Building A Space Base, Part 1: Why Mine On The Moon Or An Asteroid?

Building a lunar base might be easier if astronauts could harvest local materials for the construction, and life support in general. Credit: NASA/Pat Rawlings

So can we get off of Earth already and start building bases on the Moon or an asteroid? As highlighted in a recent Office of Science and Technology Policy blog post, one way to do that quickly could be to use resources on site. But how do we even get started? Can we afford to do it now, in this tough economic climate?

Universe Today spoke with Philip Metzger, a former senior research physicist at NASA’s Kennedy Space Center, who has explored this subject extensively on his website and in published papers. He argues that to do space this way would be similar to how the pilgrims explored North America. In the first of a three-part series, he outlines the rationale and the first steps to making it there.

UT: It’s been said that using resources on the Moon, Mars or asteroids will be cheaper than transporting everything from Earth. At the same time, there are inherent startup costs in terms of developing technology to do this extraction and also sending this equipment over there, among other things. How do we reconcile these two realities?

PM: Space industry will have a tremendous payback, but it will be costly to start. Several years ago I was frustrated because I didn’t think that commercial interests alone would be enough to get it fully started within our generation, so I asked the question, can we find an inexpensive way for the governments of the world (or philanthropists or others who may not have an immediate commercial interest) to get it started simply because of the societal benefits it will bring? That’s why my colleagues and I wrote the paper “Affordable Rapid Bootstrapping of Space Industry and Solar System Civilization.”

We are advocating a bootstrapping approach because it helps solve the problem of the high startup cost and it enables humanity to start reaping the benefits quickly, since we need them quickly. A bootstrapping approach works like this: instead of building all the hardware on Earth and sending it into space ready to start manufacturing things, we can send a reduced set of hardware into space and make only a little bit of what we need. We can send the rest of the manufactured parts from Earth and combine them with what we made in space. Over time we keep doing this until we evolve up to a full manufacturing capability in space.

On a clear day, astronauts aboard the ISS can see over 1,000 miles from Havana to Washington D.C. Image Credit: Chris Hadfield / NASA
On a clear day, astronauts aboard the ISS can see over 1,000 miles from Havana to Washington D.C. Image Credit: Chris Hadfield / NASA

This is how colonies on Earth built themselves up until eventually they were able to match the industry of their homelands. The pilgrims, for example, didn’t bring entire factories from Europe over on the Mayflower.  Now it took hundreds of years to build up American industry, but with robotics and advanced manufacturing and with some intentionality we can get it done much more quickly at still an affordable price. We have done some rudimentary modeling of this bootstrapping approach and it looks as though it would be a small part of our annual space budget and it could establish the industry within just decades.

What I think is even more important than the cost is that with a bootstrapping approach we can get started right away. We don’t need to complete the entire design and development up front. It also spreads the cost over time so the annual expenses are very low. And it allows us time to evolve our strategy, to figure out what works and what will have more immediate economic payback, as we go along. Many people are looking for the immediate ways to get a payback in space, and there are some great ideas and I am sure they will be successful. One example is to set up a mining operation that refuels communication satellites in geosynchronous orbit. These sorts of activities will contribute to, and will benefit from, the effort to start industry in space, and they will generate revenue to fund their portion of the effort.

UT: Why do you feel the Moon is a good spot to start operations? What would be some activities to start with there? How do we move from there into the rest of the solar system?

When my colleagues and I wrote the paper, we were focused on the Moon in part because that was during NASA’s Constellation program to establish a lunar outpost.  However, it is equally possible to use near-Earth asteroids to start this space industry, or to use both.  In any case, we need to start space industry close to the Earth. That will keep transportation costs low during the startup. It also enables us to work with much shorter time delay in the radio communications, which is important in the early stages before robotics become sufficiently automated. Ideally the industry will be fully automated; we want robots to prepare the way for humans to follow.

The cancelled Constellation Program.  Credit: NASA
The cancelled Constellation Program. Credit: NASA

However, if we think we will need humans during initial start-up of the industry – for example, to fix or troubleshoot broken hardware, or to do complex tasks that robots can’t yet do – then starting near Earth becomes even more important.  It turns out that both the Moon and asteroids are excellent places to start industry. We now know that they have abundant water, minerals from which metals can be refined, carbon for making plastics, and so on. I am glad there are companies planning to develop mining in both locations so we can see what works best.

Another reason to start industry close to Earth is so it can have an early economic payback. In the end, when everything including spaceships and refueling depots are made in space by autonomous robotics, then industry becomes self-sustaining and it will pay us back inestimably for no further cost. Getting to that point requires some serious investment, though, and it will be easier to make the investments if we are getting something back. So what kinds of payback can it give us in the near-term? I keep a list of ideas how to make money in space, and there are about 19 items on the list, some crazy and some not so crazy. A few of the serious ideas include: space tourism; making and selling propellants to NASA for exploration and science missions; returning metals like platinum for sale on Earth; and manufacturing spare parts for other activities in space.

Artist's rendition of a Moon Base. Credit: John Spencer/Space Tourism Society.
Artist’s rendition of a Moon Base. Credit: John Spencer/Space Tourism Society.

Some of the initial things we will do on the Moon or asteroids includes perfecting the low-gravity mining techniques, learning how to make solar cells out of regolith, and learning how to extract useful metals from minerals that would not be considered “ore” here on Earth. All of these are possible and require only modest investment to make them work.

It will take decades of effort to make space industry self-sustaining. Maybe 2 decades if we get started right away and work steadily, or maybe 5 decades if we have a lower level of funding.  But if robotics advance as fast as the roboticists are expecting, soon there will be no manufacturing task a robot cannot do. When that day arrives, and we have set up a complete supply chain in space, then it will be an easy thing to send sets of hardware to the main asteroid belt to begin mining and manufacturing where there are billions of times the resources more than what we have on Earth.

