A new 4-part mini-series debuts tonight on PBS station in the US, featuring theoretical physicist Brian Greene. The series is called “Fabric of the Cosmos” and is based on Greene’s 2004 book of the same name. It premieres tonight (Nov. 2, 2011) on NOVA, with subsequent episodes airing November 9, 16 and 23. The series will probe the most extreme realms of the cosmos, from black holes to dark matter, to time bending and parallel realities.
And it won’t open up again until a few minutes after she blasts off for the Red Planet in just a little more than 3 weeks from now on Nov. 25, 2011 – the day after Thanksgiving celebrations in America.
The two halves of the payload fairing serve to protect NASA’s next Mars rover during the thunderous ascent through Earth’s atmosphere atop the powerful Atlas V booster rocket that will propel her on a fantastic voyage of hundreds of millions of miles through interplanetary space.
Spacecraft technicians working inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center (KSC) in Florida have now sealed Curiosity and her aeroshell inside the payload fairing shroud. The fairing insulates the car sized robot from the intense impact of aerodynamic pressure and heating during ascent. At just the right moment it will peal open and be jettisoned like excess baggage after the rocket punches through the discernable atmosphere.
The next trip Curiosity takes will be a few miles to the Launch Pad at Space Launch Complex 41 at adjacent Cape Canaveral Air Force Station. She will be gingerly loaded onto a truck for a sojourn in the dead of night.
“Curiosity will be placed onto the payload transporter on Tuesday and goes to Complex 41 on Wednesday, Nov. 2,” KSC spokesman George Diller told Universe Today. “The logo was applied to the fairing this weekend.”
At Pad 41, the payload will then be hoisted atop the United Launch Alliance Atlas V rocket and be bolted to the Centaur upper stage.
Installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source is one of the very last jobs and occurs at the pad just in the very final days before liftoff for Mars.
The MMRTG will be installed through a small porthole in the payload fairing and the aeroshell (see photo below).
The plutonium dioxide based power source has more than 40 years of heritage in interplanetary exploration and will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to the solar powered rovers Spirit and Opportunity.
After a 10 month voyage, Curiosity is due to land at Gale Crater in August 2012 using the revolutionary sky crane powered descent vehicle for the first time on Mars.
Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.
Phobos-Grunt, Earth’s other mission to Mars courtesy of Russia is due to blast off first from the Baikonur Cosmodrome on November 9, 2011.
Russia’s Space Agency, Roscosmos, has set November 9 as the launch date for the Phobos-Grunt mission to Mars and its tiny moon Phobos. Roscosmos has officially announced that the audacious mission to retrieve the first ever soil samples from the surface of Phobos will blastoff from the Baikonur Cosmodrome in Kazakhstan atop a Zenit-2SB rocket at 00:16 a.m. Moscow time.
Roscosmos said that engineers have finished loading all the propellants into the Phobos-Grunt main propulsion module (cruise stage), Phobos lander and Earth return module at Facility 31 at Baikonur.
Technicians also fueled the companion Yinghou-1 mini-satellite, provided by China, that will ride along inside a truss segment between the MDU propulsion module and the Phobos-Grunt lander.
The 12,000 kg Phobos-Grunt interplanetary spacecraft is being moved to an integration and test area at Facility 31 for integration with the departure segments of the Zenit rocket.
The next step is to enclose Phobos-Grunt inside the protective payload fairing and transport it to Facility 42 for mating atop the upper stage of the stacked Zenit-2SB booster rocket.
After about an 11 month journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The goal of the bold mission is to retrieve up to 200 grams of soil and rock from Phobos and return them to Earth in August 2014. The samples will help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System.
Phobos-Grunt is equipped with a powerful 50 kg payload of some 20 international science instruments.
The 110 kg Yinghou-1, which translates as Firefly-1, is China’s first spaceship to voyage to Mars. It will be jettisoned by Phobos-Grunt into a separate orbit about Mars. The probe will photograph the Red planet with two cameras and study it with a magnetometer to explore Mars’ magnetic field and science instruments to explore its upper atmosphere.
Earth’s other mission to Mars in 2011, NASA’s Curiosity rover, is set to blast off for Mars on Nov. 25
Back a couple of weeks ago, I wrote an article highlighting the debate between scientists on which dwarf planet is bigger, Pluto or Eris. During a planetary science conference earlier this month in France, word “leaked” out that Eris was still more massive, but likely smaller in diameter.
