Curiosity Beams 1st Color Image from Mars

Image caption: This murky view from Curiosity shows the martian landscape looking north to the rim from inside the Gale Crater landing site and is her first color image beamed back to Earth. It’s murky because the dust cover is still attached. See full MAHLI image below. Also see below full res Hazcam image of crater rim. Credit: NASA/JPL-Caltech/Malin Space Science Systems

NASA’s Curiosity Mars rover has beamed back her first color view since touchdown, showing a view of the alien landscape pointing northward towards the eroded rim of Gale crater.

The picture was snapped by the rovers Mars Hand Lens Imager (MAHLI) camera on the afternoon of the first day after the pinpoint landing – signified as Sol 1 on Aug. 6, 2012.

The MAHLI image looks murky because the protective dust cover is still in place and is coated with a film of martian dust sprayed up by the descent retrorockets during the terminal phase of the hair-raising landing on Aug 5/6.

The camera’s dust cover is intentionally transparent so that initial images can still be snapped through the cover before it’s popped off in about a week.

MAHLI is located on the turret at the end of the rover’s 8 foot long robot arm which has been stowed in place on the front left side of Curiosity since long before the Nov. 26 liftoff from Cape Canaveral, Florida.

In the stowed position, MAHLI is rotated about 30 degrees as seen in the image below. The top image has been rotated to correct for the tilt and shows the sky “up” as Curiosity is actually sitting on the Martian surface.


Image caption: This full frame view from Curiosity shows the martian landscape looking north to the rim from inside the Gale Crater landing site and is her first color image beamed back to Earth. It’s murky because the dust cover is still attached. The image is from the MAHLI camera on the robot arm and currently in the stowed position. It has been rotated 30 degress. Credit: NASA/JPL-Caltech/Malin Space Science Systems

During her 2 year prime mission, Curiosity’s goal is to determine if Mars was ever capable of supporting microbial life, past or present and to search for the signs of life in the form of organic molecules with a payload of 10 science instruments weighing 15 times more than any prior roving vehicle.

Curiosity is the 3rd generation of NASA rover’s delivered to the Red Planet

Ken Kremer

Image Caption: Looking Back at the Crater Rim – This is the full-resolution version of one of the first images taken by a rear Hazard-Avoidance camera on NASA’s Curiosity rover, which landed on Mars the evening of Aug. 5 PDT (morning of Aug. 6 EDT). The image was originally taken through the “fisheye” wide-angle lens, but has been “linearized” so that the horizon looks flat rather than curved. The image has also been cropped. A Hazard-avoidance camera on the rear-left side of Curiosity obtained this image. Part of the rim of Gale Crater, which is a feature the size of Connecticut and Rhode Island combined, stretches from the top middle to the top right of the image. One of the rover’s 20 inch wide wheels can be seen at bottom right. Image credit: NASA/JPL-Caltech

Curiosity’s Dramatic MARDI Descent Movie

Image Caption: Curiosity Heat shield falls away from the bottom of Curiosity and the Sky Crane descent stage in this image from the MARDI camera.
Watch the video below. Credit: NASA/JPL/MSSS

As NASA’s Curiosity Mars Science Lab (MSL) was in the final stages of her flawless but harrowing decent to Gale Crater on Mars overnight (Aug. 5/6) employing the never-before-used rocket powered sky crane descent stage, dramatic movie-like imagery of the plunge was being recorded by MARDI, the Mars Descent Imager camera positioned on the belly of the rover and pointed downwards.

The first low resolution MARDI images and video (above and below) were beamed back to Earth just hours after landing and clearly show the jettisoning of the heat shield moments after it sprung loose to expose Curiosity and MARDI for landing.

“We see the heat shield falling away about 2 minutes and 30 seconds from touchdown,” said Mike Malin, MARDI Principal Investigator from Malin Space Systems at a post-landing news briefing today (Aug. 6). “The heat shield is about 16 meters (50 ft) away in the image and 4.5 m (15 ft) across.”

“I’m very excited to be at Gale Crater”.

“So far we have received about 297 thumbnail images (192 x 144 pixels) so far and created a stop motion video. MADRI was collecting images at 4 frames per second. In the final frames you can see dust being kicked up the rocket engines.”
Curiosity landed at 1:32 on Aug. 6, EDT (11:32 p.m. Aug. 5, PDT), near the foot of a mountain three miles(5 km) tall inside Gale Crater, 96 miles (154 km) in diameter.