Then, the industry could build landing craft to take equipment to the surface of Mars where it can build cities and eventually even terraform the planet. When we have machines that can use local resources to perform work and build copies of themselves, then they can perform the same role on dry worlds that biological life has performed here on our wet Earth. They can transform the environment and become the food chain so those worlds will be places where humanity can work and live. I realize this sounds too ambitious, but 20 to 50 years of technology growth is going to make a huge difference, and we are only talking about manufacturing – not rocket science —  and that is something that we are already quite good at here on Earth. With just a little extrapolation into the future it is not a crazy idea.

Artist concept of a Moon base. Credit: NASA/Pat Rawlings.
Artist concept of a Moon base. Credit: NASA/Pat Rawlings.

UT: What are the main pieces of equipment and robotics that we need up there to accomplish these objectives?

PM: There is an interesting open source project developing what they call the “Global Village Construction Set.” It is 50 machines that will be capable of restarting civilization. It includes things like a windmill, a backhoe, and a 3D printer. What we need is the equivalent “Lunar/Asteroid Village Construction Set.”

A study was done by NASA in 1980 to determine what set of machines are needed in factories on the Moon to build 80% of their own parts. The other 20% would need to be supplied constantly from Earth. In our paper we argued that we can start at much less than 80% closure, making it more affordable and allowing us to start today, but the system should evolve until it reaches 100% closure. So the first set of hardware might make crude solar cells, metal, 3D printed metal parts, and rocket propellants.

Having just that will allow us to make a significant mass of the next generation of hardware as well as support the transportation network.  Over time, we want to develop an entire supply chain which would be more extensive than just 50 different types of machines. But before we put anything in space we will want to test them in rugged locations here on Earth, and in the process we will discover what set of machines makes the most sense for the first generation. The idea is to learn as we go, so we can get started right away.

This is the first in a three-part series about building a space base. Tomorrow: How much money would it take? Day after tomorrow: Making remote robots smart.

Why Watch ESA Rosetta’s Movie ‘Ambition’? Because We Want to Know What is Possible

Ambition is a collaboration between Platige Image and ESA. Shot on location in Iceland, it is directed by Tomek Bagi?ski and stars Aiden Gillen and Aisling Franciosi. Does Ambition accomplish more in 7 minutes than Gravity did in 90? Consider the abstraction of the Rosetta mission in light of NASA’s ambitions. (Credit: ESA, Illustration- TRR)

NASA has taken on space missions that have taken years to reach their destination; they have more than a dozen ongoing missions throughout the Solar System and have been to comets as well. So why pay any attention to the European Space Agency’s comet mission Rosetta and their new short film, “Ambition”?

‘Ambition’ might accomplish more in 7 minutes than ‘Gravity’ did in 90.

‘Ambition’ is a 7 minute movie created for ESA and Rosetta, shot on location in Iceland, directed by Oscar-winning Tomek Baginski, and stars Aidan Gillen—Littlefinger of ‘Game of Thrones.’ It is an abstraction of the near future where humans have become demigods. An apprentice is working to merge her understanding of existence with her powers to create. And her master steps in to assure she is truly ready to take the next step.

In the reality of today, we struggle to find grounding for the quest and discoveries that make up our lives on a daily basis. Yet, as the Ebola outbreak or the Middle East crisis reminds us, we are far from breaking away. Such events are like the opening scene of ‘Ambition’ when the apprentice’s work explodes in her face.

The ancient Greeks also took great leaps beyond all the surrounding cultures. They imagined themselves as capable of being demigods. Achilles and Heracles were born from their contact with the gods but they remained fallible and mortal.

The Comet Rendezvous and Flyby Mission conceived in one of two Mariner Mark II spacecraft was abandoned by the US Congress. The American led mission would have accomplished the objectives now being completed by the European Rosetta mission. (Photo Credit: NASA)
The Comet Rendezvous and Flyby Mission conceived in one of two Mariner Mark II spacecraft was abandoned by the US Congress. The American led mission would have accomplished the objectives now being completed by the European Rosetta mission. (Photo Credit: NASA)

But consider the abstraction of the Rosetta mission in light of NASA’s ambitions. As an American viewing the European short film, it reminds me that we are not unlike the ancient Greeks. We have seen the heights of our powers and ability to repel and conquer our enemies, and enrich our country. But we stand manifold vulnerable.

In ‘Ambition’ and Rosetta, America can see our European cousins stepping ahead of us. The reality of the Rosetta mission is that a generation ago – 25 years — we had a mission as ambitious called Comet Rendezvous Asteroid Flyby (CRAF). From the minds within NASA and JPL, twin missions were born. They were of the Mariner Mark II spacecraft design for deep space. One was to Saturn and the other  – CRAF was to a comet. CRAF was rejected by congress and became an accepted sacrifice by NASA in order to save its twin, the Cassini mission.

The short film ‘Ambition’ and the Rosetta mission is a reminder of what American ambition accomplished in the 60’s – Apollo, and the 70s – the Viking Landers, but then it began to falter in the 80s. The ambition of the Europeans did not lose site of the importance of comets. They are perhaps the ultimate Rosetta stones of our star system. They are unmitigated remnants of what created our planet billions of years ago unlike the asteroids that remained close to the Sun and were altered by its heat and many collisions.