Today, the latest findings were published in Nature, and as such are now “official”. There’s also some additional information, so I’d like to revisit this topic and include some new details which may help answer the question:
Bruno Sicardy of the Paris Observatory and his team calculated the diameter of Eris in 2010. The technique they used took advantage of an occultation between Eris and a faint background star. Sicardy’s results provided a diameter of 2,326 kilometers for Eris, slightly less than his 2009 estimate of Pluto’s diameter at 2,338 kilometers.
Combining the diameter estimate with mass estimates yielded a density estimate for Eris which suggests, and is supported by its extra mass, that its composition is far more rocky than Pluto, with Eris being only 10-15% ice by mass.
In this week’s announcement by the European Southern Observatory, additional information was presented which sheds new light on cold, distant Eris.
Regarding the new density estimates, Emmanuel Jehin, one of Sicardy’s team members mentions, “This density means that Eris is probably a large rocky body covered in a relatively thin mantle of ice”.
Further supporting Jehin’s assertion, The surface of Eris was found to be extremely reflective, (96% of the light that falls on Eris is reflected, making it nearly as reflective as a backyard telescope mirror). Based on the current estimate, Eris is more reflective than freshly fallen snow on Earth. Based on spectral analysis of Eris, its surface reflectivity is most likely due to a surface of nitrogen-rich ice and frozen methane. Some estimates place the thickness of this layer at less than one millimeter.
Jehin also added, “This layer of ice could result from the dwarf planet’s nitrogen or methane atmosphere condensing as frost onto its surface as it moves away from the Sun in its elongated orbit and into an increasingly cold environment. The ice could then turn back to gas as Eris approaches its closest point to the Sun, at a distance of about 5.7 billion kilometers.”
Based on the new information on surface composition and surface reflectivity, Sicardy and his team were able to make temperature estimates for Eris. The team estimates daytime temperatures on Eris of -238 C, and that temperatures on the night side of Eris would be much lower.
Sicardy concluded with, “It is extraordinary how much we can find out about a small and distant object such as Eris by watching it pass in front of a faint star, using relatively small telescopes. Five years after the creation of the new class of dwarf planets, we are finally really getting to know one of its founding members.”
Space Exploration Technologies (SpaceX) is now one more step closer to sending astronauts to orbit. The commercial space firm announced today that it has completed a successful review of the company’s launch abort system (LAS). SpaceX’s LAS, dubbed “DragonRider” is designed differently than abort systems that have been used in the past.
The first review of the system’s design and its subsequent approval by NASA represents a step toward the realization of the space agency’s current objective of having commercial companies provide access to the International Space Station (ISS) while it focuses on sending astronauts beyond low-Earth-orbit (LEO) for the first time in four decades.
“Each milestone we complete brings the United States one step closer to once again having domestic human spaceflight capability,” said former astronaut Garrett Reisman, who is one of the two program leads who are working on SpaceX’s DragonRider program.
With the space shuttle program over and its fleet of orbiters headed to museums, the United States is paying Russia an estimated $63 million per seat on its Soyuz spacecraft. SpaceX has estimated that, by comparison, flights on a man-rated version of its Dragon spacecraft would cost approximately $20 million. Despite the dramatically lower cost, SpaceX has emphatically stated that safety is one of the key drivers of its spacecraft.
“Dragon’s integrated launch abort system provides astronauts with the ability to safely escape from the beginning of the launch until the rocket reaches orbit,” said David Giger, the other lead on the DragonRider program. “This level of protection is unprecedented in manned spaceflight history.”
SpaceX had already met three of NASA’s milestones under the Commercial Crew Development (CCDev) contract that the company has signed into with the U.S. space agency. With the Preliminary Design Review or PDR completed of the abort system SpaceX can now rack up another milestone that it has met.
Unlike conventional abort systems, which are essentially small, powerful rockets that are attached to the top of the spacecraft, Dragon’s LAS is actually built into the walls of the Dragon. This is not an effort just to make the spacecraft’s abort system unique – rather it is meant as a cost-cutting measure. The Dragon is intended to be reusable, as such its abort system needed to be capable of being reused on later flights as well. Traditional LAS simply do not allow for that. With every successful launch by conventional means – the LAS is lost.
SpaceX is also working to see that this system not only can save astronaut lives in the advent of an emergency – but that it can actually allow the spacecraft to conduct pinpoint landings one day. Not just on Earth – but possibly other terrestrial bodies – including Mars.
To date, SpaceX has launched two of its Falcon 9 launch vehicles. The first occurred on June 4 of 2010 and the second, and the first under the Commercial Orbital Transportation Services (COTS) contract took place six months later on Dec. 8. This second mission was the first to include a Dragon spacecraft, which was recovered in the Pacific Ocean off the coast of California after successfully completing two orbits.
