Moon’s Insides Still Hot, Hot, Hot After Billions Of Years Of Formation: Study

Artist's conception of the internal environment of the moon. Credit: NAOJ

Rather than being dead inside, the Moon still has a warm interior that is due to the effect of the Earth’s gravity on our closest major celestial neighbor, a new study says. The results came after looking at results from the SELENE (SELenological and ENgineering Explorer) spacecraft as well as other missions exploring the Moon.

“I believe that our research results have brought about new questions. For example, how can the bottom of the lunar mantle maintain its softer state for a long time? To answer this question, we would like to further investigate the internal structure and heat-generating mechanism inside the Moon in detail,” stated Yuji Harada, the principal investigator of the research team.

“Another question has come up: How has the conversion from the tidal energy to the heat energy in the soft layer affected the motion of the Moon relative to the Earth, and also the cooling of the Moon?” he added. “We would like to resolve those problems as well so that we can thoroughly understand how the Moon was born and has evolved.”

A diagram of the moon's interior showing its viscosity (the thickness of its interior liquid) as well as parameters of its internal density. Credit: NAOJ
A diagram of the moon’s interior showing its viscosity (the thickness of its interior liquid) as well as parameters of its internal density. Credit: NAOJ

Clues to the Moon’s interior come from examining how the Earth’s gravity deforms its inside through tidal forces. Models show that tidal changes within the moon are likely due to a “soft layer” deep within the lunar mantle. Scientists learned that the Moon has a core (inner portion, made up of metal) and a mantle (made up of rock) through the Apollo missions, which saw astronauts deploy seismic devices that revealed the interior structure.

“The previous studies indicated that there is the possibility that a part of the rock at the deepest part inside the lunar mantle may be molten. This research result supports the above possibility since partially molten rock becomes softer,” the National Astronomical Observatory of Japan stated. “This research has proven for the first time that the deepest part of the lunar mantle is soft, based upon the agreement between observation results and the theoretical calculations.”

Researchers believe the heat occurs in a soft layer that is deep within the mantle, and not throughout the entire Moon. They said that possible future research directions could include why it is only this layer that remains soft, and how tidal energy changes the Moon’s cooling and its relative motion to Earth.

The research was published in Nature Geoscience.

Source: National Astronomical Observatory of Japan

Annual Atlanta Star Party Coming Soon!

The 2012 Atlanta Star Party. Credit: Bruce Press

If you happen to be attending DragonCon or just live near Atlanta, come and listen to some fantastic speakers and help do astronomy research and education at the Annual Atlanta Star Party!

What: Since 2009, this annual charity event celebrates science and space, and brings people together for a great cause.

When: August 28, 2014, 7:00 p.m.

Pamela Gay and the crew at the 2013 Atlanta Star Party. Credit: Bruce Press
Pamela Gay and the crew at the 2013 Atlanta Star Party. Credit: Bruce Press

Who: Astronomers Pamela Gay, Nicole Gugliucci and Derek Demeter will be speaking at the event.

Where: The Emory University Math and Physics Department hosts the celebration at The Emory Math & Science Center, 400 Dowman Drive, Atlanta, GA 30322.

Why: Proceeds from the Star Party go to the Alzheimer’s Foundation of America and CosmoQuest. And, as always, we throw this party in memory of Jeff Medkeff, the “Blue-Collar Scientist.”

Family fun at the 2012 Atlanta Star Party. Credit: Bruce Press.
Family fun at the 2013 Atlanta Star Party. Credit: Bruce Press.

Tickets can be bought at http://atlantastarparty.com/tickets/ and you can share the promo code STARRY2014 for $5 off.

There is also a silent auction already started at: http://atlantastarparty.com/silent-auction/

NASA Spacecraft Is Now Buzzing Mercury 62 Miles Above The Surface

Artist's conception of NASA's MESSENGER spacecraft above Mercury. Credit: JHUAPL

Look out below! NASA’s MESSENGER spacecraft is at its lowest altitude of any spacecraft above Mercury, and over the next couple of months it’s going to get even lower above the planet.

