.

Mathematics is vital to building a technological society. For most human beings, with our limited memory, a paper and pencil or a blackboard are essential for doing math. Krikkits would need to find other such aids, such as tactual symbols on clay tablets, abacus-like devices, or patterns sewn on hides or fabric.

Successful blind mathematicians often have prodigious memories, and can perform complex calculations in their heads. One of history’s greatest mathematicians, Leonard Euler, was blind for the last 17 years of his life, but remained mathematically productive through the use of his memory.

The obstacles to a blind society developing technology may not be insurmountable. Blind people are capable of handling fire and even working with molten glass. Krikkits might therefore use fire for cooking, warmth, to bake clay vessels, and smelt metal ores. Initially there only astronomical knowledge would be of the sun as a source of heat. Experiments with loadstones and metals would lead to a knowledge of electricity.

Eventually, the Krikkits might imitate their sonar with radio waves, inventing radar. If their planet possessed a moon or moons, radar reflections from them might provide their first knowledge of astronomical objects other than their sun. Radar would also enable them to learn for the first time that their planet is round.

The Krikkits might learn to detect other forms of radiation like X-rays and ‘light’. The ability to detect this second mysterious form of radiation might allow them to discover the existence of the stars and develop an interest in interstellar communication.

What sorts of messages might they send or understand? Well-Jensen believes that line drawings, like the drawing of the man and the woman on the Pioneer plaque, and other such pictorial representations might be an impenetrable mystery to them. On the other hand, she speculates that Krikkits might represent large data sets through sound, and that their counterpart to charts and graphs might be equally incomprehensible to us.

Images might pose a challenge for the Krikkits, but perhaps, Wells-Jensen concedes, not an impossible one. There is evidence that bats image their world using echolocation. Kikkits might be likely to evolve similar abilities, though Wells-Jensen believes they would not be essential for making tools or handling objects.

Perhaps humans and Krikkits could find common ground by transmitting instructions for three dimensional printed objects that could be explored tactually. Wells-Jensen thinks they might also understand mathematical or logical languages proposed for interstellar communication.

The diversity of cognition and perception that we find here on Earth teaches us that if extraterrestrial intelligence exists, it is likely to be much more alien than much of science fiction has prepared us to expect. In our attempt to communicate with aliens, the gulf of mutual incomprehension may yawn as wide as the gulf of interstellar space. Yet this is a gulf we must somehow cross, if we wish ever to become citizens of the galaxy.

For further reading:

Cain, F. (2008) Is Our Universe Ruled by Artificial Intelligence, Universe Today.

Kaufmann G. (2005) Spineless smarts, NOVA

Land, M. F., and Nilsson, D-E. (2002) Animal Eyes, Oxford University Press.

Mather, J. A. (2008) Cephalopod consciousness: Behavioral evidence, Cognition and Consciousness 17(1): 37-48.

Patton, P. E. (2016) Alien Minds I: Are Extraterrestrial Civilizations Likely to Evolve? Universe Today.

Patton, P. E. (2016) Alien Minds II: Do Aliens Think Big Brains are Sexy Too? Universe Today.

P. Patton (2014) Communicating across the cosmos, Part 1: Shouting into the darkness, Part 2: Petabytes from the Stars, Part 3: Bridging the Vast Gulf, Part 4: Quest for a Rosetta Stone, Universe Today.

Wells, H. G. (1904) The Country of the Blind, The literature network.