Artist Illustration of the Cassini space probe to Saturn and Titan, a joint NASA, ESA mission. Cassini was the only Mariner Mark II spacecraft completed. (Photo Credit: NASA)
Artist Illustration of the Cassini space probe to Saturn and Titan, a joint NASA, ESA mission. Cassini was the only Mariner Mark II spacecraft completed. (Photo Credit: NASA)

Our cousins picked up a scepter that we dropped and we should take notice that the best that Europe spawned in the last century  – the abstract art of Picasso and Stravinsky, rocketry, and jet travel — remains alive today. Europe had the vision to continue a quest to something quite abstract, a comet, while we chose something bigger and more self-evident, Saturn and Titan.

‘Ambition’ shows us the forces at work in and around ESA. They blend the arts with the sciences to bend our minds and force us to imagine what next and why. There have been American epoch films that bend our minds, but yet sometimes it seems we hold back our innate drive to discover and venture out.

NASA recently created a 7 minute film of a harsh reality, the challenge of landing safely on Mars. ESA and Rosetta’s short film reminds us that we are not alone in the quest for knowledge and discovery, both of which set the stage for new growth and invention. America needs to take heed so that we do not wait until we reach the moment when an arrow pierces our heel as with Achilles and we succumb to our challengers.

References:

Rosetta: The Ambition to turn Science Fiction into Science Fact

Solar ‘Bombs’ And Mini-Tornadoes Spotted By Sun-Watching Spacecraft

An image of a May 9, 2014 coronal mass ejection from the Sun using data from both the Interface Region Imaging Spectrograph (IRIS) spacecraft and the Solar Dynamics Observatory. Credit: NASA, Lockheed Martin Solar & Astrophysics Laboratory

My, the Sun is a violent place. I mean, we knew that already, but there’s even more evidence for that using new data from a brand-new NASA spacecraft. There’s talk now about tornadoes and jets and even “bombs” swirling amid our Sun’s gassy environment.

A huge set of results from NASA’s Interface Region Imaging Spectrograph (IRIS) spacecraft reveals the true nature of a mysterious transition zone between Sun’s surface and the corona, or atmosphere. Besides the pretty fireworks and videos, these phenomena are telling scientists more about how the Sun moves energy from the center to the outskirts. And, it could tell us more about how stars work in general.

The results are published in five papers yesterday (Oct. 15) in Science magazine. Below, a brief glimpse of what each of these papers revealed about our closest star.

Bombs

This is a heck of a lot of energy packed in here. Raging at temperatures of 200,000 degrees Fahrenheit (111,093 degrees Celsius) are heat “pockets” — also called “bombs” because they release energy quickly. They were found lower in the atmosphere than expected. The paper is here (led by Hardi Peter of the Max Planck Institute for Solar System Research in Gottingen, Germany.)

Tornadoes

It’s a twist! You can see some structures in the chromosphere, just above the Sun’s surface, showing gas spinning like a tornado. They spin around as fast as 12 miles (19 kilometers) a second, which is considered slow-moving on the Sun. The paper is here (led by Bart De Pontieu, the IRIS science lead at Lockheed Martin in California).

High-speed jets

Artist's impression of the solar wind from the sun (left) interacting with Earth's magnetosphere (right). Credit: NASA
Artist’s impression of the solar wind from the sun (left) interacting with Earth’s magnetosphere (right). Credit: NASA

How does the solar wind — that constant stream of charged particles that sometimes cause aurora on Earth — come to be? IRIS spotted high-speed jets of material moving faster than ever observed, 90 miles (145 kilometers) a second. Since these jets are emerging in spots where the magnetic field is weaker (called coronal holes), scientists suspect this could be a source of the solar wind since the particles are thought to originate from there. The paper is here (led by Hui Tian at the Harvard-Smithsonian Center for Astrophysics in Massachusetts.)

Nanoflares

A solar filament erupts with a coronal mass ejection in this image captured by NASA's Solar Dynamics Observatory in August 2012. Credit: NASA's GSFC, SDO AIA Team
A solar filament erupts with a coronal mass ejection in this image captured by NASA’s Solar Dynamics Observatory in August 2012. Credit: NASA’s GSFC, SDO AIA Team

Those solar flares the Sun throws off happen when magnetic field lines cross and then snap back into place, flinging particles into space. Nanoflares could do the same thing to heat up the corona, and that’s something else that IRIS is examining. The paper is here (led by Paola Testa, at the Harvard-Smithsonian Center for Astrophysics.)

Structures and more

And here is the transition region in glorious high-definition. Improving on data from the Skylab space station in the 1970s (bottom of video), you can see all sorts of mini-structures on the Sun. The more we learn about these 2,000-mile (3,220-km) objects, the better we’ll understand how heating moves through the Sun. The paper is here (led by Viggo Hansteen, at the University of Oslo in Norway.)

Source: NASA

NASA Inaugurates New Space Station Era as Earth Science Observation Platform with RapidScat Instrument

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

NASA inaugurated a new era of research for the International Space Station (ISS) as an Earth observation platform following the successful installation and activation of the ISS-RapidScat science instrument on the outposts exterior at Europe’s Columbus module.

The ISS Rapid Scatterometer, or ISS-RapidScat, is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring.

The 1280 pound (580 kilogram) experimental instrument is already collecting its first science data following its recent power-on and activation at the station.

“Its antenna began spinning and it started transmitting and receiving its first winds data on Oct.1,” according to a NASA statement.

The first image from RapidScat was released by NASA on Oct. 6, shown below, and depicts preliminary measurements of global ocean near-surface wind speeds and directions.

Launched Sept. 21, 2014, to the International Space Station, NASA's newest Earth-observing mission, the International Space Station-RapidScat scatterometer to measure global ocean near-surface wind speeds and directions, has returned its first preliminary images.  Credit: NASA-JPL/Caltech
Launched Sept. 21, 2014, to the International Space Station, NASA’s newest Earth-observing mission, the International Space Station-RapidScat scatterometer to measure global ocean near-surface wind speeds and directions, has returned its first preliminary images. Credit: NASA-JPL/Caltech

The $26 million remote sensing instrument uses radar pulses to observe the speed and direction of winds over the ocean for the improvement of weather forecasting.