Video Caption: The Curiosity Mars Descent Imager (MARDI) captured the rover’s descent to the surface of the Red Planet. The instrument shot 4 fps video from heatshield separation to the ground. Credit: NASA/JPL/MSSS

“The image sequence received so far indicates Curiosity had, as expected, a very exciting ride to the surface,” said Mike Malin, imaging scientist for the Mars Science Lab mission from Malin Space Systems in San Diego. “But as dramatic as they are, there is real other-world importance to obtaining them. These images will help the mission scientists interpret the rover’s surroundings, the rover drivers in planning for future drives across the surface, as well as assist engineers in their design of forthcoming landing systems for Mars or other worlds.”

“A good comparison is to that grainy onboard film from Apollo 11 when they were about to land on the moon,” said Malin.

Over 1500 hundred more low and high resolution MARDI images (1600 x 1200 pixels) will be sent back over the next few weeks to make a full frame animation and will provide the most complete and dramatic imagery of a planetary landing in the history of exploration.

The team has been able to determine Curiosity’s location to “within” about 1 meter says Malin, by matching the MARDI and MRO HiRISE images as well as the Hazcam images.

“So far the rover is healthy and we are ecstatic with its performance,” said Jennifer Trospher, MSL mission manager

The next steps are to deploy the high gain antenna (HGA), raise the mast with the higher resolution cameras and continue to check out the mechanical and electrical systems as well the science instruments as the rover is transitioned to surface operations mode.

Ken Kremer

President Obama Hails NASA Curiosity rover landing on Mars

Image Caption: Landing ellipse for Curiosity rover inside Gale Crater at the foot of Mount Sharp on Mars and will attempt to climb the mountain later in the mission. Credit: NASA

US President Barack Obama hailed the spectacular landing success of NASA’s Curiosity rover on Aug. 6 inside Gale Crater and eagerly awaits the discoveries to come. More accolades for Curiosity and the rover team are pouring in from all across the globe.

The White House issued the following statement:

Statement by the President on Curiosity Landing on Mars

“Tonight, on the planet Mars, the United States of America made history.

The successful landing of Curiosity – the most sophisticated roving laboratory ever to land on another planet – marks an unprecedented feat of technology that will stand as a point of national pride far into the future. It proves that even the longest of odds are no match for our unique blend of ingenuity and determination.

Tonight’s success, delivered by NASA, parallels our major steps forward towards a vision for a new partnership with American companies to send American astronauts into space on American spacecraft. That partnership will save taxpayer dollars while allowing NASA to do what it has always done best – push the very boundaries of human knowledge. And tonight’s success reminds us that our preeminence – not just in space, but here on Earth – depends on continuing to invest wisely in the innovation, technology, and basic research that has always made our economy the envy of the world.

I congratulate and thank all the men and women of NASA who made this remarkable accomplishment a reality – and I eagerly await what Curiosity has yet to discover.”

The 1 ton Mini Cooper sized robot geologist and roving chemistry lab is seeking the signs of life on Mars and is loaded with 165 pounds of the most sophisticated science instruments ever delivered to the surface of the Red Planet.

During a two-year prime mission, Curiosity the rover will investigate whether the region has ever offered conditions favorable for microbial life, and search for organic molecules – the chemical ingredients for life.

Ken Kremer

Long Live American Curiosity – Now We Start Exploring Mars

Image Caption: This image shows one of the first views from NASA’s Curiosity rover, which landed on Mars the evening of Aug. 5 PDT (early morning hours Aug. 6 EDT). It was taken through a “fisheye” wide-angle lens on one of the rover’s Hazard-Avoidance cameras. These engineering cameras are located at the rover’s base. As planned, the early images are lower resolution. Credit: NASA/JPL-Caltech

“Welcome to Mars,” said Charles Elachi, Director of the Jet Propulsion Laboratory, Pasadena, Calif., following the dramatic and successful touchdown of Curiosity on the Red Planet at 1:32 AM EDT Aug. 6 (10:32 PM Aug 5). “Tonight was a great drama. We did the landing. Tomorrow we start exploring Mars and make new discoveries every day. Our Curiosity has no limits and we will explore the solar system.”

Tumultuous and long lasting jubilation erupted at Mission Control at JPL when the spectacular pinpoint landing success was announced and continued during the post landing news briefing at JPL.