The spacecraft — whose name stands for MErcury Surface, Space ENvironment, GEochemistry, and Ranging — is doing a close shave above the sun’s closest planet to look at the polar ice and its gravity and magnetic fields.

“This dip in altitude is allowing us to see Mercury up close and personal for the first time,” stated Ralph McNutt, the project scientist for MESSENGER at the Johns Hopkins University Applied Physics Laboratory (APL).

MESSENGER is the first-ever mission to orbit Mercury. It arrived at the planet in March 2011 and has now spent three Earth years or 14 Mercury years examining the cratered planet and its environment. The campaign has revealed many secrets about Mercury, ranging from the discovery of ice deposits to changes in its tenuous atmosphere due to the Sun.

The spacecraft made its lowest approach above the planet on July 25, at 62 miles (100 kilometers) and will keep moving lower due to “progressive changes” in its orbit, APL stated. By Aug. 19, the minimum altitude will be 50 km (31 miles), and then the closet approach will be on Sept. 12 at 25 km (16 miles).

After that, the team will temporarily raise the spacecraft’s orbit again before it makes a planned impact on the planet’s surface in March 2015. The NASA mission is operated and managed by Johns Hopkins University.

Credit: Johns Hopkins University Applied Physics Laboratory

Feel The Heat! New Mars Map Shows Differences Between Bedrock And Sand

An impact crater on Mars called Graterri, which is only 4.3 miles (6.9 km) in diameter, shines in a global heat map of the Red Planet produced in 2014. Credit: NASA/JPL-Caltech/Arizona State University

For years, NASA’s Mars Odyssey has been working on some night moves. It’s been taking pictures of the Red Planet during nighttime — more than 20,000 in all — to see how the planet’s heat signature looks while the sun is down.

The result is the highest-resolution map ever of the thermal properties of Mars, which you can see here. Why is this important? Researchers say it helps tell the story about things such as if an area is shrouded with dust, where bare bedrock is, and whether sediments in a crater are packed tight or floating freely.

“Darker areas in the map are cooler at night, have a lower thermal inertia and likely contain fine particles, such as dust, silt or fine sand,” stated Robin Fergason at the USGS Astrogeology Science Center in Arizona, who led the map’s creation. Brighter areas are warmer, likely yielding regions of bedrock, crust or coarse sand.

The map from Odyssey’s Thermal Emission Imaging System (THEMIS) is also used for a more practical purpose: deciding where to set down NASA’s next Mars mission.

After assisting in landing site selection for the Curiosity mission, the THEMIS data will be used to figure out where the Mars 2020 rover will be placed, Arizona State University stated.

You can check out more recent THEMIS images (updated daily) on this website.

Source: Arizona State University

Merging Giant Galaxies Sport ‘Blue Bling’ in New Hubble Pic

In this new Hubble image shows two galaxies (yellow, center) from the cluster SDSS J1531+3414 have been found to be merging into one and a "chain" of young stellar super-clusters are seen winding around the galaxies'?? nuclei. The galaxies are surrounded by an egg-shaped blue ring caused by the immense gravity of the cluster bending light from other galaxies beyond it. Credit: NASA/ESA/Grant Tremblay

On a summer night, high above our heads, where the Northern Crown and Herdsman meet, a titanic new galaxy is being born 4.5 billion light years away. You and I can’t see it, but astronomers using the Hubble Space Telescope released photographs today showing the merger of two enormous elliptical galaxies into a future  heavyweight adorned with a dazzling string of super-sized star clusters. 

The two giants, each about 330,000 light years across or more than three times the size of the Milky Way, are members of a large cluster of galaxies called SDSS J1531+3414. They’ve strayed into each other’s paths and are now helpless against the attractive force of gravity which pulls them ever closer.

A few examples of merging galaxies. NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)
A few examples of merging galaxies. NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), K. Noll (STScI), and J. Westphal (Caltech)

Galactic mergers are violent events that strip gas, dust and stars away from the galaxies involved and can alter their appearances dramatically, forming large gaseous tails, glowing rings, and warped galactic disks. Stars on the other hand, like so many pinpoints in relatively empty space, pass by one another and rarely collide.

