The Resplendent Inflexibility of the Rainbow

A colorful piece of rainbow begs the question - why Roy G. Biv? Credit: Bob King

Children often ask simple questions that make you wonder if you really understand your subject.  An young acquaintance of mine named Collin wondered why the colors of the rainbow were always in the same order — red, orange, yellow, green, blue, indigo, violet. Why don’t they get mixed up? 

The familiar sequence is captured in the famous Roy G. Biv acronym, which describes the sequence of rainbow colors beginning with red, which has the longest wavelength, and ending in violet, the shortest. Wavelength — the distance between two successive wave crests — and frequency, the number of waves of light that pass a given point every second, determine the color of light.

The familiar colors of the rainbow spectrum with wavelengths shown in nanometers. Credit: NASA
The familiar colors of the rainbow spectrum with wavelengths shown in nanometers. Credit: NASA

The cone cells in our retinas respond to wavelengths of light between 650 nanometers (red) to 400 (violet). A nanometer is equal to one-billionth of a meter. Considering that a human hair is 80,000-100,000 nanometers wide, visible light waves are tiny things indeed.

So why Roy G. Biv and not Rob G. Ivy? When light passes through a vacuum it does so in a straight line without deviation at its top speed of 186,000 miles a second (300,000 km/sec). At this speed, the fastest known in the universe as described in Einstein’s Special Theory of Relativity, light traveling from the computer screen to your eyes takes only about 1/1,000,000,000 of second. Damn fast.

But when we look beyond the screen to the big, wide universe, light seems to slow to a crawl, taking all of 4.4 hours just to reach Pluto and 25,000 years to fly by the black hole at the center of the Milky Way galaxy. Isn’t there something faster? Einstein would answer with an emphatic “No!”

A laser beam (left) shining through a glass of water demonstrates how many times light changes speed — from 186,222 miles per second (mps) in air to 124,275 mps through the glass. It speeds up again to 140,430 mps in water, slows down when passing through the other side of the glass and then speeds up again when leaving the glass for the air. Credit: Bob King
A laser beam (left) shining through a glass of water demonstrates how many times light changes speed — from 186,222 miles per second (mps) in air to 124,275 mps through the glass. It speeds up again to 140,430 mps in water, slows down when passing through the other side of the glass and then speeds up again when leaving the glass for the air. Credit: Bob King

One of light’s most interesting properties is that it changes speed depending on the medium through which it travels. While a beam’s velocity through the air is nearly the same as in a vacuum, “thicker” mediums slow it down considerably. One of the most familiar is water. When light crosses from air into water, say a raindrop, its speed drops to 140,430 miles a second (226,000 km/sec). Glass retards light rays to 124,275 miles/second, while the carbon atoms that make up diamond crunch its speed down to just 77,670 miles/second.

Why light slows down is a bit complicated but so interesting, let’s take a moment to describe the process. Light entering water immediately gets absorbed by atoms of oxygen and hydrogen, causing their electrons to vibrate momentarily before it’s re-emitting as light. Free again, the beam now travels on until it slams into more atoms, gets their electrons vibrating and gets reemitted again. And again. And again.

A ray of light refracted by a plastic block. Notice that the light bends twice - once when it enters (moving from air to plastic) and again when it exits (plastic to air).
A ray of light refracted by a plastic block. Notice that the light bends twice – once when it enters (moving from air to plastic) and again when it exits (plastic to air). The beam slows down on entering and then speeds up again when it exits.

Like an assembly line, the cycle of absorption and reemission continues until the ray exits the drop. Even though every photon (or wave – your choice) of light travels at the vacuum speed of light in the voids between atoms, the minute time delays during the absorption and reemission process add up to cause the net speed of the light beam to slow down. When it finally leaves the drop, it resumes its normal speed through the airy air.

Light rays get bent or refracted when they move from one medium to another. We've all seen the "broken pencil" effect when light travels from air into water.
Light rays get bent or refracted when they move from one medium to another. We’ve all seen the “broken pencil” effect when light travels from air into water.

Let’s return now to rainbows. When light passes from one medium to another and its speed drops, it also gets bent or refracted. Plop a pencil in a glass half filled with water and and you’ll see what I mean.

Up to this point, we’ve been talking about white light only, but as we all learned in elementary science, Sir Isaac Newton conducted experiments with prisms in the late 1600s and discovered that white light is comprised of all the colors of the rainbow. It’s no surprise that each of those colors travels at a slightly different speed through a water droplet. Red light interacts only weakly with the electrons of the atoms and is refracted and slowed the least. Shorter wavelength violet light interacts more strongly with the electrons and suffers a greater degree of refraction and slowdown.

Isaac Newton used a prism to separate light into its familiar array of colors. Like a prism, a raindrop refracts  incoming sunlight, spreading it into an arc of rainbow colors  with a radius of 42. Left: NASA image, right, public domain with annotations by the author
Isaac Newton used a prism to separate light into its familiar array of colors. Like a prism, a raindrop refracts incoming sunlight, spreading it into an arc of rainbow colors with a radius of 42. The colors spread out when light enter the drop and then spread out more when they leave and speed up. Left: NASA image, right, public domain with annotations by the author

Rainbows form when billions of water droplets act like miniature prisms and refract sunlight. Violet (the most refracted) shows up at the bottom or inner edge of the arc. Orange and yellow are refracted a bit less than violet and take up the middle of the rainbow. Red light, least affected by refraction, appears along the arc’s outer edge.

Rainbows are often double. The secondary bow results from light reflecting a second time inside the raindrop. When it emerges, the colors are reversed (red on the bottom instead of top), but the order of colors is preserved. Credit: Bob King
Rainbows are often double. The secondary bow results from light reflecting a second time inside the raindrop. When it emerges, the colors are reversed (red on the bottom instead of top), but the order of colors is preserved. Credit: Bob King

Because their speeds through water (and other media) are a set property of light, and since speed determines how much each is bent as they cross from air to water, they always fall in line as Roy G. Biv. Or the reverse order if the light beam reflects twice inside the raindrop before exiting, but the relation of color to color is always preserved. Nature doesn’t and can’t randomly mix up the scheme. As Scotty from Star Trek would say: “You can’t change the laws of physics!”

So to answer Collin’s original question, the colors of light always stay in the same order because each travels at a different speed when refracted at an angle through a raindrop or prism.

Light of different colors have both different wavelengths (distance between successive wave crests) and frequencies. In this diagram, red light has a longer wavelength and more "stretched out" waves  compared to purple light of higher frequency. Credit: NASA
Light of different colors have both different wavelengths (distance between successive wave crests) and frequencies. In this diagram, red light has a longer wavelength and more “stretched out” waves compared to purple light of higher frequency. Credit: NASA

Not only does light change its speed when it enters a new medium, its wavelength changes,  but its frequency remains the same. While wavelength may be a useful way to describe the colors of light in a single medium (air, for instance), it doesn’t work when light transitions from one medium to another. For that we rely on its frequency or how many waves of colored light pass a set point per second.

Higher frequency violet light crams in 790 trillion waves per second (cycles per second) vs. 390 trillion for red. Interestingly, the higher the frequency, the more energy a particular flavor of light carries, one reason why UV will give you a sunburn and red light won’t.