NASA’s Curiosity Mars Science Lab (MSL) safely survived the harrowing plunge and nail biting descent through the Martian atmosphere known as the “7 minutes of Terror”. After hitting the thin atmosphere at 13,200 MPH (5,900 m/s), the robot perfectly executed the unprecedented entry, descent and landing (EDL) sequence utilizing a rocket powered guided descent, supersonic parachutes and then culminating in the never before tried “sky crane maneuver” and helicopter-like touch down at 0 MPH barely 7 minutes later.

Curiosity landed near the foot of a layered mountain three miles (5 km) tall and 96 miles(154 km) in diameter inside Gale Crater which may once have contained a lake. She relayed a few initial thumbnail pictures within minutes after touchdown via NASA’s Mars Odyssey orbiter.

Larger images showing the Gale crater rim were sent back during the 2nd Odyssey over flight about 2 hours later. Many higher resolution images will be transmitted back to Earth in the coming days including the first 360 degree panorama.

“Curiosity’s landing site is beginning to come into focus,” said John Grotzinger, project manager of NASA’s Mars Science Laboratory mission, at the California Institute of Technology in Pasadena. “In the image (above), we are looking to the northwest. What you see on the horizon is the rim of Gale Crater. In the foreground, you can see a gravel field. The question is, where does this gravel come from? It is the first of what will be many scientific questions to come from our new home on Mars.”


Image Caption: Cheers for Curiosity – Engineers at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., celebrate the landing of NASA’s Curiosity rover on the Red Planet. The rover touched down on Mars the evening of Aug. 5 PDT (morning of Aug. 6 EDT). Image credit: NASA/JPL-Caltech

“Long live American Curiosity”, said John Holdren, science advisor to President Obama. “Today on Mars, history was made on Earth. It will stand as an American point of pride far in the future. I want to congratulate the team on behalf of President Obama. Landing Curiosity was the most challenging mission ever attempted in robotic planetary exploration. This 1 ton automobile sized piece of American ingenuity on Mars should put to rest any doubts about American space leadership. Even the longest odds are no match for our gutsy determination.”

Curiosity traveled for over 8 months and more than 352-million-mile (567-million-kilometer) to arrive at Mars since launching from Earth in Nov. 2011.

“Today, the wheels of Curiosity have begun to blaze the trail for human footprints on Mars. Curiosity, the most sophisticated rover ever built, is now on the surface of the Red Planet, where it will seek to answer age-old questions about whether life ever existed on Mars — or if the planet can sustain life in the future,” said NASA Administrator Charles Bolden.

“This is an amazing achievement, made possible by a team of scientists and engineers from around the world and led by the extraordinary men and women of NASA and our Jet Propulsion Laboratory. President Obama has laid out a bold vision for sending humans to Mars in the mid-2030’s, and today’s landing marks a significant step toward achieving this goal.”

“What a fantastic demonstration of what our nation can accomplish. Thank you team. I am so proud of you. And what an inspiration to our young people. Nothing is harder than landing on Mars. Our leadership will make this world better.”

Curiosity is a 10 foot long (3 m) car-sized robotic geologist. The 1 ton behemoth is a roving chemistry lab with 10 state-of-the-art science instruments that will collect and analyze soil and rock samples and zap rocks from a distance with a laser to search for carbon in the form of organic molecules – the building blocks of life.

Image Caption: Gale Crater landing site for Curiosity beside layered Martian mountain with landing ellipse. Credit: NASA

“On behalf of the 400 members of the science team we thank everybody involved in this enterprise the landing team,” said John Grotzinger, the MSL Project Scientist of the California Institute of Technology. “There is no greater inspiration to school kids than going to Mars. The cost of MSL for each American is the cost of a movie. That’s a movie I want to see.”

During a 2 year prime mission, she will search for evidence of habitats that could preserve signs of Martian microbial life. She will rove the crater floor seeking evidence of water related phyllosilicates and sulfates and eventually climb up the nearby mountain, nicknamed Mount Sharp.

Ken Kremer

Super Bowl of Planetary Exploration – Great Convergence of Spacecraft for Curiosity Mars Landing

Image caption: This artist’s still shows how NASA’s Curiosity rover will communicate with Earth during landing. As the rover descends to the surface of Mars, it will send out two different types of data: basic radio-frequency tones that go directly to Earth (pink dashes) and more complex UHF radio data (blue circles) that require relaying by orbiters. NASA’s Odyssey orbiter will pick up the UHF signal and relay it immediately back to Earth, while NASA’s Mars Reconnaissance Orbiter will record the UHF data and play it back to Earth at a later time. Image credit: NASA/JPL-Caltech

Curiosity is just hours away from ‘do or die’ time and the high stakes and harrowing “7 Minutes of Terror” after an 8 month journey to touchdown on the Red Planet and potentially make historic discoveries that could ultimately answer the question ‘Are We Alone?’