“Most satellite missions require weeks or even months to produce data of the quality that we seem to be getting from the first few days of RapidScat,” said RapidScat Project Scientist Ernesto Rodriguez of NASA’s Jet Propulsion Laboratory, Pasadena, California, which built and manages the mission.

“We have been very lucky that within the first days of operations we have already been able to observe a developing tropical cyclone.

“The quality of these data reflect the level of testing and preparation that the team has put in prior to launch,” Rodriguez said in a NASA statement. “It also reflects the quality of the spare QuikScat hardware from which RapidScat was partially assembled.”

RapidScat, payload was hauled up to the station as part of the science cargo launched aboard the commercial SpaceX Dragon CRS-4 cargo resupply mission that thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

Dragon was successfully berthed at the Earth-facing port on the station’s Harmony module on Sept 23, as detailed here.

It was robotically assembled and attached to the exterior of the station’s Columbus module using the station’s robotic arm and DEXTRE manipulator over a two day period on Sept 29 and 30.

Ground controllers at Johnson Space Center intricately maneuvered DEXTRE to pluck RapidScat and its nadir adapter from the unpressurized trunk section of the Dragon cargo ship and attached it to a vacant external mounting platform on the Columbus module holding mechanical and electrical connections.

Fascinating: #Canadarm & Dextre installed the #RapidScat Experiment on Columbus! @ISS_Research @NASAJPL @csa_asc. Credit: ESA/NASA/Alexander Gerst
Fascinating: #Canadarm & Dextre installed the #RapidScat Experiment on Columbus! @ISS_Research @NASAJPL @csa_asc. Credit: ESA/NASA/Alexander Gerst

The nadir adapter orients the instrument to point at Earth.

The couch sized instrument and adapter together measure about 49 x 46 x 83 inches (124 x 117 x 211 centimeters).

Engineers are in the midst of a two week check out process that is proceeding normally so far. Another two weeks of calibration work will follow.

Thereafter RapidScat will begin a mission expected to last at least two years, said Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington, at a prelaunch media briefing at the Kennedy Space Center.

RapidScat is the forerunner of at least five more Earth science observing instruments that will be added to the station by the end of the decade, Volz explained.

The second Earth science instrument, dubbed CATS, could be added by year’s end.

The Cloud-Aerosol Transport System (CATS) is a laser instrument that will measure clouds and the location and distribution of pollution, dust, smoke, and other particulates in the atmosphere.

CATS is slated to launch on the next SpaceX resupply mission, CRS-5, currently targeted to launch from Cape Canaveral, FL, on Dec. 9.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

This has been a banner year for NASA’s Earth science missions. At least five missions will be launched to space within a 12 month period, the most new Earth-observing mission launches in one year in more than a decade.

ISS-RapidScat is the third of five NASA Earth science missions scheduled to launch over a year.

NASA has already launched the Global Precipitation Measurement (GPM) Core Observatory, a joint mission with the Japan Aerospace Exploration Agency in February, and the Orbiting Carbon Observatory-2 (OCO-2) carbon observatory in July 2014.

NASA managers show installed location of ISS-RapidScat instrument on the Columbus module on an ISS scale model at the Kennedy Space Center press site during launch period for the SpaceX CRS-4 Dragon cargo mission.  Posing are Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington and Howard Eisen, RapidScat Project Manager.  Credit: Ken Kremer - kenkremer.com
NASA managers show installed location of ISS-RapidScat instrument on the ESA Columbus module on an ISS scale model at the Kennedy Space Center press site during launch period for the SpaceX CRS-4 Dragon cargo mission. Posing are Steve Volz, associate director for flight programs in the Earth Science Division, NASA Headquarters, Washington, and Howard Eisen, RapidScat Project Manager. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space Taxis, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM

Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

REAL Images of Eclipses Seen From Space

JAXA

That ‘amazing astro-shot that isn’t’ is making the rounds of ‘ye ole web again.

You know the one. “See an Amazing Image of an Eclipse… From SPACE!!!” screams the breathless headline, with the all-too-perfect image of totality over the limb of the Earth, with the Milky Way thrown in behind it for good measure.

As the old saying goes, if it looks too good to be true, it probably is. Sure, the pic is a fake, and it’s been debunked many, many times since it was first released into the wild a few years back. But never let reality get in the way of a good viral meme. As eclipse season 2 of 2 gets underway tonight with a total lunar eclipse followed by a partial solar eclipse on October 23rd both visible from North America, the image is once again making its rounds. But there’s a long history of authentic captures of eclipses from space that are just as compelling. We’ve compiled just such a roll call of real images of eclipses seen from space:

SDO
A partial solar eclipse as captured by SDO. Credit: NASA/SDO.

The Solar Dynamics Observatory:

Launched in 2010, The Solar Dynamics Observatory or SDO is NASA’s premier orbiting solar observatory. But unlike Sun-staring satellites based in low Earth orbit, SDO’s geosynchronous orbit assures that it tends to see a cycle of partial solar eclipses twice a year, roughly around the equinoxes. And like many satellites, SDO also passes into the Earth’s shadow as well, offering unique views of a solar eclipse by the limb of the Earth from its vantage point.

JAXA
The Moon ‘photobombs’ the view of Hinode. Credit: NASA/JAXA.