“We have accomplished these four milestones on time and budget, while this is incredibly important, it is business as usual for SpaceX,” said SpaceX’s Vice-President for Communications Bobby Block during an interview. “These are being completed under a Space Act Agreement that demonstrates the innovative and efficient nature of what can be accomplished when the commercial sector and NASA work together.”
Barely in the nick of time, Russia’s groundbreaking Phobos-Grunt interplanetary spacecraft to Mars finally arrived on Monday (Oct. 17) at the Baikonur Cosmodrome launch site in Kazakhstan – and today (Oct. 18) an eye-popping collection of great images (see below) was at last published by Roskosmos, the Russian Federal Space Agency.
This first-of-its-kind spaceship is due to blast off quite soon – sometime in the first half of November – although Roskosmos has yet to announce an official launch date and time is running out. The deadline to Mars is Nov. 25.
The explicit close-up photos show both the Phobos-Grunt orbiter/lander vehicle and her companion Yinghou-1 Mars orbiter, built by China, being uncrated from a huge shipping container, uprighted and then showcased from many revealing angles from top to bottom, tilted from side to side and looking inside her hardware stack.
The photos illustrate the solar panels, landing legs, J-shaped soil sampling tube, Earth return vehicle and descent capsule, star trackers, communications antennae, maneuvering thrusters and more.
The Yinghou-1 mini-satellite is clearly visible tucked inside a truss situated between the Phobos-Grunt landing ship and the MDU propulsion stage.
Phobos-Grunt was just air shipped from Moscow to Baikonur inside an Antonov An-124-100 “Ruslan” cargo plane operated by “Polyot” airline.
The cargo canister was offloaded and transported by truck to Facility 31. The spacecraft was then placed on a test stand to begin an intense period of final prelaunch payload processing activites to ready the probe for launch.
The Zenit-2SB booster rocket also recently arrived at Baikonur for ongoing prelaunch processing at nearby Building 42.
Russia’s engineers and technicians will have to work diligently in the few weeks remaining in order to complete all preflight activities to achieve a liftoff to the Red Planet before the unforgiving and narrow launch window closes for another 26 months.
Earth is actually lofting two exciting science missions to Mars this November. NASA’s Curiosity Mars Science Laboratory rover is due to blastoff on Nov. 25 and her launch window extends until Dec. 18. Both spaceships missed their initially targeted launch windows in 2009 due to the need to fix unresolved technical issues.
Phobos-Grunt is a daring sample return mission whose goal is to retrieve up to 200 grams of soil and rock from the tiny Martian moon Phobos, that will help elucidate the origin and evolution of Phobos, Mars and the Solar System.
[/caption]
NASA has, on a number of occasions tapped the NewSpace firm Virgin Galactic to help the space agency accomplish its objectives – recently, it has done so again. This new contract will see NASA science payloads take suborbital flights on the company’s SpaceShipTwo (SS2) spacecraft. This however is not the first time that NASA has entered into an arrangement with the emerging commercial space flight firm.
NASA first began working with Virgin Galactic in 2007, when it entered into a Memorandum of Understanding to explore possible collaborative efforts to develop various equipment required to conduct space flight operations (space suits, heat shields, and other space flight elements).
Earlier this year, NASA selected seven different firms that either had or were developing suborbital spacecraft – one of these was Virgin Galactic. The announcement that was made Thursday, Oct. 13 is actually the culmination of the Flight Opportunities Program, which was announced on Aug. 9 of this year and established to help NASA meet its technology and research development requirements.
The agreement to fly NASA payloads on SS2 was announced about a week after former NASA Shuttle Program Manager; Mike Moses stated he was leaving the space agency to work as Virgin Galactic’s vice president of operations. Moses will be in charge of all operations at Spaceport America, located near Las Cruces, New Mexico.
“I’ve known Mike for a long time, from his flight controller days which led to him becoming a flight director and then moving into the shuttle program,” said Kyle Herring, a NASA public affairs officer. “I think he would be a very valuable asset to any organization that he went to. Mike’s expertise will be very beneficial in not just mission operations but ground operations as well.”
The NASA contract with Virgin Galactic is for one flight with the space agency optioning two additional flights (for a potential of three flights total). If NASA options all three flights, the total contract would be worth an estimated $4.5 million. The announcement came just four days prior to the dedication ceremony for the spaceport’s new headquarters (the dedication was on Monday, Oct. 17).
Each of these suborbital missions will have a trained engineer on board to handle the experiments.
Virgin Galactic is an arm of the London-based Virgin Group which is owned by British billionaire Sir Richard Branson. Virgin Galactic is working to provide tourists with suborbital flights into space that will allow these space passengers to briefly experience the micro-gravity environment. The flights will launch from a spaceport which is currently under construction near Las Cruces New Mexico. Tickets have been priced at about $200,000 each.