An armada of spacecraft are converging at Mars for the historic landing of NASA’s Curiosity Mars Science Lab rover, the most daring, daunting and complex robotic mission that NASA has ever attempted. See the Video below

“Tonight is the Super Bowl of Planetary Exploration,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters, at a NASA JPL news briefing on Sunday (Aug. 5). “One yard line, one play left. We score and win, or we don’t score and we don’t win.”

“We are about to land a rover that is 10 times heavier and with 15 times the payload [compared to earlier rovers]. No matter what happens, I just want the team to know I am incredible proud and privileged to have worked with these guys and gals.”

“This is the most challenging landing we have ever attempted.”

“Mars Odyssey and Mars Reconnaissance Orbiter (MRO) are in good shape to relay the entry, descent and landing data.”

The trajectory to the atmospheric aim point is so precise that engineers decided to cancel the last course correction maneuver firing planned for today.

Tonight at around 1 AM EDT, Curiosity smashes into the Martian atmosphere at over 13,200 MPH (5,900 m/s) leading to an unprecedented entry, descent and landing sequence culminating in the never before tried “skycrane maneuver” and touchdown at 0 MPH just 7 minutes later astride a 3 mile (5 km ) mountain inside Gale Crater. Mount Sharp represents perhaps millions to perhaps billions of years of Mars geologic history stretching from the ancient wetter time to the more recent desiccated era.

“The team and the spacecraft are ready,” said Adam Steltzner, MSL Entry, Descent and Landing Lead engineer JPL. “We did everything possible to deserve success tonight, although as we all know we can never guarantee success. I am rationally confident and emotionally terrified and ready for EDL.”

Video Caption:This artist’s animation shows how orbiters over Mars will monitor the landing of NASA’s Curiosity rover.The animation starts with the path of NASA’s Mars Science Laboratory spacecraft capsule — which has the Curiosity rover tucked inside — speeding towards its Martian landing site in Gale Crater. Then, the paths of NASA’s Mars Odyssey orbiter and Mars Reconnaissance Orbiter become visible. Curiosity will be sending some basic radio-frequency tones straight back to Earth during its entry, descent and landing, on Aug. 5 PDT (Aug. 6 EDT). But sending more detailed engineering data about the landing is more complicated. Those kinds of data will be sent by Curiosity to the orbiters Odyssey and MRO, which will then relay them back to NASA’s Deep Space Network antennas on Earth. Curiosity can only send the data to Odyssey and MRO when it can see the orbiters — as soon as they rise above and before they set below the Martian horizon. Image Credit: NASA/JPL-Caltech

The 6 wheeled SUV sized rover Curiosity is scheduled to touchdown inside Gale Crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

Under the best circumstance, the first signals from the surface could be transmitted via Odyssey within a few minutes of touchdown.

Curiosity is a robotic geologist and a roving chemistry lab with 10 state-of-the-art science instruments that will collect and analyze soil and rock samples and zap rocks from a distance with a laser to search for carbon in the form of organic molecules – the building blocks of life.

“We will attempt to have the MRO HiRISE camera point at MSL and get an image of it the final phases of its descent going down to Mars,” said McCuistion. “This will be difficult because of all the gyrations by the spacecraft. It’s pretty challenging. It will be very tough. We were lucky to get one of Phoenix. I am hopeful”

“We have the opportunity for untold discoveries. We couldn’t even imagine going to this place on Mars a few years ago.”

“If we are successful, it will be one of the greatest feats in exploration ever!”

Watch NASA TV online for live coverage of the Curiosity landing on Aug. 5/6 starting at 11:30 pm EDT:

www.mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

When are the First Pictures Expected from Curiosity

Image Caption: This graphic shows the locations of the cameras on NASA’s Curiosity rover. The rover’s mast features seven cameras: the Remote Micro Imager, part of the Chemistry and Camera suite; four black-and-white Navigation Cameras (two on the left and two on the right) and two color Mast Cameras (Mastcams). Image credit: NASA/JPL-Caltech

If all goes well with the high stakes descent, the first images from the 1 ton Curiosity rover on the Martian surface could be received in the first few minutes after touchdown inside Gale Crater beside a huge mountain with layered sediments – now less than a day away.

It all depends on whether Curiosity successfully establishes a communications link with NASA’s Mars Odyssey signal relay spacecraft as the resilient orbiter simultaneously flies over the landing site and transmits the vital data indicating “Yes I’m Alive” to tracking stations back on Earth for analysis by anxiously waiting engineers at NASA’s Jet Propulsion Lab in Pasadena, Calif.

“We are expecting Odyssey to relay good news,” said Steve Sell of the JPL engineering team that developed and tested the mission’s complicated and never before used “sky crane” landing system. “That moment has been more than eight years in the making.”

The initial pictures would be reduced-resolution fisheye black-and-white images from the Hazard-Avoidance cameras (Hazcams), attached to the front and rear body of the rover.

“On the first night we expect the first low resolution black-and -white images from the rear hazcam, thumbnails about 50 x 50 pixels” said JPL’s Richard Cook, deputy project manager for Curiosity at today’s (Aug. 4) news briefing for reporters at JPL. “The Mars Odyssey relay will continue for 2 to 5 minutes after landing. Later that first night we hope to get a 512 x 512 pixel image looking out the rear of the rover.”

The hazcam cameras are covered with protective clear dust covers so the initial pictures might be taken through the covers if they haven’t popped off yet, Cook explained.

“The next chance to receive data and pictures comes 2 hours later post-landing during the second Odyssey over flight,” he added. “The next opportunity after that comes about 12 hours later.”

Initial thumbnail images from the rovers Mars Descent Imager (MARDI) camera,located on the belly of the rover, during the descent to the Red Planet’s surface are expected a day later on Aug. 7. These images will help pinpoint Curiosity’s exact location.

The team expects to deploy the rover’s mast with the higher resolution cameras on Aug. 7. Curiosity would then begin acquiring a 360 degree stereo panorama with the Navcam cameras the next day on Aug. 8.

The first color images are expected around Aug 8 from the Mars Hand Lens Imager, or MAHLI, one of five devices on the rover’s Inspector Gadget-like robotic arm. MAHLI will still be in the stowed position when it snaps the initial pictures.

But the whole plan depends on a successful landing and engineering checkout and instrument deployments along with no significant technical problems.

Navigators guiding NASA’s Curiosity Mars Science Lab (MSL) are threading the needle in these final 24 hours as she accelerates towards a miniscule target box barely 2 miles by 7 miles (2.8 by 11.5 kilometers) wide.

“We’re now right on target to fly through the eye of a needle, that is, our target at the top of the Mars atmosphere,” said MSL mission manager Arthur Amador, JPL, at the briefing. “The target is a box that’s 3 kilometers (1.9 miles) by 12 kilometers (7.5 miles) in dimension. And we’re flying right through it.”

Image Caption: Eye of the Needle – This graphic shows how navigators steering NASA’s Mars Science Laboratory capsule — with the Curosity rover tucked inside — are aiming for a pinpoint location above Mars. They liken it to threading the eye of a needle. Navigators are aiming for a point inside of a target box that is 1.7 by 7.15 miles (2.8 by 11.5 kilometers) wide above the Red Planet. Mars’ gravity well, which has been precisely calculated, will pull the spacecraft into the Martian atmosphere. The plane in which MSL has been traveling toward Mars — labeled trajectory plane — hits what is known as the B-plane at a 90 degree angle. The B plane is the plane perpendicular to the velocity of the spacecraft when it is far away from Mars. It is used for maneuver targeting. The northward direction of Mars’ pole is also indicated. Credit: NASA/JPL-Caltech

As of Saturday evening, Aug 4, MSL has cut its distance from Mars in half in the past day. MSL is the same distance from Mars as the Earth is from the Moon, around 250,000 miles (400,000 km) and closing at more than 8000 MPH (about 3,600 meters per second).

“Right now, I’m closer to Mars than the moon is to Earth,” Curiosity just tweeted.

After the nail biting entry, descent and landing (EDL) , the 6 wheeled rover Curiosity is scheduled to touchdown inside Gale Crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

The 10 feet (3 meters) long mini Cooper sized Curiosity is loaded with 10 state-of-the-art science experiments that will search for organic molecules – the building blocks of life. She is the most sophisticated robot ever sent to the surface of another world. Curiosity will investigate the Red Planet like never before and look for signs of Martian microbial life and habitable zones by analyzing soil and rock samples with high powered analytical chemistry instruments.


Image Caption: This global map of Mars was acquired on Aug. 2, 2012, by the Mars Color Imager instrument on NASA’s Mars Reconnaissance Orbiter. Image credit: NASA/JPL-Caltech/MSSS

And even the weather is cooperating.

“The active dust storm we saw south of Gale crater has now evolved into a harmless dust cloud. Basically, the poofed remnants of what was that dust storm. Mars is cooperating by providing good weather for landing,” said JPL’s Ashwin Vasavada, deputy project scientist for Curiosity.

“The team has done everything possible to make it a success. It is scary and risky. I am proud of the team,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the JPL briefing. “Risk exists.”

“The human spirit is driven by these kind of challenges. These challenges force us to explore our surroundings and understand what’s out there. And look at “Are we Alone?”

Watch NASA TV online for live coverage of the Curiosity landing on Aug. 5/6 starting at 11:30 pm EDT:

www.mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer


Image Caption: Curiosity Landing site at Gale Crater from ESA Mars Express Orbiter. Credits: ESA/DLR/FU Berlin (G. Neukum)

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Precisely on Course at T Minus 48 Hours till a ‘Priceless Asset’ Lands on Mars

3 Days to Red Planet Touchdown – Watch the Harrowing Video of Car-Sized Curiosity Careening to Crater Floor

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet

Curiosity Completes Crucial Course Correction – 1 Week from Mars !

T Minus 9 Days – Mars Orbiters Now in Place to Relay Critical Curiosity Landing Signals

Curiosity Precisely on Course at T Minus 48 Hours till a ‘Priceless Asset’ Lands on Mars

At this moment the mega rover Curiosity is barely 48 hours from Mars and transformation into a “priceless asset” on the Red Planet’s surface where she’ll initiate the search for evidence for habitats of Martian microbial life – past or present.

NASA JPL engineers have guided the Curiosity Mars Science Lab (MSL) so precisely on her 352-million-mile (567-million-kilometer) interplanetary journey through space that they decided to cancel today’s planned course adjusting thruster firing, known as Trajectory Correction Maneuver 5 (TCM-5). If needed, they have one last chance for a course correction burn (TCM-6) this weekend on Sunday.

“We are now about 1000 yards from the entry target that will bring us to the touchdown point on the North side of Gale Crater,” said Tomas Martin-Mur, MSL Navigation team chief of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., at an Aug. 2 MSL news briefing.

Curiosity is now less than 450,000 miles away from Mars, careening through space at over 8000 MPH (3576 m/s) and accelerating moment by moment due to the ever increasing pull of Mars gravity.

To put that in perspective, that’s less than twice the distance from the Earth to the Moon.

By the time Curiosity hits the Martian atmosphere on Sunday night/Monday early morning (Aug 5/6) she’ll be blazing through space at more than 13,200 MPH (5,900 m/s).

“I’m less than 500,000 miles from Mars & the Red Planet looks about the size as a full moon seen from Earth. 2 days to landing!” Curiosity tweeted a short while ago.

She remains healthy, with all systems operating nominally. And she is brave!

Curiosity will not flinch knowing she must endure the “7 Minutes of Terror” and the fiery entry,descent and landing to touchdown inside the 96 mile wide Gale Crater just 2 days from now.

Watch the harrowing landing animation – here.


Image Caption: Gale Crater Landing site for Curiosity. Credit: NASA

Absolutely staggering photos and science discoveries are expected from Curiosity – the boldest, most daring and by far the most scientifically complex and capable robotic emissary ever dispatched by humans to another world.

But after landing, the team needs to first test the rover’s components and unfurl the robots camera mast and instruments.

“We must recognize that on Sunday night at 10:32 PM PST(1:32 AM EST, 532 GMT) we will have a ‘priceless asset’ that we placed on the surface of another planet that could last for a long time IF we operate it correctly,” said Pete Theisinger, MSL project manager, JPL, at the Aug. 2 news briefing.

“So we will be cautious as hell about what we do with it !”

“This is a very complicated beast, so we all need to exercise caution. It’s much, much more complicated than Spirit and Opportunity in terms of the interactions amongst the various pieces and the things we need to keep track of in order to operate it successfully.”

A few hours after touchdown, Curiosity will send back the first images from the Gale crater landing site beside a towering 3 mile (5 km) high layered Martian mountain, named Mount Sharp.

“We will start doing science right away. Very roughly, the contact science will begin in 2 to 4 weeks. Sampling science will begin 1 to 2 months after we land,” explained Theisinger.