Elliptical galaxies get their name from their oval and spheroidal shapes. They lack the spiral arms, rich reserves of dust and gas and pizza-like flatness that give spiral galaxies like Andromeda and the Milky Way their multi-faceted character. Ellipticals, although incredibly rich in stars and globular clusters, generally appear featureless.

The differences between elliptical and spiral galaxies is easy to see. M87 at left and M74, both photographed with the Hubble Space Telescope. Credit: NASA/ESA
The differences between elliptical and spiral galaxies is easy to see. M87 at left and M74, both photographed with the Hubble Space Telescope. What look like stars around M87 are really globular star clusters. Credit: NASA/ESA

But these two monster ellipticals appear to be different. Unlike their gas-starved brothers and sisters, they’re rich enough in the stuff needed to induce star formation. Take a look at that string of blue blobs stretching across the center – astronomers call it a great example of ‘beads on a string’ star formation. The knotted rope of gaseous filaments with bright patches of new star clusters stems from the same physics which causes rain or water from a faucet to fall in droplets instead of streams. In the case of water, surface tension makes water ‘snap’ into individual droplets; with clouds of galactic gas, gravity is the great congealer.

Close up of the two elliptical galaxies undergoing a merger. The blue blobs are giant star clusters forming from gas colliding and collapsing into stars during the merger. Click for the scientific paper on the topic. Credit: NASA/ESA/Grant Tremblay
Close up of the two elliptical galaxies undergoing a merger. The blue blobs are giant star clusters forming from gas colliding and collapsing into stars during the merger. Click to read the scientific paper on the topic. Credit: NASA/ESA/Grant Tremblay

Nineteen compact clumps of young stars make up the length of this ‘string’, woven together with narrow filaments of hydrogen gas. The star formation spans 100,000 light years, about the size of our galaxy, the Milky Way. Astronomers still aren’t sure if the gas comes directly from the galaxies or has condensed like rain from X-ray-hot halos of gas surrounding both giants.

The blue arcs framing the merger have to do with the galaxy cluster’s enormous gravity, which warps the fabric of space like a lens, bending and focusing the light of more distant background galaxies into curvy strands of blue light. Each represents a highly distorted image of a real object.


Simulation of the Milky Way-Andromeda collision 4 billion years from now

Four billion years from now, Milky Way residents will experience a merger of our own when the Andromeda Galaxy, which has been heading our direction at 300,000 mph for millions of years, arrives on our doorstep. After a few do-si-dos the two galaxies will swallow one another up to form a much larger whirling dervish that some have already dubbed ‘Milkomeda’. Come that day, perhaps our combined galaxies will don a string a blue pearls too.

‘Vulnerable’ Earth-Like Planets Could Survive With Friction: Study

Flexible planets: NASA is studying how planets in eccentric orbits flex due to tidal forces. At left is a planet with a thick ice shell, and at right a terrestrial-type planet. Credit: NASA's Goddard Space Flight Center

If you’re a potentially habitable world orbiting in a zone where liquid water can exist — and then a rude gas giant planet happens to disturb your orbit — that could make it difficult or impossible for life to survive.

But even in the newly eccentric state, a new study based on simulations shows that the orbit can be made more circular again quite quickly, taking only a few hundred thousand years to accomplish. The key is the tidal forces the parent star exerts on the planet as it moves in its orbit, flexing the interior and slowing the planet down to a circular orbit.

“We found some unexpected good news for planets in vulnerable orbits,” stated Wade Henning, a University of Maryland scientist who led the work and who is working at NASA’s Goddard Space Flight Center in Maryland. “It turns out these planets will often experience just enough friction to move them out of harm’s way and into safer, more-circular orbits more quickly than previously predicted.