[/caption]NASA and Japan recently announced a new and improved digital topographic map of Earth, which was produced with detailed measurements from NASA’s Terra spacecraft.
The new data covers over 99 percent of Earth’s landmass and spans from 83 degrees north latitude to 83 degrees south. Each elevation measurement point in the data is only 30 meters apart.
How were scientists able to improve on previous generations of detailed topographic maps?
The new model, known as a global digital elevation model, was created from images collected by the Japanese Advanced Spaceborne Thermal Emission and Reflection Radiometer, or ASTER, instrument aboard NASA’s Terra spacecraft. To create a “stereo pair” image,scientists can take two slightly offset images and combine them to create a three-dimensional effect of depth.
The previous version of the global digital elevation model was released in June of 2009 by NASA and Japan’s Ministry of Economy, Trade and Industry.
“The ASTER global digital elevation model was already the most complete, consistent global topographic map in the world,” said ASTER program scientist Woody Turner, “With these enhancements, its resolution is in many respects comparable to the U.S. data from NASA’s Shuttle Radar Topography Mission, while covering more of the globe.”
The ASTER team added 260,000 stereo-pair images to improve the previous model, which improved spatial resolution, increased horizontal and vertical accuracy, and provided the ability to identify lakes as small as 1 kilometer in diameter.
“This updated version of the ASTER global digital elevation model provides civilian users with the highest-resolution global topography data available,” said ASTER science team lead Mike Abrams. “These data can be used for a broad range of applications, from planning highways and protecting lands with cultural or environmental significance, to searching for natural resources.”
Joining together in a collaborative effort, NASA and METI are contributing data for the ASTER topographic map to the Group on Earth Observations, for use in the group’s Global Earth Observation System of Systems. No, the previous statement wasn’t a typo – the “system of systems” is an international effort, which uses shared Earth observation data to help monitor and forecast global environmental changes.
One of five instruments launched on Terra in 1999, ASTER acquires images from visible to thermal infrared wavelengths, with spatial resolutions ranging from about 15 to 90 meters. ASTER’s science team is a joint effort between the United States and Japan.
The ASTER data was validated by NASA, METI, Japan’s Earth Remote Sensing Data Analysis Center (ERSDAC), and the U.S. Geological Survey, with additional support from the U.S. National Geospatial-Intelligence Agency and other collaborators. NASA’s Land Processes Distributed Active Archive Center is handling the distribution of the new ASTER global digital elevation model.
If you’d like to download the ASTER global digital elevation model to study at no cost, you can do so at: https://lpdaac.usgs.gov/ or http://www.ersdac.or.jp/GDEM/E/4.html
To learn more about ASTER, or NASA’s Terra mission, visit: http://asterweb.jpl.nasa.gov/ and http://www.nasa.gov/terra
[/caption]
As reported online at Space.com, the Boeing Company is already working on the CST-100 space taxi as a means of transportation to and from the International Space Station (ISS). But the aerospace firm is not content with just this simple space capsule and is looking into whether-or-not another of Boeing’s current offerings – the X-37B space plane could be modified to one day ferry crew to and from the orbiting laboratory as well.
proposed variant of the spacecraft, dubbed the X-37C, is being considered for a role that has some similarities to the cancelled X-38 Crew Return Vehicle (CRV). The announcement was made at a conference hosted by the American Institute of Aeronautics and Astronautics (AIAA) and reported on Space.com.
The X-37B or Orbital Test Vehicle (OTV) has so far been launched twice by the U.S. Air Force from Cape Canaveral Air Force Station in Florida. One of the military space planes completed the craft’s inaugural mission, USA-212, on Apr. 22, 2010. The mini space plane reentered Earth’s atmosphere and conducted an autonomous landing at Vandenberg Air Force on Dec. 3, 2010.
The U.S. Air Force then went on to launch the second of the space planes on mission USA-226 on Mar. 5, 2011. With these two successful launches, the longest-duration stay on orbit by a reusable vehicle and a landing under its belt, some of the vehicle’s primary systems (guidance, navigation, thermal protection and aerodynamics among others) are now viewed as having been validated. The vehicle has performed better than expected with the turnaround time being less than predicted.
If the X-37C is produced, it will be roughly twice the size of its predecessor. The X-37B is about 29 feet long; this new version of the mini shuttle would be approximately 48 feet in length. The X-37C is estimated at being approximately 165-180 percent larger than the X-37B. This increase in the size requires a larger launch vehicle.