Hinode:

A joint mission between NASA and JAXA (the Japanese Aerospace Exploration Agency) launched in 2006, Hinode observes the Sun from low Earth orbit. As a consequence, it nearly has a similar vantage point as terrestrial viewers and frequently nabs passages of the Moon as solar eclipses occur. Such events, however, are fleeting; moving at about eight kilometres per second, such eclipses last only seconds in duration!

ESA
Catching the passage of the Moon during a brief partial eclipse. Credit: ESA.

Proba-2:

Like Hinode, Proba-2 is the European Space Agency’s flagship solar observing spacecraft based in low Earth orbit. It also catches sight of the occasional solar eclipse, and these fleeting passages of the Moon in front of the Earth happen in quick multiple cycles. Recent images from Proba-2 are available online.

Eclipses from the ISS:

The International Space Station isn’t equipped to observe the Sun per se, but astronauts and cosmonauts aboard have managed to catch views of solar eclipses in an unusual way, as the umbra of the Moon crosses the surface of the Earth. Such a view also takes the motion of the ISS in low Earth orbit into account. Cosmonauts aboard the late Mir space station also caught sight of the August 11th, 1999, total solar eclipse over Europe.

NASA GOES
NASA’ s GOES-WEST spies the umbra of the Moon. Credit: NASA-GOES.

NASA-GOES:

Weather satellites can, and do, occasionally catch sight of the inky black dot of the Moon’s penumbra crossing the disk of the Earth.  GOES-West snapped the above image of the November 13th, 2012, solar eclipse. The umbra of the Moon’s shadow races about 1700 kilometres per hour from west to east during an eclipse, and we can expect some interesting images in 2017 when the next total solar eclipse crosses the United States on August 21st, 2017.

NASA
An ‘Apollo eclipse!’ Credit: NASA.

Apollo-Soyuz Test Project:

The final mission of Apollo program, the 1975 Apollo-Soyuz Test Project, also yielded an unusual and little known effort to observe the Sun. The idea was to use the Apollo command module as a “coronagraph” and have cosmonauts image the Sun from the Soyuz as the Apollo spacecraft blocked it out after undocking. Unfortunately, the Apollo thrusters smeared the exposure, and it became a less than iconic— though unusual — view from the space age.

Gemini XII
A partial solar eclipse snapped by the crew of Gemini XII. Credit: NASA.

Gemini XII and the first eclipse seen from space:

On November 12th, 1966, a total solar eclipse graced South America. Astronauts James Lovell Jr. and Edwin “Buzz” Aldrin Jr. were also in orbit at the time, and managed to snap the first image of a solar eclipse from space. Gemini XII was the last flight of the program, and the astronauts initially thought they’d missed the eclipse after a short trajectory burn.

ISS
The 2012 transit of Venus as seen from the ISS. Credit: NASA/Don Pettit.

ISS Astronauts catch a transit of Venus:

We were fortunate that the International Space Station had its very own amateur astronomer in residence in 2012 to witness the historic transit of Venus from space. NASA astronaut Don Pettit knew that the transit would occur during his rotation, and packed a full-aperture white light solar filter for the occasion. Of course, a planetary transit meets the very loosest definition of a partial eclipse, but it’s a unique capture nonetheless.

Kaguya:

Japan’s SELENE-Kaguya spacecraft entered orbit around the Moon in 2007 and provided some outstanding imagery of our solitary natural neighbor. On February 10th, 2009, it also managed to catch a high definition view of the Earth eclipsing the Sun as seen from lunar orbit. A rare catch, such an event occurs during every lunar eclipse as seen from the Earth.

Mars eclipse
Curiosity captures a misshapen eclipse from the surface of Mars. Credit: NASA/JPL.

An unusual eclipse… seen from Mars:

We’re fortunate to live in an epoch in time and space where total solar eclipses can occur as seen from the Earth. But bizarre eclipses and transits can also be seen from Mars. The Spirit and Opportunity rovers have witnessed brief transits of the Martian moons Phobos and Deimos across the face of the Sun, and in 2010, the Curiosity rover recorded the passage of Phobos in front of the Sun in a bizarre-potato shaped “annular eclipse”. But beyond just the “coolness” factor, the event also helped researchers refine our understanding of orbital path of the Martian moon.

The future: It’s also interesting to think of what sort of astronomical wonders await travelers as we venture out across the solar system. For example, no human has yet to stand on the Moon and witness a solar eclipse. Or how about a ring plane passage through Saturn’s rings, thus far only witnessed via the robotic eyes of Cassini? Of course, for the best views of Saturn’s rings, we recommend a vacation stay on Iapetus, the only major Saturnian moon whose orbit is inclined to the ring plane. And stick around ‘til November 10th, 2084, and you can witness a transit of Earth, the Moon and Phobos as seen from the slopes of Elysium Mons on Mars:

Hopefully, they’ll have perfected that whole Futurama “head-in-a-jar” thing by then…

-Looking for eclipses in science fiction? Check out the author’s tales Exeligmos and Shadowfall.

25 Days from Mars – India’s MOM is in Good Health!

India’s Mars Orbiter Mission (MOM) marked 100 days out from Mars on June 16, 2014 and the Mars Orbit Insertion engine firing when it arrives at the Red Planet on September 24, 2014 after its 10 month interplanetary journey. Credit ISRO

Now less than 25 days from her history making rendezvous with the Red Planet and the critical Mars Orbital Insertion (MOI) engine firing, India’s MOM is in good health!

The Mars Orbiter Mission, or MOM, counts as India’s first interplanetary voyager and the nation’s first manmade object to orbit the 4th rock from our Sun on September 24, 2014 – if all goes well.

MOM was designed and developed by the Indian Space Research Organization (ISRO).

“MOM and its payloads are in good health,” reports ISRO in a new update.

As of today, Aug. 31, MOM has traveled a total distance of over 622 million km in its heliocentric arc towards Mars, says ISRO. It is currently 199 million km away from Earth.

25 Days to Mars Orbit Insertion engine firing for ISRO’s Mars Orbiter Mission (MOM) on Sept. 24, 2014. Prelaunch images show MOM undergoing solar panel illumination tests during 2013 prior to launch.  Credit: ISRO
25 Days to Mars Orbit Insertion engine firing for ISRO’s Mars Orbiter Mission (MOM) on Sept. 24, 2014. Prelaunch images show MOM undergoing solar panel illumination tests during 2013 prior to launch. Credit: ISRO

Altogether the probe has completed over 90% of the journey to Mars.

In the past week alone it has traveled over 20 million km and is over 10 million km further from Earth. It is now less than 9 million kilometers away from Mars

Round trip radio signals communicating with MOM now take some 21 minutes.

The 1,350 kilogram (2,980 pound) probe has been streaking through space for nearly ten months.

To remain healthy and accomplish her science mission ahead, the spacecraft must fire the 440 Newton liquid fueled main engine to brake into orbit around the Red Planet on September 24, 2014 – where she will study the atmosphere and sniff for signals of methane.

The do or die MOI burn on September 24, 2014 places MOM into an 377 km x 80,000 km elliptical orbit around Mars.

Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) has moved the spacecraft in the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO
Trans Mars Injection (TMI), carried out on Dec 01, 2013 at 00:49 hrs (IST) moved the spacecraft into the Mars Transfer Trajectory (MTT). With TMI the Earth orbiting phase of the spacecraft ended and the spacecraft is now on a course to encounter Mars after a journey of about 10 months around the Sun. Credit: ISRO

MOM was launched on Nov. 5, 2013 from India’s spaceport at the Satish Dhawan Space Centre, Sriharikota, atop the nations indigenous four stage Polar Satellite Launch Vehicle (PSLV) which placed the probe into its initial Earth parking orbit.

MOM is streaking to Mars along with NASA’s MAVEN orbiter, which arrives a few days earlier on September 21, 2014.

Although MOM’s main objective is a demonstration of technological capabilities, she will also study the planet’s atmosphere and surface.

The probe is equipped with five indigenous instruments to conduct meaningful science – including a tri color imager (MCC) and a methane gas sniffer (MSM) to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.

Stay tuned here for Ken’s continuing MOM, MAVEN, Rosetta, Opportunity, Curiosity, Mars rover and more Earth and planetary science and human spaceflight news.

Ken Kremer

Clouds on the ground !  The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO
Clouds on the ground ! The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO

Australian Astronomy Envy: This Video Is Like A Telescope Brochure

A screenshot from "The Observatories", a video of mainly Australian astronomical observatories. Credit: Alex Cherney/Vimeo

Performing observations in Australia is on many astronomers’ bucket lists, and this video timelapse shows you precisely why. Famous, world-class observatories, dark sky and the beautiful desolation of the desert combine in this award-winning sequence shot by Alex Cherney and posted on Vimeo.

Cherney writes that the video “is the result of over three years of work” and was the winner of the 2014 STARMUS astrophotography competition. Here are the observatories that are featured:

  • Roque De Los Muchachos Observatory, La Palma;
  • Australian Square Kilometre Array Pathfinder, Murchison, Australia;
  • Australia Telescope Compact Array, Narrarbri, Australia;
  • Parkes Radio Observatory, Australia;
  • Siding Spring Observatory, Australia;
  • Mount John Observatory, New Zealand

James Webb Space Telescope’s Pathfinder Mirror Backplane Arrives at NASA Goddard for Critical Assembly Testing

Center section of the "pathfinder" (test) backplane of NASA's James Webb Space Telescope is hoisted into place in the assembly stand in NASA Goddard's giant cleanroom. Engineers will practice mirror installations over the next several months. Credit: NASA/Chris Gunn

The central piece of the “pathfinder” backplane that will hold all the mirrors for NASA’s James Webb Space Telescope (JWST) has arrived at the agency’s Goddard Space Flight Center in Maryland for critical assembly testing on vital parts of the mammoth telescope.

The pathfinder backplane arrived at Goddard in July and has now been hoisted in place onto a huge assembly stand inside Goddard’s giant cleanroom where many key elements of JWST are being assembled and tested ahead of the launch scheduled for October 2018.

The absolutely essential task of JWST’s backplane is to hold the telescopes 18 segment, 21-foot-diameter primary mirror nearly motionless while floating in the utterly frigid space environment, thereby enabling the telescope to peer out into deep space for precise science gathering measurements never before possible.

Over the next several months, engineers will practice installing two spare primary mirror segments and one spare secondary mirror onto the center part of the backplane.

JWST is being assembled here inside the world’s largest clean room at NASA Goddard Space Flight Center, Greenbelt, Md. Primary mirror segments stored in silver colored containers at top left. Technicians practice mirror installation on test piece of backplane (known as the BSTA or Backplane Stability Test Article) at center, 3 hexagonals.  Telescope assembly bays at right.  Credit: Ken Kremer- kenkremer.com
JWST pathfinder backplane has arrived here at NASA Goddard clean room.
JWST is being assembled here inside the world’s largest clean room at NASA Goddard Space Flight Center, Greenbelt, Md. Primary mirror segments stored in silver colored containers at top left. Technicians practice mirror installation on test piece of backplane (known as the BSTA or Backplane Stability Test Article) at center, 3 hexagonals. Pathfinder backplane has been hoisted into telescope assembly bays at right. Credit: Ken Kremer- kenkremer.com

The purpose is to gain invaluable experience practicing the delicate procedures required to precisely install the hexagonal shaped mirrors onto the actual flight backplane unit after it arrives.

The telescopes primary and secondary flight mirrors have already arrived at Goddard.

The mirrors must remained precisely aligned in space in order for JWST to successfully carry out science investigations. While operating at extraordinarily cold temperatures between -406 and -343 degrees Fahrenheit the backplane must not move more than 38 nanometers, approximately 1/1,000 the diameter of a human hair.

The backplane and every other component must function and unfold perfectly and to precise tolerances in space because JWST has not been designed for servicing or repairs by astronaut crews voyaging beyond low-Earth orbit into deep space, William Ochs, Associate Director for JWST at NASA Goddard told me in an interview during a visit to JWST at Goddard.

Watch this video showing movement of the pathfinder backplane into the Goddard cleanroom.

Video Caption: This is a time-lapse video of the center section of the ‘pathfinder’ backplane for NASA’s James Webb Space Telescope being moved into the clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA/Chris Gunn

The actual flight backplane is comprised of three segments – the main central segment and a pair of outer wing-like parts which will be folded over into launch configuration inside the payload fairing of the Ariane V ECA booster rocket. The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

Both the backplane flight unit and the pathfinder unit, which consists only of the center part, are being assembled and tested by prime contractor Northrop Grumman in Redondo Beach, California.

Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room.  Credit: Ken Kremer- kenkremer.com
Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room. Credit: Ken Kremer- kenkremer.com

The test unit was then loaded into a C-5, flown to the U.S. Air Force’s Joint Base Andrews in Maryland and unloaded for transport by trailer truck to NASA Goddard in Greenbelt, Maryland.

JWST is the successor to the 24 year old Hubble Space Telescope and will become the most powerful telescope ever sent to space.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.

Read my story about the recent unfurling test of JWST’s sunshade – here.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The Webb telescope backplane "pathfinder" or practice-model was unloaded from a C-5 aircraft at the U.S. Air Force's Joint Base Andrews in Maryland.   Image Credit:   NASA/Desiree Stover
The Webb telescope backplane “pathfinder” or practice-model was unloaded from a C-5 aircraft at the U.S. Air Force’s Joint Base Andrews in Maryland. Image Credit: NASA/Desiree Stover

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom.  Credit: NASA/ESA
Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

Coma Dust Collection Science starts for Rosetta at Comet 67P/Churyumov-Gerasimenko

Rosetta NAVCAM image taken on 10 August 2014 from a distance of about 110 km from comet 67P/Churyumov-Gerasimenko. The comet nucleus is about 4 km across. Credit: ESA/Rosetta/NAVCAM

With the historic arrival of the European Space Agency’s (ESA) Rosetta spacecraft at destination Comet 67P/Churyumov-Gerasimenko flawlessly accomplished on August 6, 2014 after a decade long journey, ground breaking up close science at this bizarre world has begun while the team diligently and simultaneously searches for a landing site for the attached Philae comet lander.

Rosetta started collecting cometary dust from the coma encircling the comet’s nucleus with the onboard COSIMA instrument on Sunday, August 10, 2014 as the spacecraft orbits around and ahead of the icy wanderer from a distance of approximately 100 kilometers (62 miles). See coma image below.

Hopes are high that unprecedented science discoveries await at this alien world described as a “Scientific Disneyland,” by Mark McCaughrean, senior scientific adviser to ESA’s Science Directorate, during ESA’s live arrival day webcast. “It’s just astonishing.”

COSIMA stands for Cometary Secondary Ion Mass Analyser and is one of Rosetta’s suite of 11 state-of-the-art science instruments with a combined mass of 165 kg.

Its purpose is to conduct the first “in situ” analysis of the grains of dust particles emitted from the comets nucleus and determine their physical and chemical characteristics, including whether they are organic or inorganic – in essence what is cometary dust material made of and how it differs from the surface composition.

COSIMA will collect the coma dust using 24 specially designed ‘target holders’ – the first of which was opened to study the comets environment on Aug. 10. Since the comet is not especially active right now, the team plans to keep the target holder open for at least a month and check the progress of any particle collections on a weekly basis.

COSISCOPE image of the first target taken on 19 July 2014 (before the exposure, on 10 August, for cometary dust collection). The 1x1 cm target consists of a gold plate covered with a thin layer (30 µm) of gold nanoparticles (“gold black”). Illumination is by two LEDs, from the right side in this case. The bright dots on the vertical strip on the right side are used for target identification and for defining the coordinate system. Credits: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S
COSISCOPE image of the first target taken on 19 July 2014 (before the exposure, on 10 August, for cometary dust collection). The 1×1 cm target consists of a gold plate covered with a thin layer (30 µm) of gold nanoparticles (“gold black”). Illumination is by two LEDs, from the right side in this case. The bright dots on the vertical strip on the right side are used for target identification and for defining the coordinate system. Credits: ESA/Rosetta/MPS for COSIMA Team MPS/CSNSM/UNIBW/TUORLA/IWF/IAS/ESA/BUW/MPE/LPC2E/LCM/FMI/UTU/LISA/UOFC/vH&S

In fact the team says the coma environment “is still comparable to a high-quality cleanroom”at this time.

But everyone expects that to change radically as Rosetta continues escorting Comet 67P as it loops around the sun, getting closer and warming the surface every day and until reaching perihelion in August 2015.

COSIMA is managed by the Max Planck Institute for Solar System Research (Max-Planck-Institut für Sonnensystemforschung ) in Katlenburg-Lindau, Germany, with Principal Investigator Martin Hilchenbach.

There are also substantial contributions from the Institut d’Astrophysique Spatiale in France, Finnish Meteorological Institute, Osterreichisches Forschungszentrum Seibersdorf and more.