The transition period wouldn’t be pretty, since NASA states the planets “would be driven close to the point of melting” or have a “nearly melted layer” on them. The interior could also host magma oceans, depending on how intense the friction is. But a softer planet flexes more easily, allowing it to generate heat, bleed that energy off into space and gradually settle into a circular orbit. When tidal heating ceases, then life could possibly take hold.

This artists' rendition shows a super-Earth, or low mass exoplanet, orbiting close to its parent star. Credit:  Keck Observatory
This artists’ rendition shows a super-Earth, or low mass exoplanet, orbiting close to its parent star. Credit: Keck Observatory

Another possibility is the eccentric orbit itself may be enough to keep life happy, at least for a while. If the planet is colder and stiffer, and orbiting far from its star, it’s possible the tidal flexing would serve as an energy source for life to survive.

Think of a situation like Europa near Jupiter, where some scientists believe the moon could have a subsurface ocean heated by interactions with the gas giant.

The model covers planets that are between the size of Earth and 2.5 times larger, and future studies will aim to see how layers in the planet change over time.

Source: NASA

Something In Big Dipper ‘Blob’ Is Sending Out Cosmic Rays, Study Says

A map of cosmic ray concentrations in the northern sky, showing a "hotspot" (red) in the location of the Big Dipper. Credit: K. Kawata, University of Tokyo Institute for Cosmic Ray Research

Behind the Big Dipper is something pumping out a lot of extremely high-energy cosmic rays, a new study says. And as astronomers try to learn more about the nature of these emanations — maybe black holes, maybe supernovas — newer work hints that it could be related to how the universe is structured.

It appears that the particles come from spots in the cosmos where matter is densely packed, such as in “superclusters” of galaxies, the researchers stated, adding this is promising progress for tracking down the source of the cosmic rays.

“This puts us closer to finding out the sources – but no cigar yet,” stated University of Utah physicist Gordon Thomson, co-principal investigator for the Telescope Array that performed the observations. “All we see is a blob in the sky, and inside this blob there is all sorts of stuff – various types of objects – that could be the source,” he added. “Now we know where to look.”

The study examined the highest-energy cosmic rays that are about 57 billion billion electron volts (5.7 times 10 to the 19th power), picking that type because it is the least affected by magnetic field lines in space. As cosmic rays interact with the magnetic field lines, it changes their direction and thus makes it harder for researchers to figure out where they came from.

Astrophoto: Ursa Major and Big Dipper Among the Red Clouds by Rajat Sahu
Ursa Major and Big Dipper Among the Red Clouds. Credit: Rajat Sahu

Scientists used a set of 500 detectors called the Telescope Array, which is densely packed in a 3/4 mile (1.2 kilometer) square grid in the desert area of Millard County, Utah. The array recorded 72 cosmic rays between May 11, 2008 and May 4, 2013, with 19 of those coming from the “hotspot” — a circle 40 degrees in diameter taking up 6% of the sky. (Researchers are hoping for funding for an expansion to probe this area in more detail.)

It’s possible the hotspot could be a fluke, but not very possible, the researchers added: there’s a 1.4 in 10,000 chance. And they’re keeping themselves open to many types of sources: “Besides active galactic nuclei and gamma ray emitters, possible sources include noisy radio galaxies, shock waves from colliding galaxies and even some exotic hypothetical sources such as the decay of so-called ‘cosmic strings’ or of massive particles left over from the big bang that formed the universe 13.8 billion years ago,” the researchers stated.

Cosmic rays were first discovered in 1912 and are believed to be hydrogen nuclei or the centers of nuclei from heavier elements like iron or oxygen. The highest-energy ones in the study may come from protons alone, but that’s not clear yet.

The paper is available in preprint version on Arxiv, and has been accepted for publication in Astrophysical Journal Letters.

Source: University of Utah

Virtual Summer Camp Alert! Maker Camp Kicks Off Today

Logo for MakerCamp.

If you’re a high school student who’s really into space, Maker Camp bills itself as a great spot for you to get involved. Every summer, the organization runs a virtual summer camp for six weeks, encouraging people to build fun things such as glowing bikes and stroboscopes.