This larger size also highlights plans to have the spacecraft carry 5 or 6 astronauts – with room for an additional crew member that is immobilized on a stretcher. The X-38, manufactured by Scaled Composites, was designed, built and tested to serve as a lifeboat for the ISS. In case of an emergency, crew members on the ISS would have entered the CRV and returned to Earth – a role that now could possibly be filled by the X-37C. The key difference being that the CRV only reached the point of atmospheric drop tests – the X-37B has flown into space twice.
The crewed variant of the X-37 space plane would contain a pressurized compartment where the payload is normally stored, it would have a hatch that would allow for astronauts to enter and depart the spacecraft. Another hatch would be located on the main body of the mini shuttle so as to allow access to the vehicle on the ground. The X-37C, like its smaller cousin, would be able to rendezvous, dock, reenter the atmosphere and land remotely, without the need of a pilot. Acknowledging the need for pilots to control their own craft however, the X-37C would be capable of accomplishing these space flight requirements under manual control as well.
As mentioned in the Space.com article, one of the other selling points for the X-37C is its modular nature. Different variants could be used for crewed flights or unmanned missions that could return delicate cargo from the ISS. Neither the Russian Soyuz spacecraft, nor commercially-developed capsules are considered as appropriate means of returning biological or crystal experiments to Earth due to the high rate of acceleration that these vehicles incur upon atmospheric reentry. By comparison the X-37B experiences just 1.5 “g” upon reentry.
The launch vehicle that would send the proposed X-37C to orbit would be the United Launch Alliance Atlas V rocket. In provided images the X-37C is shown utilizing a larger version of the Atlas booster and without the protective fairing that covered the two X-37B space planes that were launched.
The space shuttle program is over. The orbiters are being decommissioned, stripped of the components that allowed them to travel in space. For those that followed the program, those that wished they did and those with only a passing interest in what the program accomplished a new book has been produced covering the entirety of the thirty years that comprised NASA’s longest human space flight program. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is written by aerospace author Piers Bizony and weighs in at 300 pages in length.
Bizony is a prolific author who has focused a lot of his work on space flight. Some of the books that he has written include (but definitely are not limited to) include: One Giant Leap: Apollo 11 Remembered, Space 50, The Man Who Ran the Moon: James E. Webb, NASA, and the Secret History of Project Apollo and Island in the Sky: The International Space Station.
The book contains 900 color images, detailing the entire history of NASA’s fleet of orbiters. From the first launches and the hope that those initial flights were rich in, to the Challenger tragedy and the subsequent realization that the space shuttles would never be what they were intended to be.
The next phase of the book deals with the post-Challenger period and how NASA worked to find a balance with its fleet of orbiters, while at the same time worked to regain the trust of the America public. The path was both hindered and helped by a single payload – the Hubble Space Telescope.
When the images the orbiting telescope beamed back turned out fuzzy, NASA was a laughing stock. Hubble would become a sensation and NASA redeemed its name after the first servicing mission to Hubble corrected the problem with the telescope’s mirror.
Hubble was not the only telescope or probe that the shuttle placed in the heavens. It would however, be the only one that NASA’s fleet of orbiters would visit during several servicing missions. Besides Hubble the shuttle also sent the Chandra X-Ray telescope, Galileo probe to Jupiter and the Magellan probe to Venus during the course of the program’s history.
NASA was now on course to begin construction of the most ambitious engineering feat in human history – the International Space Station. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane details this period, as well as the tragic loss of the shuttle Columbia in 2003 with great care and attention to detail. Many never-before-seen images are contained within and Bizony uses them to punctuate the history that the space shuttle accomplished with every flight.
The book also contains a detailed diagram of the orbiter (it is long and therefore was produced as a pull-out section. This element is included near the end and acts as a nice punctuation mark to the stream of imagery contained within.
The book is not perfect (but what book is). If one did not know better, upon reading this book one would assume that the Delta Clipper (both DC-X and DC-XA) flew once and upon landing caught fire. DC-X flew eight times – not once. Bizony also describes the lunar element of the Vision for Space Exploration (VSE) as being a repeat of Apollo. Apollo 17 was the longest duration that astronauts roamed the Moon’s surface – they were there for about three days. The VSE called for a permanent crewed presence on the moon.
For those out there that consider themselves “shuttle huggers” this book is simply a must-have. It is perfect to take to autograph shows to be signed by astronauts (as every mission is detailed, it is a simple matter to have crew members sign on the pages that contain their missions). It is also a perfect gift for space aficionados this holiday season. Published by Zenith Press and retailing for $40.00, The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is a welcome addition to your home library.