The target holders measure about one square centimeter and were developed by the Universität der Bundeswehr in Germany.

Each of these targets measures one square centimeter and is comprised of a gold plate covered with a thin 30 µm layer of gold nanoparticles (“gold black”) which the team says should “decelerate and capture cometary dust particles impacting with velocities of ~100 m/s.”

The target will be illuminated by a pair of LED’s to find the dust particles. The particles will be analyzed by COSIMA’s built in mass spectrometer after being located on the target holder by the French supplied COSISCOPE microscopic camera and ionized by a beam of indium ions.

Photo of the COSIMA (Cometary Secondary Ion Mass Analyser) instrument on Rosetta.  Credit: Max Planck Institute for Solar System Research/ESA
Photo of the COSIMA (Cometary Secondary Ion Mass Analyser) instrument on Rosetta. Credit: Max Planck Institute for Solar System Research/ESA

The team expects any grains found on the first target to be analyzed by mid-September 2014.

“COSIMA uses the method of Secondary Ion Mass Spectrometry. They will be fired at with a beam of Indium ions. This will spark individual ions (we say secondary ions) from their surfaces, which will then be analysed with COSIMA’s mass spectrometer,” according to a description from the COSIMA team.

The mass spec has the capability to analyze the elemental composition in an atomic mass range of 1 to 4000 atomic mass units, determine isotopic abundances of some key elements, characterize organic components and functional groups, and conduct mineralic and petrographic characterization of the inorganic phases, all of which will inform as as never before about solar system chemistry.

Comets are leftover remnants from the formation of the solar system. Scientists believe they delivered a vast quantity of water to Earth. They may have also seeded Earth with organic molecules – the building blocks of life as we know it.

Any finding of organic molecules and their identification by COSIMA will be a major discovery for Rosetta and ESA and inform us about the origin of life on Earth.

Data obtained so far from Rosetta’s VIRTIS instrument indicates the comets surface is too hot to be covered in ice and must instead have a dark, dusty crust.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…….

Read my Rosetta series here:

What’s Ahead for Rosetta – ‘Finding a Landing Strip’ on Bizarre Comet 67P/Churyumov-Gerasimenko

Rosetta Arrives at ‘Scientific Disneyland’ for Ambitious Study of Comet 67P/Churyumov-Gerasimenko after 10 Year Voyage

Rosetta on Final Approach to Historic Comet Rendezvous – Watch Live Here

Rosetta Probe Swoops Closer to Comet Destination than ISS is to Earth and Reveals Exquisite Views

Rosetta Orbiter less than 500 Kilometers from Comet 67P Following Penultimate Trajectory Burn

Rosetta Closing in on Comet 67P/Churyumov-Gerasimenko after Decade Long Chase

ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA   Collage/Processing: Marco Di Lorenzo/Ken Kremer
ESA’s Rosetta Spacecraft nears final approach to Comet 67P/Churyumov-Gerasimenko in late July 2014. This collage of imagery from Rosetta combines Navcam camera images at right taken nearing final approach from July 25 (3000 km distant) to July 31, 2014 (1327 km distant), with OSIRIS wide angle camera image at left of comet’s expanding coma cloud on July 25. Images to scale and contrast enhanced to show further detail. Credit: ESA/Rosetta/NAVCAM/OSIRIS/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA Collage/Processing: Marco Di Lorenzo/Ken Kremer

Photo Gallery: Step Right Up And Tour Rosetta’s Comet! Where Shall We Land?

A picture of Comet 67P/Churyumov-Gerasimenko. Credit: ESA/Rosetta/NAVCAM

What’s one of the first things you do when arriving at a new destination? Likely it would be scoping out the local neighborhood. Getting a sense of its terrain and the good things to do around there.

That’s part of what Rosetta’s team is working on since arriving at its comet early in the morning of Aug. 6 (Eastern time). While only a few pictures have been beamed back to the public so far of Comet 67P/Churyumov-Gerasimenko, the glimpses of its surface are tantalizing. Which is important, because a little spacecraft is on its way there.

As the team busily calibrates its instruments and snaps pictures of the surface, one of their first tasks will be to pick a landing site for Philae, the machine that is scheduled to leave Rosetta and actually touch softly down on the surface in November. This is the first time such a soft-landing has been attempted, and it’s been a long decade of waiting for the scientists who sent the two spacecraft on their way.

Picking a spot will be difficult for the team, they explained last week. The gravity is light and the terrain is not only difficult to navigate, but also hard to choose from. Would you prefer a crater or a cliff? That will be what science investigators will examine in the coming months.

As they do that, check out the latest pictures of the comet in the gallery below.

A view of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft on Aug. 9, 2014. Credit: ESA/Rosetta/NAVCAM
A view of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft on Aug. 9, 2014. Credit: ESA/Rosetta/NAVCAM
A dark hollow beckons in this picture of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft Aug. 5, 2014. Credit:  ESA/Rosetta/NAVCAM
A dark hollow beckons in this picture of Comet 67P/Churyumov-Gerasimenko taken by the Rosetta spacecraft Aug. 5, 2014. Credit: ESA/Rosetta/NAVCAM
The Rosetta spacecraft captured the "rubbe duckie" shape of Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014. Credit: ESA/Rosetta/NAVCAM
The Rosetta spacecraft captured the “rubbe duckie” shape of Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014. Credit: ESA/Rosetta/NAVCAM
The mottled surface of Comet 67P/Churyumov-Gerasimenko beckons in this picure taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/NAVCAM
The mottled surface of Comet 67P/Churyumov-Gerasimenko beckons in this picure taken by the Rosetta spacecraft on Aug. 7, 2014. Credit: ESA/Rosetta/NAVCAM