The festivities kick off today with a field trip: “Join us for a truly stellar Hangout as we launch Maker Camp live from +New York Hall of Science. We’ll be joined by Apollo astronaut Buzz Aldrin, and the folks at NASA Goddard Space Flight Center will share their dreams for the future of space exploration,” Maker Camp wrote on its event page.

You can watch the event at 2 p.m. EDT (6 p.m. UTC) below! .

Maker Camp is a collaboration of Make Magazine and Google+, and runs daily from today to Aug. 15 at 2 p.m. EDT (6 p.m. UTC). Joining is completely free and is targeted to students between ages 13 to 18; younger students can also participate as long as they have access to (and permission from) an adult’s Google+ account.

Mars One Soliciting Your Research Ideas for 2018 Robotic Red Planet Lander

Mars One proposes Phoenix-like lander for first privately funded mission to the Red Planet slated to blastoff in 2018. This film solar array experiment would provide additional power. Credit: Mars One

Would you like to send your great idea for a research experiment to Mars and are searching for a method of transport?

The Mars One non-profit foundation that’s seeking settlers for a one-way trip to establish a permanent human colony on the Red Planet starting in the mid-2020’s, is now soliciting science and marketing proposals in a worldwide competition for their unmanned forerunner mission – the 2018 Mars One technology demonstration lander.

The Dutch-based Mars One team announced this week that they are seeking requests for proposals for seven payloads that would launch in August 2018 on humanities first ever privately financed robotic Red Planet lander.

Mars One hopes that the 2018 lander experiments will set the stage for liftoff of the first human colonists in 2024. Crews of four will depart every two years.

Artist's conception of Mars One human settlement. Credit: Mars One/Brian Versteeg
Artist’s conception of Mars One human settlement. Credit: Mars One/Brian Versteeg

The 2018 lander structure would be based on NASA’s highly successful 2007 Phoenix Mars lander – built by Lockheed Martin – which discovered and dug into water ice buried just inches beneath the topsoil in the northern polar regions of the Red Planet.

Mars One has contracted with Lockheed Martin to build the new 2018 lander.

Lockheed is also currently assembling another Phoenix-like lander for NASA named InSight which is scheduled to blast off for Mars in 2016.

The payloads being offered fall under three categories; four science demonstration payloads, a single university science experiment, and two payload spaces up for sale to the highest bidder for science or marketing or “anything in between.”

The science payload competition is open to anyone including universities, research bodies, and companies from around the world.

“Previously, the only payloads that have landed on Mars are those which NASA has selected,” said Bas Lansdorp, Co-founder & CEO of Mars One, in a statement. “We want to open up the opportunity to the entire world to participate in our mission to Mars by sending a certain payload to the surface of Mars.”

The four science demonstration payloads will test some of the technologies critical for establishing the future human settlement. They include soil acquisition experiments to extract water from the Martian soil into a useable form to test technologies for future human colonists; a thin film solar panel to demonstrate power production; and a camera system working in combination with a Mars-synchronous communications satellite to take a ‘real time’ look on Mars.

3 Footpads of Phoenix Mars Lander atop Martian Ice.  Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars InSight mission will build a new Phoenix-like lander from scratch to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute
3 Footpads of Phoenix Mars Lander atop Martian Ice
Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars One 2018 mission will build a new Phoenix-like lander from scratch to test technologies for extracting water into a useable form for future human colonists. NASA’s InSight 2016 mission will build a new Phoenix-like lander to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute

The single University competition payload is open to universities worldwide and “can include scientific experiments, technology demonstrations or any other exciting idea.” Click here for – submission information.

Furthermore two of the payloads are for sale “to the highest bidder” says Mars One in a statement and request for proposals document.

The payloads for sale “can take the form of scientific experiments, technology demonstrations, marketing and publicity campaigns, or any other suggested payload,” says Mars One.

“We are opening our doors to the scientific community in order to source the best ideas from around the world,” said Arno Wielders, co-founder and chief technical officer of Mars One.