The car-sized Curiosity is 10 feet (3 meters) long and packed with 10 state-of-the-art science experiments that will search for organic molecules – the building blocks of life – and clay minerals, potential markers for signs of Martian microbial life and habitable zones.


Image Caption:Curiosity Mars Science Laboratory Rover – inside the Cleanroom at KSC, with robotic arm extended prior to encapsulation and Nov. 26, 2011 liftoff. Credit: Ken Kremer/kenkremer.com

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6 starting at 11:30 pm EDT:

www.mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer


Image Caption: MSL entry track to Gale Crater. Credit: NASA

Read continuing recent features about Curiosity by Ken Kremer starting here:

3 Days to Red Planet Touchdown – Watch the Harrowing Video of Car-Sized Curiosity Careening to Crater Floor

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet

Curiosity Completes Crucial Course Correction – 1 Week from Mars !

T Minus 9 Days – Mars Orbiters Now in Place to Relay Critical Curiosity Landing Signals

3 Days to Red Planet Touchdown – Watch the Harrowing Video of Car-Sized Curiosity Careening to Crater Floor


Video Caption: This 11-minute animation depicts key events of how NASA’s Mars Science Laboratory mission will land the huge rover Curiosity on Mars on August 5/6, 2012. Credit: NASA

Well, here we are 3 days from the thrilling ‘touchdown’ of Curiosity on Mars on the boldest mission yet by humans to the Red Planet – Seeking Signs of Life beyond Earth!

The Curiosity Mars Science Lab rover is by far the hardest and most complex robotic mission that NASA has ever attempted. She marks a quantum leap beyond anything tried before in terms of the technology required to land this 2000 pound beast and the science she’ll carry out for a minimum 2 year prime mission.

So watch this harrowing video (above) – Outlining how Curiosity slams into the Martian atmosphere at 13200 MPH and comes to rest at 0 MPH after surviving the “7 Minutes of Terror” with an unprecedented guided entry, rocket powered descent, neck snapping supersonic parachute deployment and never before used Sky Crane maneuver – and be sure you’re safely seated !

The car-sized Curiosity has entered the final 72 hours of careening towards a crater floor on Mars.

After the nail biting entry, descent and landing (EDL), the 6 wheeled rover Curiosity is scheduled to touchdown inside Gale Crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

“It looks a little crazy !” said Adam Steltzner, MSL Entry, Descent and Landing Lead engineer JPL , at today’s (Aug. 2) pre-landing briefing for reporters at NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif. “But it’s the least crazy compared to other methods we evaluated.”

“Everything looks good for Sunday night. Over 300 Years of human individual contributions went into the MSL EDL system. We pull 10 Earth G’s or more of acceleration during first contact with the Martian atmosphere.”

See the detailed EDL graphic below –
Image caption: Entry, Descent and Landing (EDL) Timeline – click to enlarge for full image. Credit: NASA

Curiosity is the first mobile soil and rock sampling and chemistry lab dispatched to Mars. It’s also the first astrobiology mission to Mars since the twin Viking missions of the 1970’s.

“We are about to land a small compact car on Mars with a trunk load of instruments. It’s an amazing feat, exciting and daring. It’s fantastic,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the JPL briefing.

“It’s an extreme pleasure to be here. MSL has a huge reach, to the past, the future and around the world. Since the heatshield is nearly the size of the Orion heat shield, we’ll also learn an enormous amount about how we’ll land humans on Mars.”

“MSL is a workhorse for the future,” McCuistion emphasized.

Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state-of-the-art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

It’s 4 Days to Mars – and NASA’s Curiosity Mars Science Lab (MSL) spacecraft is now flying under the control of the crafts autonomous entry, descent and landing timeline and picking up speed as she plunges ever faster to the Red Planet and her Rendezvous with Destiny.

“Timeline activated. Bleep-bop. I’m running entry, descent & landing flight software all on my own. Countdown to Mars: 5 days,” Curiosity tweeted Tuesday night.

See below an EDL explanatory infographic timeline outlining the critical sequence of events which must unfold perfectly for Curiosity to safely survive the “7 Minutes of Terror” set to begin on the evening of August 5/6.