When a ray of sunlight enters a raindrop, the distance between each successive crest of the light wave decreases, shortening the beam’s wavelength. That might make you think that that its color must get “bluer” as it passes through a raindrop. It doesn’t because the frequency remains the same.

We measure frequency by dividing the number of wave crests passing a point per unit time. The extra time light takes to travel through the drop neatly cancels the shortening of wavelength caused by the ray’s drop in speed, preserving the beam’s frequency and thus color. Click HERE for a further explanation.


Why prisms/raindrops bend and separate light

Before we wrap up, there remains an unanswered question tickling in the back of our minds. Why does light bend in the first place when it shines through water or glass? Why not just go straight through? Well, light does pass straight through if it’s perpendicular to the medium. Only if it arrives at an angle from the side will it get bent. It’s similar to watching an incoming ocean wave bend around a cliff. For a nice visual explanation, I recommend the excellent, short video above.

Oh, and Collin, thanks for that question buddy!

T-Minus 12 Days to Perihelion, Rosetta’s Comet Up Close and in 3D

We've never seen a comet as close as this. Taken shortly before touchdown by the Philae lander on November 12, 2014, you're looking across a scene just 32 feet from side to side (9.7-meters) or about the size of a living room. Part of the lander is visible at upper right. Credit: ESA/Rosetta/Philae/ROLIS/DLR

With just 12 days before Comet 67P/Churyumov-Gerasimenko reaches perihelion, we get a look at recent images and results released by the European Space Agency from the Philae lander along with spectacular 3D photos from Rosetta’s high resolution camera. 

Slow animation of images taken by Philae’s Rosetta Lander Imaging System, ROLIS, trace the lander’s descent to the first landing site, Agilkia, on Comet 67P/Churyumov–Gerasimenko on November 12, 2014. Credits: ESA/Rosetta/Philae/ROLIS/DLR
Slow animation of images taken by Philae’s Rosetta Lander Imaging System, ROLIS, trace the lander’s descent to the first landing site, Agilkia, on Comet 67P/Churyumov–Gerasimenko on November 12, 2014.
Credits: ESA/Rosetta/Philae/ROLIS/DLR

Remarkably, some 80% of the first science sequence was completed in the 64 hours before Philae fell into hibernation. Although unintentional, the failed landing attempt led to the unexpected bonus of getting data from two collection sites — the planned touchdown at Agilkia and its current precarious location at Abydos.

After first touching down, Philae was able to use its gas-sniffing Ptolemy and COSAC instruments to determine the makeup of the comet’s atmosphere and surface materials. COSAC analyzed samples that entered tubes at the bottom of the lander and found ice-poor dust grains that were rich in organic compounds containing carbon and nitrogen. It found 16 in all including methyl isocyanate, acetone, propionaldehyde and acetamide that had never been seen in comets before.

While you and I may not be familiar with some of these organics, their complexity hints that even in the deep cold and radiation-saturated no man’s land of outer space, a rich assortment of organic materials can evolve. Colliding with Earth during its early history, comets may have delivered chemicals essential for the evolution of life.

This 3D image focuses on the largest boulder seen in the image captured 221 feet (67.4 m) above Comet 67P/Churyumov–Gerasimenko looks best in a pair of red-blue 3D glasses. Many fractures, along with a tapered ‘tail’ of debris and excavated ‘moat’ around the 5 m-high boulder, are plain to see. Credit: ESA/Rosetta/Philae/ROLIS/DLR
This 3D image focuses on the largest boulder seen in the image captured 221 feet (67.4 m) above Comet 67P/Churyumov–Gerasimenko looks best in a pair of red-blue 3D glasses. Many fractures, along with a tapered ‘tail’ of debris and excavated ‘moat’ around the 5 m-high boulder, are plain to see. Credit: ESA/Rosetta/Philae/ROLIS/DLR

Ptolemy sampled the atmosphere entering tubes at the top of the lander and identified water vapor, carbon monoxide and carbon dioxide, along with smaller amounts of carbon-bearing organic compounds, including formaldehyde. Some of these juicy organic delights have long been thought to have played a role in life’s origins. Formaldehyde reacts with other commonly available materials to form complex sugars like ribose which forms the backbone of RNA and is related to the sugar deoxyribose, the “D” in DNA.

ROLIS (Rosetta Lander Imaging System) images taken shortly before the first touchdown revealed a surface of 3-foot-wide (meter-size) irregular-shaped blocks and coarse “soil” or regolith covered in “pebbles” 4-20 inches (10–50 cm) across as well as a mix of smaller debris.

Philae used its thermal sensor to measure daily highs and lows on the comet (top graph). The bottom graph shows time vs. depth when Philae used its penetrator to hammer into the soil. Credit: Spacecraft graphic: ESA/ATG medialab; data from Spohn et al (2015)
Philae used its thermal sensor to measure daily highs and lows on the comet (top graph). The bottom graph shows time vs. depth when Philae used its penetrator to hammer into the soil. Credit: Spacecraft graphic: ESA/ATG medialab; data from Spohn et al (2015)

Agilkia’s regolith, the name given to the rocky soil of other planets, moons, comets and asteroids, is thought to extend to a depth of about 6 feet (2 meters) in places, but seems to be free from fine-grained dust deposits at the resolution of the images. The 16-foot-high boulder in the photo above has been heavily fractured by some type of erosional process, possibly a heating and cooling cycle that vaporized a portion of its ice. Dust from elsewhere on the comet has been transported to the boulder’s base. This appears to happen over much of 67P/C-G as jets shoot gas and dust into the coma, some of which then settles out across the comet’s surface.

Another suite of instruments called MUPUS used a penetrating “hammer” to reveal a thin layer of dust about an inch thick (~ 3 cm) overlying a much harder, compacted mixture of dust and ice at Abydos. The thermal sensor took the comet’s daily temperature which varies from a high around –229° F (–145ºC) to a nighttime low of about –292° F (–180ºC), in sync with the comet’s 12.4 hour day. The rate at which the temperature rises and falls also indicates a thin layer of dust rests atop a compacted dust-ice crust.

Based on the most recent calculations using CONSERT data and detailed comet shape models, Philae’s location has been revised to an area covering 69 x 112 feet (21 x 34 m). The best fit area is marked in red, a good fit is marked in yellow, with areas on the white strip corresponding to previous estimates now discounted. Credit: ESA/Rosetta/Philae/CONSERT
Based on the most recent calculations using CONSERT data and detailed comet shape models, Philae’s location has been revised to an area covering 69 x 112 feet (21 x 34 m). The best fit area is marked in red, a good fit is marked in yellow, with areas on the white strip corresponding to previous estimates now discounted. Credit: ESA/Rosetta/Philae/CONSERT

CONSERT, which passed radio waves through the nucleus between the lander and the orbiter, showed that the small lobe of the comet is a very loosely compacted mixture of dust and ice with a porosity of 75-85%, about that of lightly compacted snow. CONSERT was also used to help triangulate Philae’s location on the surface, nailing it down to an area just 69 x 112 feet ( 21 x 34 m) wide.