Image shows color MOLA relief with US lander landing sites (Image credit NASA/JPL-Caltech/Arizona State University). Yellow box indicates Mars One Precursor landing regions under consideration.
Image shows color MOLA relief with US lander landing sites (Image credit NASA/JPL-Caltech/Arizona State University). Yellow box indicates Mars One Precursor landing regions under consideration.

“The ideas that are adopted will not only be used on the lander in 2018, but will quite possibly provide the foundation for the first human colony on Mars. For anyone motivated by human exploration, there can be no greater honor than contributing to a manned mission to Mars.”

Click here for the Mars One 2018 Lander ‘Request for Proposals.’

Over 200,000 Earthlings applied to Mars One to become future human colonists. That list has recently been narrowed to 705.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

…………….

Learn more about NASA’s Mars missions and Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA in July and more about SpaceX, Boeing and commercial space and more at Ken’s upcoming presentations.

July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

NASA’s Carbon Observatory Blasts off on Workhorse Delta II to Measure Carbon Dioxide Greenhouse Gas and Watch Earth Breathe

The Orbiting Carbon Observatory-2, NASA's first mission dedicated to studying carbon dioxide in Earth's atmosphere, lifts off from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014 on a Delta II rocket. The two-year mission will help scientists unravel key mysteries about carbon dioxide. Credit: NASA/Bill Ingalls

The Orbiting Carbon Observatory-2, NASA’s first mission dedicated to studying carbon dioxide in Earth’s atmosphere, lifts off from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014 on a Delta II rocket. The two-year mission will help scientists unravel key mysteries about carbon dioxide. Credit: NASA/Bill Ingalls
Story updated[/caption]

Following a nearly three-year long hiatus, the workhorse Delta II rocket successfully launched NASA’s first spacecraft dedicated to watching Earth breathe by studying Earth’s atmospheric carbon dioxide (CO2) – the leading human-produced greenhouse gas and the principal human-produced driver of climate change.

The Orbiting Carbon Observatory-2 (OCO-2) raced to orbit earlier this morning, during a spectacular nighttime blastoff at 2:56 a.m. PDT (5:56 a.m. EDT), Tuesday, July 2, 2014, from Vandenberg Air Force Base, California, atop a United Launch Alliance Delta II rocket.

The flawless launch marked the ‘return to flight’ of the venerable Delta II and was broadcast live on NASA TV.

Blastoff of NASA’s Orbiting Carbon Observatory-2 dedicated to studying carbon dioxide in Earth's atmosphere, from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014. Credit: Robert Fisher/America/Space
Blastoff of NASA’s Orbiting Carbon Observatory-2 dedicated to studying carbon dioxide in Earth’s atmosphere, from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014. Credit: Robert Fisher/America/Space

A camera mounted on the Delta II’s second stage captured a breathtaking live view of the OCO-2 spacecraft during separation from the upper stage, which propelled it into an initial 429-mile (690-kilometer) orbit.

The life giving solar arrays were unfurled soon thereafter and NASA reports that the observatory is in excellent health.

“Climate change is the challenge of our generation,” said NASA Administrator Charles Bolden in a statement.

“With OCO-2 and our existing fleet of satellites, NASA is uniquely qualified to take on the challenge of documenting and understanding these changes, predicting the ramifications, and sharing information about these changes for the benefit of society.”

NASA's Orbiting Carbon Observatory-2, or OCO-2, inside the payload fairing in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket, scheduled for 5:56 a.m. EDT on July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate.   Credit: NASA/30th Space Wing USAF
NASA’s Orbiting Carbon Observatory-2, or OCO-2, inside the payload fairing in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket, which occurred at 5:56 a.m. EDT on July 2. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Credit: NASA/30th Space Wing USAF

Over the next three weeks the OCO-2 probe will undergo a thorough checkout and calibration process. It will also be maneuvered into a 438-mile (705-kilometer) altitude, near-polar orbit where it will become the lead science probe at the head of the international Afternoon Constellation, or “A-Train,” of Earth-observing satellites.