Aug. 1 TV Viewing Alert – 11:30 PM EDT – see NASA Science Chief John Grunsfeld tonight (Wed, Aug. 1) on the Colbert Report


Image Caption: Curiosity EDL infographic – – click to enlarge

And the excitement is building rapidly for NASA’s biggest, boldest mission ever to the Red Planet as the flight team continues to monitor Curiosity’s onboard systems and flight trajectory. Yesterday, the flight team successfully carried out a memory test on the software for the mechanical assembly that controls MSL’s descent motor, configured the spacecraft for its transition to entry, descent and landing approach mode, and they enabled the spacecraft’s hardware pyrotechnic devices.

Curiosity remains healthy and on course. If fine tuning for the targeted landing ellipse is needed, the next chance to fire on board thrusters to adjust the trajectory is Friday, Aug. 3.

The 4th of 6 possible Trajectory Correction Maneuver (TCM) firings was just accomplished on Sunday, July 29 – details here.

The car sized Curiosity rover is scheduled to touchdown on Mars at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5) inside Gale Crater and next to a 3 mile (5 km) mountain taller that the tallest in the US.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of past or present Martian life.

Curiosity is packed with 10 state-of-the-art science experiments that will search for organic molecules and clay minerals, potential markers for signs of Martian microbial life and habitable zones.

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

Google’s 5 Most Memorable Space Doodles

Google’s one of those tech companies that makes a big deal about space exploration.

There’s not only the Google Lunar X-Prize, or its maps of the Moon and Mars, or memorable April Fool’s pranks such as the lunar Google Copernicus Hosting Environment and Experiment in Search Engineering (G.C.H.E.E.S.E.)

The Mountain View, Calif.-based search giant often puts space front and center in its periodic “Google Doodles”, which are variations of its logo shown on the site. Google’s been pencilling those since 1998. Over the years the sketches have become more elaborate – and sometimes animated!

After reviewing the space doodles featured on Google’s Doodle site, here are five of the most memorable of them:

May 1-5, 2000 – Google Aliens series

 

This appears to be the first set of space-themed Google Doodles. The drawings are simple – for the most part, they show a UFO flying past or landing on the Google logo. Still, running them in a series over several days was smart, as it encouraged Internet users to visit the young search engine several days in a row to see what was happening next. More eyes on the page is always good for advertising.

Jan. 15, 2004 – Spirit lands on Mars

Mars landings are always big media events, and NASA was in the midst of a bonanza of attention in 2004 as both Spirit and Opportunity successfully touched down on the Red Planet. Thousands of Google users would have been searching out the rovers’ latest exploits. Commemorating Spirit’s landing in a doodle, just as that excitement was at a fever pitch, was a great way for Google to highlight the ability for users to seek out information about the rovers on its own site.

Aug. 9, 2010 – Anniversary of Belka and Stelka spaceflight

The best Google Doodles are those that show you what you don’t know before. In this case, few outside the space community are likely aware of who Belka and Stelka were, and where their spaceflight fits in history. (They were among a series of animal flights flown in the 1960s to determine the risks of space travel to humans.) From Google’s perspective, running a doodle one needs to learn more about encourages users to click on it, generating more page views.

June 15, 2011 – Total lunar eclipse, featuring Slooh

This is a brilliant example of cross-promotion. Astronomy geeks are well-aware of Slooh, a site that turns telescopes to celestial events such as the recent Venus transit of the sun. Google brought the site to the masses through promoting Slooh’s June 15, 2011 lunar eclipse feed right on the home page; the colour of the moon in the logo changed as the eclipse progressed. Google also showed the eclipse on its YouTube channel and on Google Earth, and promoted the Slooh Android app (also hosted by Google.) Slooh mentioned Google’s participation on its own website, too.

Nov. 8, 2011 – Edmond Halley’s birthday

Commemorating Edmond Halley’s birthday is not unique in itself, as Google has singled out other astronomers for the honour – see Ruby Payne-Scott and Johann Gottfried Galle, for example. What makes this sketch memorable is you can barely see the “Google” logo in the doodle. This is a company that is so confident in its brand that it is willing to let its readers fill in the blanks by imagination. (Astute readers will notice Scott’s doodle follows the same principle, but Halley’s doodle did run first.)

What other doodles should Universe Today readers check out? Share your thoughts in the comments.

All images are from Google’s Doodle website.

Elizabeth Howell (M.Sc. Space Studies ’12) is a contributing editor for SpaceRef and award-winning space freelance journalist living in Ottawa, Canada. Her work has appeared in publications such as SPACE.com, Air & Space Smithsonian, Physics Today, the Globe and Mail, the Canadian Broadcasting Corp.,  CTV and the Ottawa Business Journal.