The orbit of Comet 67P/Churyumov–Gerasimenko and its approximate location around perihelion, the closest the comet gets to the Sun. The positions of the planets are correct for August 13, 2015. Copyright: ESA
The orbit of Comet 67P/Churyumov–Gerasimenko and its approximate location around perihelion, the closest the comet gets to the Sun. The positions of the planets are correct for August 13, 2015. The comet will pass closest to Earth in February 2016 at 135.6 million miles but will be brightest this month right around perihelion. Copyright: ESA

In fewer than two weeks, the comet will reach perihelion, its closest approach to the Sun at 116 million miles (186 million km), and the time when it will be most active. Rosetta will continue to monitor 67P C-G from a safe distance to lessen the chance an errant chunk of comet ice or dust might damage its instruments. Otherwise it’s business as usual. Activity will gradually decline after perihelion with Rosetta providing a ringside seat throughout. The best time for viewing the comet from Earth will be mid-month when the Moon is out of the morning sky. Watch for an article with maps and directions soon.

Comet 67P/C-G on July 20, 2015 taken from a distance of 106 miles (171 km) from the comet's center. Rosetta has been keeping a safe distance recently as 67P/C-G approaches perihelion. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Comet 67P/C-G on July 20, 2015 taken from a distance of 106 miles (171 km) from the comet’s center. Rosetta has been keeping a safe distance recently as 67P/C-G approaches the August 13th perihelion. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

“With perihelion fast approaching, we are busy monitoring the comet’s activity from a safe distance and looking for any changes in the surface features, and we hope that Philae will be able to send us complementary reports from its location on the surface,” said Philae lander manager Stephan Ulamec.

OSIRIS narrow-angle camera image showing the smooth nature of the dust covering the Ash region and highlighting the contrast with the more brittle material exposed underneath in Seth. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
OSIRIS narrow-angle camera image showing the smooth nature of the dust covering the Ash region and highlighting the contrast with the more brittle material exposed underneath in Seth.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

More about Philae’s findings can be found in the July 31 issue of Science. Before signing off, here are a few detailed, 3D images made with the high-resolution OSIRIS camera on Rosetta. Once you don a pair of red-blue glasses, click the photos for the high-res versions and get your mind blown.

OSIRIS narrow-angle camera mosaic of two images showing an oblique view of the Atum region and its contact with Apis, the flat region in the foreground. This region is rough and pitted, with very few boulders. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Mosaic of two images showing an oblique view of the Atum region and its contact with Apis, the flat region in the foreground. This region is rough and pitted, with very few boulders.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Image highlighting an alcove structure at the Hathor-Anuket boundary on the comet’s small lobe. The layering seen in the alcove could be indicative of the internal structure of the comet. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Image highlighting an alcove structure at the Hathor-Anuket boundary on the comet’s small lobe. The layering seen in the alcove could be indicative of the internal structure of the comet.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Imhotep region in 3D. Credit:
Imhotep region in 3D. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

 

 

What’s the Big Deal About the Pentaquark?

The pentaquark, a novel arrangement of five elementary particles, has been detected at the Large Hadron Collider. This particle may hold the key to a better understanding of the Universe's strong nuclear force. [Image credit: CERN/LHCb experiment]

“Three quarks for Muster Mark!,” wrote James Joyce in his labyrinthine fable, Finnegan’s Wake. By now, you may have heard this quote – the short, nonsensical sentence that eventually gave the name “quark” to the Universe’s (as-yet-unsurpassed) most fundamental building blocks. Today’s physicists believe that they understand the basics of how quarks combine; three join up to form baryons (everyday particles like the proton and neutron), while two – a quark and an antiquark – stick together to form more exotic, less stable varieties called mesons. Rare four-quark partnerships are called tetraquarks. And five quarks bound in a delicate dance? Naturally, that would be a pentaquark. And the pentaquark, until recently a mere figment of physics lore, has now been detected at the LHC!

So what’s the big deal? Far from just being a fun word to say five-times-fast, the pentaquark may unlock vital new information about the strong nuclear force. These revelations could ultimately change the way we think about our superbly dense friend, the neutron star – and, indeed, the nature of familiar matter itself.

Physicists know of six types of quarks, which are ordered by weight. The lightest of the six are the up and down quarks, which make up the most familiar everyday baryons (two ups and a down in the proton, and two downs and an up in the neutron). The next heaviest are the charm and strange quarks, followed by the top and bottom quarks. And why stop there? In addition, each of the six quarks has a corresponding anti-particle, or antiquark.

particles
Six types of quark, arranged from left to right by way of their mass, depicted along with the other elementary particles of the Standard Model. The Higgs boson was added to the right side of the menagerie in 2012. (Image Credit: Fermilab)

An important attribute of both quarks and their anti-particle counterparts is something called “color.” Of course, quarks do not have color in the same way that you might call an apple “red” or the ocean “blue”; rather, this property is a metaphorical way of communicating one of the essential laws of subatomic physics – that quark-containing particles (called hadrons) always carry a neutral color charge.

For instance, the three components of a proton must include one red quark, one green quark, and one blue quark. These three “colors” add up to a neutral particle in the same way that red, green, and blue light combine to create a white glow. Similar laws are in place for the quark and antiquark that make up a meson: their respective colors must be exactly opposite. A red quark will only combine with an anti-red (or cyan) antiquark, and so on.

The pentaquark, too, must have a neutral color charge. Imagine a proton and a meson (specifically, a type called a J/psi meson) bound together – a red, a blue, and a green quark in one corner, and a color-neutral quark-antiquark pair in the other – for a grand total of four quarks and one antiquark, all colors of which neatly cancel each other out.

Physicists are not sure whether the pentaquark is created by this type of segregated arrangement or whether all five quarks are bound together directly; either way, like all hadrons, the pentaquark is kept in check by that titan of fundamental dynamics, the strong nuclear force.

The strong nuclear force, as its name implies, is the unspeakably robust force that glues together the components of every atomic nucleus: protons and neutrons and, more crucially, their own constituent quarks. The strong force is so tenacious that “free quarks” have never been observed; they are all confined far too tightly within their parent baryons.

But there is one place in the Universe where quarks may exist in and of themselves, in a kind of meta-nuclear state: in an extraordinarily dense type of neutron star. In a typical neutron star, the gravitational pressure is so tremendous that protons and electrons cease to be. Their energies and charges melt together, leaving nothing but a snug mass of neutrons.

Physicists have conjectured that, at extreme densities, in the most compact of stars, adjacent neutrons within the core may even themselves disintegrate into a jumble of constituent parts.

The neutron star… would become a quark star.

The difference between a neutron star and a quark star (Chandra)
The difference between a neutron star and a quark star. (Image Credit: Chandra)

Scientists believe that understanding the physics of the pentaquark may shed light on the way the strong nuclear force operates under such extreme conditions – not only in such overly dense neutron stars, but perhaps even in the first fractions of a second following the Big Bang. Further analysis should also help physicists refine their understanding of the ways that quarks can and cannot combine.

The data that gave rise to this discovery – a whopping 9-sigma result! – came out of the LHC’s first run (2010-2013). With the supercollider now operating at double its original energy capacity, physicists should have no problem unraveling the mysteries of the pentaquark even further.

A preprint of the pentaquark discovery, which has been submitted to the journal Physical Review Letters, can be found here.

Youthful Frozen Plains Cover Pluto’s Big ‘Heart’ – Spectacular New Images from New Horizons

This annotated view of a portion of Pluto’s Sputnik Planum (Sputnik Plain), named for Earth’s first artificial satellite, shows an array of enigmatic features. The surface appears to be divided into irregularly shaped segments that are ringed by narrow troughs, some of which contain darker materials. Features that appear to be groups of mounds and fields of small pits are also visible. This image was acquired by the Long Range Reconnaissance Imager (LORRI) on July 14 from a distance of 48,000 miles (77,000 kilometers). Features as small as a half-mile (1 kilometer) across are visible. Credits: NASA/JHUAPL/SWRI

This annotated view of a portion of Pluto’s Sputnik Planum (Sputnik Plain), named for Earth’s first artificial satellite, shows an array of enigmatic features. The surface appears to be divided into irregularly shaped segments that are ringed by narrow troughs, some of which contain darker materials. Features that appear to be groups of mounds and fields of small pits are also visible. This image was acquired by the Long Range Reconnaissance Imager (LORRI) on July 14 from a distance of 48,000 miles (77,000 kilometers). Features as small as a half-mile (1 kilometer) across are visible. Credits: NASA/JHUAPL/SWRI
See 3 image mosaic below[/caption]

A vast, hundreds of miles wide craterless plain of Plutonian ice no more than 100 million years old and centered amidst Pluto’s big ‘heart’ was unveiled in spectacular new imagery taken by NASA’s resounding successful New Horizons mission, during its history making rapid transit through the Pluto-Charon binary planet system barely three days ago, on Tuesday, July 14.

The jaw dropping new imagery of young plains of water ice was publicly released today, July 17, by NASA and scientists leading the New Horizons mission during a media briefing, and has already resulted in ground breaking new scientific discoveries at the last planet in our solar system to be visited by a spacecraft from Earth.

“We have now visited every planet in our solar system with American spacecraft,” said NASA Administrator Charles Bolden. “These findings are already causing us to rethink the dynamics of interior geologic processes.”

New data and dazzling imagery are now from streaming back some 3 billion miles across interplanetary space to mission control on Earth and researchers eagerly awaiting the fruits of more than two decades of hard labor to get to this once-in-a-lifetime opportunity.

“I can’t wait for the new discoveries!” exclaimed Bolden at today’s media briefing.

“Over 50 gigabits of data were collected during the encounter and flyby periods,” New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, said during the media briefing.

“So far less than 1 gigabit of data has been returned.”

It will take some 16 months for all the Pluto flyby data to be transmitted back to Earth.

And the team has not been disappointed because the results so far shows Pluto to possess tremendously varied terrain that “far exceed our expectations.”

Video Caption: In the center left of Pluto’s vast heart-shaped feature – informally named “Tombaugh Regio” – lies a vast, craterless plain that appears to be no more than 100 million years old, and is possibly still being shaped by geologic processes. This frozen region is north of Pluto’s icy mountains and has been informally named Sputnik Planum (Sputnik Plain), after Earth’s first artificial satellite. Credits: NASA/JHUAPL/SWRI

Two new high resolution images captured by the probes Long Range Reconnaissance Imager (LORRI) on July 14 were released today and taken from a distance of 48,000 miles (77,000 kilometers). Features as small as one-half mile (1 kilometer) across are visible in the images – shown above and below.

They were snapped from frozen region lying north of Pluto’s icy mountains, in the center-left of the heart feature, informally named “Tombaugh Regio” (Tombaugh Region) after Clyde Tombaugh, who discovered Pluto in 1930.

“This terrain is not easy to explain,” said Jeff Moore, leader of the New Horizons Geology, Geophysics and Imaging Team (GGI) at NASA’s Ames Research Center in Moffett Field, California.

“The discovery of vast, craterless, very young plains on Pluto exceeds all pre-flyby expectations.”

“The landscape is astounding. There are a few ancient impact craters on Pluto. But other areas like “Tombaugh Regio” show no craters. The landform change processes are occurring into current geologic times.”

“There are no impact craters in a frozen area north of Pluto’s icy mountains we are now informally calling ‘Sputnik Planum’ after Earth’s first artificial satellite.”

‘Sputnik Planum’ is composed of a broken surface of irregularly-shaped segments. The polygonal shaped areas are roughly 12 miles (20 kilometers) across, bordered by what appear to be shallow troughs based on a quick look at the data.

Notably, some of the clumps are filled with mysterious darker material. Hills are also visible in some areas, which may have been pushed up. Etched areas on the surface may have been formed by sublimation process where the water ice turns directly from the solid to the gas phase due to the extremely negligible atmosphere pressure.

In some places there are also streaks that may have formed from windblown processes and pitted areas.

Three image mosaic of ‘Tombaugh Regio,’ Pluto’s heart-shaped region,  combining highest resolution imagery captured by NASA’s New Horizons LORRI imager during closest approach flyby on July 14, 2015.   Credits: NASA/JHUAPL/SWRI.  Additional processing Ken Kremer/Marco Di Lorenzo
Three image mosaic of ‘Tombaugh Regio,’ Pluto’s heart-shaped region, combining highest resolution imagery captured by NASA’s New Horizons LORRI imager during closest approach flyby on July 14, 2015. Credits: NASA/JHUAPL/SWRI. Additional processing Ken Kremer/Marco Di Lorenzo

“It’s just pure coincidence that we got the highest resolution data at Sputnik Planum which is of the most interest scientifically,” Moore noted.

Moore indicated that the team is working on a pair of theories as to how these polygonal segments were formed.

“The irregular shapes may be the result of the contraction of surface materials, similar to what happens when mud dries. Alternatively, they may be a product of convection, similar to wax rising in a lava lamp. On Pluto, convection would occur within a surface layer of frozen carbon monoxide, methane and nitrogen, driven by the scant warmth of Pluto’s interior,” Moore explained.

Pluto’s polygons look remarkably similar to the Martian polygons upon which NASA’s Phoenix lander touched down on in 2008 and dug into. Perhaps they were formed by similar mechanisms or difference ones, contraction or convection, Moore told me during the briefing.

As of yesterday, New Horizons spacecraft completed and exited the Pluto encounter phase, said Stern. “We are now collecting departure science.”

New Horizons is already over 3 million miles beyond Pluto and heading to its next yet to be determined target in the Kuiper Belt.

“With the flyby in the rearview mirror, a decade-long journey to Pluto is over –but, the science payoff is only beginning,” said Jim Green, director of Planetary Science at NASA Headquarters in Washington.

“Data from New Horizons will continue to fuel discovery for years to come.”

Counting down to less than 3 minutes from New Horizons closest approach to Pluto, Jim Green, NASA Planetary Science Division Director, addresses the team, guests and media on Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com
Counting down to less than 3 minutes from New Horizons closest approach to Pluto, Jim Green, NASA Planetary Science Division Director, addresses the team, guests and media on Tuesday, July 14, 2015 at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Pluto Explored at Last. The New Horizons mission team celebrates successful flyby of Pluto in the moments after closest approach at 7:49 a.m. EDT on July 14, 2015.   New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO., left, Johns Hopkins University Applied Physics Laboratory (APL) Director Ralph Semmel, center, and New Horizons Co-Investigator Will Grundy Lowell Observatory hold an enlarged print of an U.S. stamp with their suggested update after Pluto became the final planet in our solar system to be explored by an American space probe (crossing out the words ‘not yet’) - at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.  Credit: Ken Kremer/kenkremer.com
Pluto Explored at Last
The New Horizons mission team celebrates successful flyby of Pluto in the moments after closest approach at 7:49 a.m. EDT on July 14, 2015. New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO., left, Johns Hopkins University Applied Physics Laboratory (APL) Director Ralph Semmel, center, and New Horizons Co-Investigator Will Grundy Lowell Observatory hold an enlarged print of an U.S. stamp with their suggested update after Pluto became the final planet in our solar system to be explored by an American space probe (crossing out the words ‘not yet’) – at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com
In the center left of Pluto’s vast heart-shaped feature – informally named “Tombaugh Regio” - lies a vast, craterless plain that appears to be no more than 100 million years old, and is possibly still being shaped by geologic processes. This frozen region is north of Pluto’s icy mountains and has been informally named Sputnik Planum (Sputnik Plain), after Earth’s first artificial satellite. The surface appears to be divided into irregularly-shaped segments that are ringed by narrow troughs. Features that appear to be groups of mounds and fields of small pits are also visible. This image was acquired by the Long Range Reconnaissance Imager (LORRI) on July 14 from a distance of 48,000 miles (77,000 kilometers). Features as small as one-half mile (1 kilometer) across are visible. The blocky appearance of some features is due to compression of the image. Credits: NASA/JHUAPL/SWRI
In the center left of Pluto’s vast heart-shaped feature – informally named “Tombaugh Regio” – lies a vast, craterless plain that appears to be no more than 100 million years old, and is possibly still being shaped by geologic processes. This frozen region is north of Pluto’s icy mountains and has been informally named Sputnik Planum (Sputnik Plain), after Earth’s first artificial satellite. The surface appears to be divided into irregularly-shaped segments that are ringed by narrow troughs. Features that appear to be groups of mounds and fields of small pits are also visible. This image was acquired by the Long Range Reconnaissance Imager (LORRI) on July 14 from a distance of 48,000 miles (77,000 kilometers). Features as small as one-half mile (1 kilometer) across are visible. Credits: NASA/JHUAPL/SWRI

11713794_669270766536791_5453013284858242275_o

Three-tailed Comet Q1 PanSTARRS Lights Up Southern Skies

A cosmic pair extraordinaire! Comet C/2014 Q1 PanSTARRS joins the crescent Moon (overexposed here to show details of the comet) on July 18 from Australia. Credit: Terry Lovejoy

Call it the comet that squeaked by most northern skywatchers. Comet C/2014 Q1 PanSTARRS barely made an appearance at dawn in mid-June when it crept a few degrees above the northeastern horizon at dawn. Only a few determined comet watchers spotted the creature.

Two weeks later in early July it slipped into the evening and brightened to magnitude +4. But decreasing elongation from the Sun and bright twilight made it virtually impossible to see. Now it’s returned — with three tails! 

Comet C/2014 Q1 PanSTARRS looks pretty against pink dusk seen from Swan Hill, Victoria, Australia on July 15. The comet is quickly moving up from the western horizon into a darker sky. Credit: Michael Mattiazzo
Comet C/2014 Q1 PanSTARRS looks pretty against pink dusk seen from Swan Hill, Victoria, Australia on July 15. The comet is quickly moving up from the western horizon into a darker sky. Credit: Michael Mattiazzo
Comet Q1 PANSTARRS photographed at extremely low altitude just 10° from the Sun 45 minutes after sunset from Austria on July 4, 2015, with a 10-inch telescope.  Credit: Michael Jaeger
Comet Q1 PANSTARRS photographed at extremely low altitude just 10° from the Sun 45 minutes after sunset from Austria on July 4, 2015, with a 10-inch telescope. Credit: Michael Jaeger

After taunting northerners, it’s finally come out of hiding, climbing into the western sky during evening twilight for observers at low and southern latitudes. C/2014 Q1 peaked at about 3rd magnitude at perihelion on July 6, when it missed the Sun by just 28 million miles (45 million km). The comet is now on a collision course with the Venus-Jupiter planet pair. Not a real collision, but the three will all be within about 7° of each other from July 21 to about the 24th.  A pair of wide-field binoculars will catch all three in the same view.

An amazing three tails are visible in this photo taken with a 200mm lens on July 15 at dusk. Credit: Michael Mattiazzo
Not one, not two but three tails are visible in this photo of C/2014 Q1 taken with a 200mm lens on July 15 at dusk. The ion or gas tail splits from the dust tail a short distance up from the comet’s head. A third broad dust tail 1° long points north (to the right and below head). See photo below for further details. Credit: Michael Mattiazzo

More striking, a sliver Moon will hover just 2.5° above the comet on Saturday the 18th, one day before its closest approach to Earth of 109.7 million miles (176.6 million km). Q1 has been fading since perihelion but not too much. Australian observers Michael Mattiazzo and Paul Camilleri pegged it at magnitude +5.2 on July 15-16. Although it wasn’t visible with the naked eye because of a bright sky, binoculars and small telescopes provided wonderful views.

C/2014 Q1 PanSTARRS photographed through visual (top) and red filters with a 300mm telephoto lens on July 14, 2015. Credit: Martin Masek
Another excellent capture. C/2014 Q1 PanSTARRS photographed through visual (top) and red filters with a 300mm telephoto lens on July 14, 2015. Credit: Martin Masek

Here’s Mattiazzo’s observation:

“The view through my 25 x 100 mm binoculars showed a lovely parabolic dust hood about half a degree to the east,” he wrote in an e-mail communication. “Photographically the comet showed three separate tails, a forked ion tail about 1.5° long. Embedded within this was the main dust tail about half a degree long to the east and an unusual feature at right angles to the main tail —  a broad “dust trail” 1° long to the north”.

Mattiazzo points out that the unusual trail, known as a Type III dust tail, indicates a massive release of dust particles around the time of perihelion. This comet got cooked!

Comet C/2014 Q1 PanSTARRS is now best seen from the southern hemisphere (Alice Springs, Australia here) during the winter months of July and August. On July 18th (shown here) the comet joins the crescent Moon, Jupiter, and Venus for a scenic gathering in the west at nightfall. Stars to magnitude 6.
Comet C/2014 Q1 PanSTARRS is best seen from the southern hemisphere during the winter months of July and August. The map shows the nightly position of the comet seen from Alice Springs, Australia facing west about an hour after sundown from July 16 – August 11. Stars to magnitude 6. Source: Chris Marriott’s SkyMap

In the coming nights, C/2014 Q1 will cool, fade and slide into a darker sky and may be glimpsed with the naked eye before moving into binoculars-only territory. It should remain an easy target for small telescopes through August. Use the map above to help you find it. For longer-term viewing, try this map.

Comet C/2014 Q1 PanSTARRS displays three remarkable tails in this photo taken on July 15, 2015. The ion or gas tail stretches to the left. The primary dust tail is bright and overlaps the gas tail. A third broad and diffuse tail juts off to the upper left of the coma. Credit: Michael Jaeger
Comet C/2014 Q1 PanSTARRS displays three remarkable tails in this photo taken on July 15, 2015. The ion or gas tail stretches to the left. The primary dust tail is bright and overlaps the gas tail. The Type III dust tail juts off to the upper left of the coma. Click for another amazing image taken July 18. Credit: Michael Jaeger

While I’m happy for our southern brothers and sisters, many of us in the north have that empty stomach feeling when it comes to bright comets. We’ve done well by C/2014 Q2 Lovejoy (still visible at magnitude +10 in the northern sky) for much of the year, but unless a bright, new comet comes flying out of nowhere, we’ll have to wait till mid-November. That’s when Comet Catalina (C/2013 US10) will hopefully jolt us out of bed at dawn with naked eye comet written all over it.

New Horizons Phones Home, Flyby a Success

New Horizons Flight Controllers celebrate after they received confirmation from the spacecraft that it had successfully completed the flyby of Pluto, Tuesday, July 14, 2015 in the Mission Operations Center (MOC) of the Johns Hopkins University Applied Physics Laboratory (APL), Laurel, Maryland. Credit: NASA/Bill Ingalls


Watch Pluto grow in this series of photos taken during New Horizons’ approach

Whew! We’re out of the woods. On schedule at 9 p.m. EDT, New Horizons phoned home telling the mission team and the rest of the on-edge world that all went well. The preprogrammed “phone call” —  a 15-minute series of status messages beamed back to mission operations at the Johns Hopkins University Applied Physics Laboratory in Maryland through NASA’s Deep Space Network — ended a tense 21-hour waiting period. 

The team deliberately suspended communications with New Horizons until it was beyond the Pluto system, so the spacecraft could focus solely on data gathering. With a mountain of information now queued up, it’s estimated it will take 16 months to get it all back home. As the precious morsels arrive bit by byte, New Horizons will sail deeper into the Kuiper Belt looking for new targets until it ultimately departs the Solar System.

After Pluto, NASA hopes to send New Horizons to another asteroid or two in the Kuiper Belt and perform a flyby and reconnaissance similar to the Pluto mission. Credt: Alex Parker / SwRI
After Pluto, NASA hopes to send New Horizons to another asteroid or two in the Kuiper Belt to perform a flyby and reconnaissance similar to the Pluto mission. Credit: Alex Parker / SwRI

Assuming NASA funds a continuing mission, the team hopes to direct the spacecraft to one or two additional Kuiper Belt objects (KBO) over the next five to seven years. There are presently three possible targets – PT1, PT2, and PT3. (PT = potential target). PT1, imaged by the Hubble Space Telescope, looks like the best option at the moment and could by reached by January 2019. If you thought Pluto was small, PT 1 is only about 25 miles (40 km) across. Much lies ahead.

The image at left shows a KBO at an estimated distance of approximately 4 billion miles from Earth. Its position noticeably shifts between exposures taken approximately 10 minutes apart. The image at right shows a second KBO at roughly a similar distance.
The image at left shows a KBO at an estimated distance of approximately 4 billion miles from Earth. Its position noticeably shifts between exposures taken approximately 10 minutes apart. The image at right shows a second KBO at roughly a similar distance. Credit: NASA, ESA, SwRI, JHU/APL, and the New Horizons KBO Search Team

Scientists Captivated By Pluto’s Emerging Geological Wonders

Tantalizing signs of geology on Pluto are revealed in this image from New Horizons taken on July 9, 2015 from 3.3 million miles (5.4 million km) away. This annotated version shows the large dark feature nicknamed "the whale" that straddles Pluto's equator, a swirly band and a curious polygonal outline. At lower is a reference globe showing Pluto’s orientation in the image, with the equator and central meridian in bold. Credit: NASA-JHUAPL-SWRI

Bit by the Pluto bug? Day by day, new images appear showing an ever clearer view of a world we inexplicably love. Call it a dwarf planet. Call it a planet. It’s the unknown, and we can’t help but be drawn there.

Pluto made history when it was discovered in 1930. In 2015, it’s doing it all over again. Check out the new geology peeping into view.I’m reminded of the early explorers who shoved off in wooden ships in search of land across the water. After a long and often perilous journey, the mists would finally clear and the dark outline of land take form in the distance. It’s been 9 1/2 years since our collective Pluto voyage began. Yeah, we’re almost there.

Science team members react to the latest image of Pluto at the Johns Hopkins University Applied Physics Lab on July 10, 2015. Left to right: Cathy Olkin, Jason Cook, Alan Stern, Will Grundy, Casey Lisse, and Carly Howett. Credit: Michael Soluri
Science team members react to the latest image of Pluto at the Johns Hopkins University Applied Physics Lab on July 10, 2015. Left to right: Cathy Olkin, Jason Cook, Alan Stern, Will Grundy, Casey Lisse, and Carly Howett.
Credit: Michael Soluri

Today’s image release clearly shows a world growing more geologically diverse by the day.

“We’re close enough now that we’re just starting to see Pluto’s geology,” said New Horizons program scientist Curt Niebur, on NASA’s website. Niebur, who’s keenly interested in the gray area just above the whale’s “tail” feature, called it a “unique transition region with a lot of dynamic processes interacting, which makes it of particular scientific interest.”

The non-annotated version of the top photo. The 'whale' lies near the dwarf planet's equator. Pluto's axis is tilted 123° to its orbital plane. Credit: NASA
The non-annotated version of the top photo. The ‘whale’ lies near the dwarf planet’s equator. Pluto’s axis is tilted 123° to its orbital plane. Credit: NASA-JHUAPL-SWRI

Not only that, but the new photo shows an approximately 1,000-mile-long band of swirly terrain crossing the planet from east to northeast, a large, polygonal (roughly hexagonal) feature and new textures within the ‘whale’.

Neptune's largest moon Triton photographed on August 25, 1989 by Voyager 2. Credit: NASA
Neptune’s largest moon Triton photographed on August 25, 1989 by Voyager 2. Triton has a surface of mostly frozen nitrogen, a water ice-rich crust, an icy mantle and rock-metal core. Credit: NASA

Even to a layperson’s eye, Pluto’s terrain  appears very different from that of Ceres or Vesta. In trying to make sense of what we see, Neptune’s moon Triton may be our best Plutonian analog with its frosts, weird cantaloupe terrain and an assortment of dark patches, some produced by icy volcanism.

New Horizons was about 3.7 million miles (6 million kilometers) from Pluto and Charon when it snapped this portrait late on July 8, 2015. Credits: NASA-JHUAPL-SWRI
New Horizons was about 3.7 million miles (6 million kilometers) from Pluto and Charon when it snapped this portrait late on July 8, 2015.
Credits: NASA-JHUAPL-SWRI

Other recent photos include this pretty view of Charon and Triton snapped late on July 8. NASA describes them eloquently as “two icy worlds, spinning around their common center of gravity like a pair of figure skaters clasping hands.” Charon and all of Pluto’s known moons formed from debris released when another planet struck Pluto long ago. New Horizons principal investigator Alan Stern attributes its bland color to its composition — mostly water ice. Pluto in contrast has a mantle of water ice, but it’s coated with methane, nitrogen and carbon dioxide ices and possibly organic compounds, too.

Color photos of Pluto and Charon side by side. The arcs along Pluto's right limb are artifacts but not the white border along the bottom. Could it be frost? Credit:
Color photos of Pluto and Charon side by side. The arcs along Pluto’s right limb are artifacts but not the white border along the bottom. Could it be frost? Credit: NASA-JHUAPL-SWRI

Hold on tight – there’s LOTS more to come!

Pluto’s ‘Heart’ Revealed as New Horizons Probe Starts Flyby Campaign: 5 Days Out

Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations. The LORRI image has been combined with lower-resolution color information from the Ralph instrument. Credits: NASA-JHUAPL-SWRI

The Huge Heart of Pluto
Pluto’s “Heart” is seen in this new image from New Horizons’ Long Range Reconnaissance Imager (LORRI) received on July 8, 2015 after normal science operations resumed following the scary July 4 safe mode anomaly that briefing shut down all science operations. It shows ‘the heart and the whale’ along Pluto’s equator. The LORRI image has been combined with lower-resolution color information from the Ralph instrument. Credits: NASA-JHUAPL-SWRI
Story updated[/caption]

Emotions are rising exponentially with the rousing revelation that Pluto has a huge ‘Heart’ as revealed in stunning new imagery received just today (July 8) from NASA’s New Horizons spacecraft – which has also officially started its intensive flyby campaign merely 5 days out from humanity’s history making first encounter with the last unexplored planet in our Solar System on Tuesday, July 14.

Notably, today’s image showing Pluto’s ‘heart-shaped’ surface feature proves that New Horizons is now fully back in business following the nail-biting July 4 weekend anomaly that unexpectedly sent the probe into a protective status known as ‘safe mode’ and simultaneously sent mission engineers and scientists scurrying to their computer screens to resolve the scary issues and recover the probe back to full operation – just in the nick of time.

The intriguing ‘heart’ is the brightest area on Pluto and “may be a region where relatively fresh deposits of frost—perhaps including frozen methane, nitrogen and/or carbon monoxide—form a bright coating,” say mission scientists.

While in ‘safe mode’ all science operations were temporarily halted for nearly three days as the spacecraft inexorably zooms towards mysterious Pluto and its quintet of moons for our first up close reconnaissance of the frigid world and the Kuiper Belt.

Read my earlier story from July 6 here detailing how the science team and NASA resolved the July 4 anomaly and restored New Horizons to normal operations with little time to spare for its one time only flyby of the other ‘Red Planet’.

The close encounter sequence last for 9 days and it will take 16 months to relay back the vast quantity of data to be collected.

The view of Pluto’s ‘Heart’ was taken by the Long Range Reconnaissance Imager (LORRI) when the spacecraft was just under 5 million miles (8 million kilometers) from Pluto, and is the first to be received back on Earth since the anxiety rush caused by the July 4 anomaly.

The heart covers nearly half of Pluto’s now well resolved disk.

Right beside the large heart-shaped bright area, which measures some 1,200 miles (2,000 kilometers) across, is another enigmatic and elongated equatorial surface on the left side informally dubbed ‘the whale.’

Mission scientists say ‘the whale’ is one of the darkest regions visible to New Horizons and it measures some 1,860 miles (3,000 kilometers) in diameter, making it about 50% wider that the ‘heart.’

Above ‘the whale and the heart’ lies Pluto’s polar region that images show is intermediate in brightness.

NASA also released another perspective view of ‘the whale and the heart’ as seen below.

‘The whale and the heart of Pluto.’  This map of Pluto, made from images taken by the LORRI instrument aboard New Horizons, shows a wide array of bright and dark markings of varying sizes and shapes. Perhaps most intriguing is the fact that all of the darkest material on the surface lies along Pluto’s equator. The color version was created from lower-resolution color data from the spacecraft’s Ralph instrument.  Credits: NASA-JHUAPL-SWRI
‘The whale and the heart of Pluto.’
This map of Pluto, made from images taken by the LORRI instrument aboard New Horizons, shows a wide array of bright and dark markings of varying sizes and shapes. Perhaps most intriguing is the fact that all of the darkest material on the surface lies along Pluto’s equator. The color version was created from lower-resolution color data from the spacecraft’s Ralph instrument. Credits: NASA-JHUAPL-SWRI

Be sure to keep this entire area in mind – as if your appetites haven’t been whetted enough already – because “this view is centered roughly on the area that will be seen close-up during New Horizons’ July 14 closest approach,” says NASA.

“The next time we see this part of Pluto at closest approach, a portion of this region will be imaged at about 500 times better resolution than we see today,” said Jeff Moore, Geology, Geophysics and Imaging Team Leader of NASA’s Ames Research Center, in a statement. “It will be incredible!”

With barely 5 days to go until the once-in-a-lifetime opportunity for a fast flyby encounter of the ever intriguing binary planet traveling at the far flung reaches of the solar system, last minute glitches are the last thing anyone needs.

Why? Because there are no second chances as New Horizons barrels towards the Pluto system at approximately 30,000 miles per hour (over 48,000 kilometers per hour), which forms a binary planet with its largest known moon – Charon.

“The New Horizons spacecraft and science payload are now operating flawlessly,” Alan Stern, New Horizons principal investigator, Southwest Research Institute, Boulder, Colorado, announced at the July 6 post anomaly media briefing.

The nature of Pluto’s features that may appear to resemble craters or volcanoes is not yet known.

“We should be very cautious in interpreting these features,” Stern told Universe Today.

Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission.  Credit: NASA/JHUAPL/SWRI
Latest color image of Pluto taken on July 3, 2015. Best yet image of Pluto was taken by the LORRI imager on NASA’s New Horizons spacecraft on July 3, 2015 at a distance of 7.8 million mi (12.5 million km), just prior to the July 4 anomaly that sent New Horizons into safe mode. Color data taken from the Ralph instrument gathered earlier in the mission. Credit: NASA/JHUAPL/SWRI

New Horizons will swoop to within about 12,500 kilometers (nearly 7,750 miles) of Pluto’s surface and about 17,900 miles (28,800 kilometers) from Charon during closest approach at approximately 7:49 a.m. EDT (11:49 UTC) on July 14.

TThe probe was launched back on Jan. 19, 2006 on a United Launch Alliance Atlas V rocket on a 9 year voyage of over 3.6 billion miles (5.7 billion km).

“We are on our way to Pluto!” exclaimed Jim Green, director of Planetary Science, NASA Headquarters, Washington, at the July 6 news media briefing. “It’s really a historic time, fraught with many decisions and challenges on the way to the July 14 Pluto system encounter.”

“With Pluto in our sights, we’re going for the gold.”

Facts about Pluto. Credit: NASA
Facts about Pluto. Credit: NASA

The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This trio of images are the most recent high-resolution views of Pluto sent by NASA’s New Horizons spacecraft, including one showing the four mysterious dark spots on Pluto that have captured the imagination of the world. The Long Range Reconnaissance Imager (LORRI) obtained these three images between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode. Credit: NASA/JHUAPL/SWRI
This trio of images are the most recent high-resolution views of Pluto sent by NASA’s New Horizons spacecraft, including one showing the four mysterious dark spots on Pluto that have captured the imagination of the world. The Long Range Reconnaissance Imager (LORRI) obtained these three images between July 1 and 3 of 2015, prior to the July 4 anomaly that sent New Horizons into safe mode. Credit: NASA/JHUAPL/SWRI

NASA Loses Contact with New Horizons; Probe Now in Safe Mode

NASA briefly lost touch with the New Horizons spacecraft yesterday. Communications have been reestablished but science data will be delayed. Credit: NASA

For a nail-biting hour and 20 minutes, NASA lost contact yesterday afternoon July 4 with the New Horizons spacecraft just 9 days before its encounter with Pluto. Communication has since been reestablished and the spacecraft is healthy.

(UPDATE July 6: Great news! The mission will return to normal science operations July 7 – more details below.) 

At 1:54 p.m. EDT, communications suddenly stopped and weren’t reestablished until 3:15 p.m. through NASA’s Deep Space Network. During the time it was out of contact with mission control, the spacecraft’s autonomous autopilot recognized the problem and did what it was programmed to do, switching from the main to the backup computer, according to NASA officials. The autopilot then commanded the backup computer to put New Horizons in “safe mode” — where all non-essential functions are shut down — and reinitiate communications with Earth.

Artist view of New Horizons passing Pluto and three of its moons. The ship is about the size of a grand piano and kept warm in the cold of the outer Solar System by  heat release from the radioactive decay of plutonium within the probe's RTGs (Radioisotope  Thermoelectric Generator). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Artist view of New Horizons passing Pluto and three of its moons. The ship is about the size of a grand piano and kept warm by heat released from the radioactive decay of plutonium within the probe’s RTG (Radioisotope Thermoelectric Generator). To further retain heat in the frigid cold far from the Sun, it’s insulated with multi-layer blankets. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Success! We’re now back in touch with the spacecraft and engineers are monitoring telemetry to figure out what went wrong.  New Horizons is presently almost 3 billion miles (4.9 billion km) from Earth. Due to the 8.8 hour, round trip communication delay, full recovery is expected to take from one to several days. During that time New Horizons will be unable to collect science data.

If there’s any upside to this, it’s that it happened now instead of 9 days from now. On July 14 at 7:49:57 a.m. EDT  the spacecraft will pass closest to Pluto.

Check back for updates. In the meantime, you can watch a live connection between New Horizons and the Deep Space Network. The probe is labeled NHPC and the dish 63 (first entry).

UPDATE: July 6. NASA announced earlier this morning that has concluded the glitch that caused the New Horizons spacecraft to go into safe mode was not due to a software or hardware fault.

“The underlying cause of the incident was a hard-to-detect timing flaw in the spacecraft command sequence that occurred during an operation to prepare for the close flyby. No similar operations are planned for the remainder of the Pluto encounter,” according to a NASA release.

No primary science will be lost and secondary goals were only slightly compromised. Mission control expects science operations to resume on July 7 and to conduct the entire close flyby sequence as planned.

“In terms of science, it won’t change an A-plus even into an A,” said New Horizons Principal Investigator Alan Stern.

Whew! What a sense of relief. Onward!

River of Fire Smoke Darkens Sun and Moon

The waning gibbous moon was still the color of fire even at midnight last night due to heavy smoke from Canadian forest fires. Credit: Bob King

My eyes are burning. The morning Sun, already 40° high, glares a lemony-orange. It’s meteorologically clear, but the sky looks like paste. What’s going on here?

Forest fires! Many in the Midwest, northern mountain states and Canadian provinces have been living under a dome of high altitude smoke the past few days reflected in the ruddy midday Sun and bloody midnight Moon.

On June 29, 2015 NASA’s Terra satellite captured this image of a river of smoke pouring across the Canadian provinces and central U.S. from hundreds of wildfires (seen at upper left) in western Canada. The difference in color between clouds true clouds and smoke is obvious. Credit: NASA image courtesy Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC
On June 29, 2015 NASA’s Terra satellite captured this image of a river of smoke pouring across the Canadian provinces and central U.S. from hundreds of wildfires (seen at upper left) in western Canada. The difference in color between clouds true clouds and smoke is obvious. Credit: NASA image courtesy Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC

Fires raging in the forests of northern Alberta and Saskatchewan have poured tremendous amounts of smoke into the atmosphere. Favorable winds have channeled the fumes into a brownish river of haze flowing south and east across Canada and into the northern third of the U.S. If an orange Sun glares overheard at midday, you’ve got smoke. Sometimes you can smell it, but often you can’t because it’s at an altitude of 1.2 – 3 miles (2-5 km).

The Moon sits at lower right with the star Vega visible at the top of the frame in this 30-second time exposure made last night (July 2) under the pall of forest fire smoke. Credit: Bob King
The Moon sits at lower right with the star Vega visible at the top of the frame in this 30-second time exposure made last night (July 2) under the pall of forest fire smoke. Credit: Bob King

But the visual effects are dramatic. Last night, the nearly full Moon looked so red and subdued, it could easily have been mistaken for a total lunar eclipse. I’ve never seen a darker, more remote-looking Moon. Yes, remote. Without its customary glare, our satellite looked shrunken as if untethered from Earth and drifting away into the deep.

And nevermind about the stars. Try as I might, I could only make out zero magnitude Vega last night. The camera and a time exposure did a little better but not much.

This image taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra satellite on June 30, 2015.  Residents of the states affected by the smoke will notice much more vivid sunsets during the time the smoke is in the air.  The size of the smoke particles is just right for filtering out other colors meaning that red, pink and orange colors can be seen more vividly in the sky. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner
This image was taken by the Terra satellite on June 30, 2015. Residents of the states affected by the smoke will notice much more vivid sunsets during the time the smoke is in the air. The size of the smoke particles is just right for filtering out other colors meaning that red, pink and orange colors can be seen more vividly in the sky. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner

These days of deep red suns in the middle of the day fiery moons at night are an occasional occurrence across Canada and the northern half of the U.S. during the summer. Our previous bout with fire haze happened in early June as a result of massive wildfires in the Northwest Territories and northern Alberta. A change in wind direction and thorough atmospheric-cleaning by thunderstorms returned our blue skies days later.

Using a prism, we can take white light and spread it apart into its component colors. Credit: NASA
Using a prism, we can take white light and spread it apart into its component colors. Credit: NASA

While the downsides of fire haze range from poor air quality to starless nights, the upside is a more colorful Sun and Moon.

Back in grade school we all learned that white light is made up of every color of the rainbow. On a sunny day, air molecules, which are exceedingly tiny, scatter away the blue light coming from the Sun and color the sky blue. Around sunset and sunrise, when the Sun’s light passes through the lowest, thickest, haziest part of the atmosphere, greens and yellows are also scattered away, leaving an orange or red Sun.

Fire smoke adds billions of smoke particles to the atmosphere which scatter away purples, blues, greens and yellows to turn an otherwise white Sun into a blood red version smack in the middle of the day.

A ring-billed gull is silhouetted against a yellow sky and orange sun early Monday afternoon. Smoke from forest fires across Canada’s Northwest Territories and northern Alberta drifted over the region and colored the the sun orange long before sunset. Credit: Bob King
A ring-billed gull is silhouetted against a yellow sky and orange Sun  in Duluth, Minn. a few weeks back during the previous series of smoky days.This photo was taken around 3 p.m. local time. Credit: Bob King

Keep an eye on the color of the blue sky and watch for red suns at midday. Forest fires are becoming more common and widespread due to climate change. If you’ve never seen this eerie phenomenon, you may soon. For more satellite images of forest fires, check out NASA’s Fires and Smoke site.

I’ve often wondered what it would look like if Earth orbited a red dwarf star instead of the Sun. These smoky days give us a taste.