“The A-Train, the first multi-satellite, formation flying “super observatory” to record the health of Earth’s atmosphere and surface environment, collects an unprecedented quantity of nearly simultaneous climate and weather measurements,” says NASA.

Science operations begin in about 45 days.

The 999 pound (454 kilogram) observatory is the size of a phone booth.

OCO-2 is equipped with a single science instrument consisting of three high-resolution, near-infrared spec¬trometers fed by a common telescope. It will collect global measurements of atmospheric CO2 to provide scientists with a better idea of how CO2 impacts climate change and is responsible for Earth’s warming.

OCO-2 poster. Credit: ULA/NASA
OCO-2 poster. Credit: ULA/NASA

During a minimum two-year mission the $467.7 million OCO-2 will take near global measurements to locate the sources and storage places, or ‘sinks’, for atmospheric carbon dioxide, which is a critical component of the planet’s carbon cycle.

OCO-2 was built by Orbital Sciences as a replacement for the original OCO which was destroyed during the failed launch of a Taurus XL rocket from Vandenberg back in February 2009 when the payload fairing failed to open properly and the spacecraft plunged into the ocean.

The OCO-2 mission will provide a global picture of the human and natural sources of carbon dioxide, as well as their “sinks,” the natural ocean and land processes by which carbon dioxide is pulled out of Earth’s atmosphere and stored, according to NASA.

“This challenging mission is both timely and important,” said Michael Freilich, director of the Earth Science Division of NASA’s Science Mission Directorate in Washington.

“OCO-2 will produce exquisitely precise measurements of atmospheric carbon dioxide concentrations near Earth’s surface, laying the foundation for informed policy decisions on how to adapt to and reduce future climate change.”

It will record around 100,000 precise individual CO2 measurements around the worlds entire sunlit hemisphere every day and help determine its source and fate in an effort to understand how human activities impact climate change and how we can mitigate its effects.

At the dawn of the Industrial Revolution, there were about 280 parts per million (ppm) of carbon dioxide in Earth’s atmosphere. As of today the CO2 level has risen to about 400 parts per million.

“Scientists currently don’t know exactly where and how Earth’s oceans and plants have absorbed more than half the carbon dioxide that human activities have emitted into our atmosphere since the beginning of the industrial era,” said David Crisp, OCO-2 science team leader at NASA’s Jet Propulsion Laboratory in Pasadena, California, in a statement.

“Because of this, we cannot predict precisely how these processes will operate in the future as climate changes. For society to better manage carbon dioxide levels in our atmosphere, we need to be able to measure the natural source and sink processes.”

OCO-2 is the second of NASA’s five new Earth science missions planned to launch in 2014 and is designed to operate for at least two years during its primary mission. It follows the successful blastoff of the joint NASA/JAXA Global Precipitation Measurement (GPM) Core Observatory satellite on Feb 27.

Prelaunch view of NASA’s Orbiting Carbon Observatory-2 and United Launch Alliance Delta II rocket unveiled at  Space Launch Complex 2 at Vandenberg Air Force Base in California. Credit: Robert Fisher/America/Space
Prelaunch view of NASA’s Orbiting Carbon Observatory-2 and United Launch Alliance Delta II rocket unveiled at Space Launch Complex 2 at Vandenberg Air Force Base in California. Credit: Robert Fisher/America/Space

The two stage Delta II 7320-10 launch vehicle is 8 ft in diameter and approximately 128 ft tall and was equipped with a trio of first stage strap on solid rocket motors. This marked the 152nd Delta II launch overall and the 51st for NASA since 1989.

The last time a Delta II rocket flew was nearly three years ago in October 2011 from Vandenberg for the Suomi National Polar-Orbiting Partnership (NPP) weather satellite.

The final Delta II launch from Cape Canaveral on Sept. 10, 2011 boosted NASA’s twin GRAIL gravity mapping probes to the Moon.

The next Delta II launch later this year from Vandenberg involves NASA’s Soil Moisture Active Passive (SMAP) mission and counts as another of NASA’s five Earth science missions launching in 2014.

Stay tuned here for Ken’s continuing OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer