[/caption]
Writing a dictionary is not the same as writing a novel. While it might seem difficult to mess up a dictionary, even one with terminology that is as complicated as that used within the space industry – getting it right can be challenging. For those that follow space flight having such a dictionary can be invaluable. While A Dictionary of the Space Age does meet the basic requirements easily it fails somewhat in terms of its comprehensiveness.
When normal folks, even space enthusiasts watch launches and other space-related events (EVAs, dockings, landings and such) there are so many acronyms and jargon thrown about – that it is extremely hard to follow. With A Dictionary of the Space Age on hand, one can simply thumb through and find out exactly what is being said, making it both easier to follow along and making the endeavor being witnessed far more inclusive. That is as long if you are only looking for the most general of terms. The book is far from complete – but given the complex nature of the topic – this might not have been possible.
Crewed, unmanned, military space efforts and satellites – all have key terms addressed within the pages of this book.
The book is published by The Johns Hopkins University Press and was compiled and written by aerospace expert Paul Dickson. One can purchase the book on the secondary market (Amazon.com) for around $12 (new for around $25). The dictionary also has a Kindle edition which is available for $37.76. Dickson’s previous works on space flight is Sputnik: The Shock of the Century.
Weighing in at 288 pages, the book briefly covers the primary terms used within the space community. In short, if you are interested in learning more about space flight – or wish to do so – this is a good book for you.
Video caption: NASA’s twin GRAIL spacecraft blast off atop a Delta II Heavy booster at 9:08 a.m. EDT on Saturday, September 10, 2011 from Cape Canaveral, Florida, on a mission to explore the moon in unprecedented detail.
Be sure to check out these awesome launch videos showing the Delta II Heavy rocket blasting off with NASA’s GRAIL Lunar Gravity Mapper twins on a “Journey to the Center of the Moon” – as shot by NASA and others – on Sept. 10. from Pad 17 B at Cape Canaveral Air Force Station in Florida at 9:08 a.m. EDT.
Thus began a circuitous 3.5 month voyage from the Earth to the Moon culminating in lunar orbit arrival on New Year’s Eve and Day 2012.
[/caption]
Liftoff of the $496 Million Gravity Recovery and Interior Laboratory (GRAIL) duo marked the last currently scheduled launch of a United Launch Alliance Delta II from Florida and also the last launch from Space Launch Complex 17. This was the 356th Delta launch overall since the first one in 1960. It was the 110th and final planned flight of a Delta II from Florida.
Watch the NASA GRAIL Launch Video as the 12 story Delta’s 1st stage liquid and solid engines ignite and the rocket’s explosive exhaust and fiery flames instantaneously and dramatically shoot out from below and are vented safely to the side through specially constructed flame ducts to protect the rocket.
Just after the 1 minute mark, the 6 ground lit solid rocket motors are jettisoned and dramatically tumble away from the first stage. Moment later comes the ignition of the three air-lit solid rocket motors.
This dramatic video was shot by Matt Travis of spacearium -from my viewing location with a hoard of photojournalists at Press Site 1 located inside Cape Canaveral Air Force Station.
Press Site 1 is just 1.5 miles away from Pad 17B. It offers the closest and best view of the mighty Delta II rocket which stands 128 feet tall and generates some 1.3 million pounds of liftoff thrust.
Watch this video for post-launch commentary from NASA’s Delta II Launch manager Tim Dunn from the Mission Director’s Center.
The GRAIL Launch video below was taken from Jetty Park Pier, about 2.9 miles south of Pad 17B and shows a completely different perspective from across the waterway of Port Canaveral.
I watched the unforgettable launch of Dawn five years ago from Jetty Park Pier.
Jetty Park and the beaches along Cape Banaveral and Cocoa Beach have been the best place for the public to view Delta rocket launches.
Thousands of spectators lining the Florida Space Coast were absolutely thrilled to witness the historic launch of GRAIL on the final Delta II booster from Florida on a gorgeous morning.
GRAIL’s primary science objectives during the 82 day mission are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon and apply that to the other rocky bodies in our solar system.
Check this short NewBlast Video summary of GRAIL’s launch and objectives from Spaceflight Now
Many of NASA’s recent science missions have launched aboard Delta II rockets, including the outstandingly successful Spirit and Opportunity Mars rovers, Dawn Asteroid Orbiter, MESSENGER Mercury orbiter and Stardust and Deep Impact comet spacecraft.
Congratulations to everyone on the GRAIL team for a superb performance !
NASA renewed its focus on ground breaking science today with the thunderous blastoff of a pair of lunar bound spacecraft that will map the moons interior with unparalled precision and which will fundamentally alter our understanding of how the moon and other rocky bodies in our solar system – including Earth – formed and evolved over 4.5 Billion years.
Today’s (Sept. 10) launch of the twin lunar Gravity Recovery and Interior Laboratory (GRAIL) spacecraft atop the mightiest Delta II rocket from Cape Canaveral Air Force Station in Florida at 9:08 a.m. EDT was a nail biter to the end, coming after a two day weather delay due to excessively high upper level winds that scrubbed the first launch attempt on Sept. 8, and nearly forced a repeat cancellation this morning.
Liftoff of the nearly identical GRAIL A and B lunar gravity mappers from Space Launch Complex 17B took place on the second of two possible launch attempts after the first attempt was again waived off because the winds again violated the launch constraints.
Credit: Ken Kremer (kenkremer.com)
After the final “GO” was given, the Delta II Heavy booster suddenly roared to life and put on a spectacular show spewing smoke, flames and ash as it pushed off the pad and shot skywards atop a rapidly growing plume of exhaust and rumbling thunder into a nearly cloudless sky.
The solar powered dynamic duo were propelled to space by the last ever Delta II rocket slated to depart Earth from Cape Canaveral, Florida. After more than 50 years of highly reliable service starting in 1960, the venerable Delta II family will be retired after one final launch in October from Vandenberg Air Force Base in California.
On this special occasion the media were allowed to a witness the launch from Press Site 1 – a location just 1.5 miles away from the pad with a gorgeous and unobstructed view to the base of the pad which magnified the tremendous roar of the rocket engines.
“Since the earliest humans looked skyward, they have been fascinated by the moon,” said GRAIL principal investigator Maria Zuber from the Massachusetts Institute of Technology in Cambridge. “GRAIL will take lunar exploration to a new level, providing an unprecedented characterization of the moon’s interior that will advance understanding of how the moon formed and evolved.”
The spacecraft separation and deployment of the solar arrays worked exactly as planned, the mission team reported at a post launch briefing for reporters. Both probes are power positive and healthy.
GRAIL A and B are now speeding towards the moon on a low energy path that will take about 3.5 months compared to just three days for the Apollo astronauts. The slower and longer path covering more than 2.5 million miles (4 million kilometers) enables the spacecraft to use a smaller engine and carry less fuel for the braking maneuver required to place the probes into a polar elliptical orbit when they arrive at the moon about 25 hours apart on New Year’s Eve and New Year’s Day 2012.
“Our GRAIL twins have Earth in their rearview mirrors and the moon in their sights,” said David Lehman, GRAIL project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “The mission team is ready to test, analyze and fine-tune our spacecraft over the next three-and-a-half months on our journey to lunar orbit.”
During the 82 day science phase, the primary objective of is to study the moons interior from crust to core and map its gravity field by 100 to 1000 times better than ever before. GRAIL A and GRAIL B will fly in tandem formation in near circular polar orbit at an altitude of some 50 km above the lunar surface as the moon rotates beneath three times.
The mission will provide unprecedented insight into the structure and composition of moon from crust to core, unlock the mysteries of the lunar interior and advance our understanding of the thermal evolution of the moon that can be applied to the other terrestrial planets in our solar system, including Mercury, Venus, Earth and Mars.
Scientists directing NASA’s Mars Opportunity rover gushed with excitement as they announced that the aging robot has discovered a rock with a composition unlike anything previously explored on the Red Planet’s surface – since she landed on the exotic Martian plains 7.5 years ago – and which offers indications that liquid water might have percolated or flowed at this spot billions of years ago.
Barely three weeks ago Opportunity arrived at the rim of the gigantic 14 mile ( 22 km) wide crater named Endeavour after an epic multi-year trek, and for the team it’s literally been like a 2nd landing on Mars – and the equivalent of the birth of a whole new mission of exploration at an entirely ‘new’ landing site.
“This is like having a brand new landing site for our veteran rover,” said Dave Lavery, program executive for NASA’s Mars Exploration Rovers at NASA Headquarters in Washington. “It is a remarkable bonus that comes from being able to rove on Mars with well-built hardware that lasts.”
Opportunity has traversed an incredible distance of 20.8 miles (33.5 km) across the Meridiani Planum region of Mars since landing on January 24, 2004 for a 3 month mission – now 30 times longer than the original warranty.
“Tisdale 2” is the name of the first rock that Opportunity drove to and investigated after reaching Endeavour crater and climbing up the rim at a low ridge dubbed ‘Cape York’.
Endeavour’s rim is heavily eroded and discontinuous and divided into a series of segmented and beautiful mountainous ridges that offer a bonanza for science.
“This is not like anything we’ve ever seen before. So this is a new kind of rock.” said Steve Squyres, principal investigator for Opportunity at Cornell University in Ithaca, N.Y at a briefing for reporters on Sept. 1.
“It has a composition similar to some volcanic rocks, but there’s much more zinc and bromine than we’ve typically seen. We are getting confirmation that reaching Endeavour really has given us the equivalent of a second landing site for Opportunity.”
Tisdale 2 is a flat-topped rock about the size of a footstool that was blasted free by the impact that formed the tennis court sized “Odyssey” crater from which it was ejected.
“The other big take-away message, and this is to me the most interesting thing about Tisdale, is that this rock has a huge amount of zinc in it, way more zinc than we have ever seen in any Martian rock. And we are puzzling, we are thinking very hard over what that means,” Squyres speculated.
Squyres said that high levels of zinc and bromine on Earth are often associated with rocks in contact with flowing water and thus experiencing hydrothermal activity and that the impact is the source of the water.
“When you find rocks on Earth that are rich in zinc, they typically form in a place where you had some kind of hydrothermal activity going on, in other words, you have water that gets heated up and it flows through the rocks and it can dissolve out and it can get redeposited in various places,” Squyres explained.
“So this is a clue, not definitive proof yet, but this is a clue that we may be dealing with a hydrothermal system here, we may be dealing with a situation where water has percolated or flowed or somehow moved through these rocks, maybe as vapor, maybe as liquid, don’t know yet.”
“But it has enhanced the zinc concentration in this rock to levels far in excess of anything we’ve ever seen on Mars before. So that’s the beginning of what we expect is going to be a long and very interesting story about these rocks.”
Endeavour crater was chosen three years ago as the long term destination for Opportunity because it may hold clues to a time billions and billions of years ago when Mars was warmer and wetter and harbored an environment that was far more conducive to the formation of life beyond Earth.
Signatures of clay minerals, or phyllosilicates, were detected at several spots at Endeavour’s western rim by observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard NASA’s Mars Reconnaissance Orbiter (MRO).
“The motherlode of clay minerals is on Cape Tribulation. The exposure extends all the way to the top, mainly on the inboard side,” said Ray Arvidson, the rover’s deputy principal investigator at Washington University in St. Louis.
Phyllosilicates are clay minerals that form in the presence of pH neutral water and which are far more hospitable to the possible genesis of life compared to the sulfate rich rocks studied in the more highly acidic aqueous environments examined by both the Opportunity and Spirit rovers thus far.
“We can get up the side of Cape Tribulation,” said Arvidson. It’s not unlike Husband Hill for Spirit. We need to finish up first at Cape York, get through the martian winter and then start working our way south along Solander Point.
The general plan is that Opportunity will probably spend the next several months exploring the Cape York region for before going elsewhere. “Just from Tisdale 2 we know that we have something really new and different here,” said Squyres.
“On the final traverses to Cape York, we saw ragged outcrops at Botany Bay unlike anything Opportunity has seen so far, and a bench around the edge of Cape York looks like sedimentary rock that’s been cut and filled with veins of material possibly delivered by water,” said Arvidson. “We made an explicit decision to examine ancient rocks of Cape York first.”
So far at least the terrain at Cape York looks safe for driving with good prospects for mobility.
“The good news is that, as predicted, we have hard packed soils like the plains at Gusev that Spirit saw before getting to the Columbia Hills,” said Arvidson. “The wheel tracks at Cape York are very, very shallow. So if anything we will have some skid going downhill the slopes of 5 to 10 degrees on the inboard side which we can correct for.”
“We are always on the lookout for sand traps. We are particularly sensitized to that after the Spirit situation. So far it’s clear sailing ahead.”
Opportunity will then likely head southwards towards an area dubbed “Botany Bay” and eventually drive some 1.5 km further to the next ridge named Cape Tribulation and hopefully scale the slopes in an uphill search for that mother lode of phyllosilicates.
“My strong hope – if the rover lasts that long – is that we will have a vehicle that is capable of climbing Cape Tribulation just as we climbed Husband Hill with Spirit. So it’s obvious to try if the rover is capable, otherwise we would try something simpler. But even if we lose a wheel we still have a vehicle capable of a lot of science,” Squyres emphasized. “Then we would stick to lower ground and more gently sloping stuff.”
“The clear intention as we finish up at Cape York, and look at what to do next, is that we are going to work our way south. We will focus along the crater’s rim. We will work south along the rim of Endeavour unless some discovery unexpectedly causes us to do something else.”
“We will go where the science takes us !” Squyres stated.
Opportunity is in generally good health but the rover is showing signs of aging.
“All in all, we have a very senior rover that’s showing her age, she has some arthritis and some other issues but generally, she’s in good health, she’s sleeping well at night, her cholesterol levels are excellent and so we look forward to productive scientific exploration for the period ahead,” said John Callas, project manager for Opportunity at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.
“This has the potential to be the most revealing destination ever explored by Opportunity,” said Lavery. “This region is substantially different than anything we’ve seen before. We’re looking at this next phase of Opportunity’s exploration as a whole new mission, entering an area that is significantly different in the geologic context than anything we’ve seen with the rovers.”
[/caption]
Ordinarily if a book attempts to cover crewed and unmanned missions – the book is a compilation of space flight history in general. This is not the case when it comes to Springer/Praxis’ offering Lunar and Planetary Rovers. Written by Anthony Young, the book details both crewed (the Apollo “J” missions) and unmanned rovers (Pathfinder, Mars Exploration Rovers and Curiosity). The book is not a perfect blending of the two interconnected, yet separate programs – but it does have much to offer.
First published in 2010, the book is a well-researched, detailed account of the lunar rovers that flew on Apollos 15, 16 and 17 and the robotic explorers that have scoured the face of the red planet – Mars.
Lunar and Planetary Rovers fills a need for an account of efforts to get wheels on other worlds. The book is filled with numerous photographs (both color and black and white) that have never been published before. In terms of the Apollo Program, Lunar and Planetary Rovers is replete with quotes from the astronauts that drove the lunar rovers on the Moon. In terms of the unmanned planetary rovers, the book pulls from the engineers and scientists that made (and make) these machines work.
The book is 305 pages long. It could have stood to be a few pages longer. One glaring omission in the general body of the book is that of the Lunokhods (these amazing machines are mentioned in the appendix of the book). Given that the Lunokhods bridge the gap between the Apollo Program’s manned lunar rovers (in that they both rolled across the lunar regolith) and the robotic planetary rovers – this is a fairly significant gap in coverage of the topic. The book also does not tie these two, separate, programs together very well (the jump from one topic to the other is jarring and not done consistently).
Even when one considers this slight flaw – the book still provides an accurate and useful history of rovers. Lunar and Planetary Rovers can be purchased on the secondary market (Amazon) for approximately $5 (that is including shipping and handling) the book is a good buy for those wanting information concerning the topic. For those that are not interested in the traditional, paper, format a Kindle edition is available for around $25.
With the launch of the Mars Science Laboratory (MSL) or Curiosity as it is more commonly known currently scheduled to take place this November – this book serves as a historical reminder as to how the technology employed by Curiosity was both developed and refined.
[/caption]
The James Webb Space Telescope or JWST has long been touted as the replacement for the Hubble Space Telescope. The telescope is considered to be the one of the most ambitious space science projects ever undertaken – this complexity may be its downfall. Cost overruns now threaten the project with cancellation. Despite these challenges, the telescope is getting closer to completion. As it stands now, the telescope has served as a technical classroom on the intricacies involved with such a complex project. It has also served to develop new technologies that are used by average citizens in their daily lives.
Although compared to Hubble, the two telescopes are dissimilar in a number of ways. The JWST is three times as powerful as Hubble in its infrared capabilities. JWST’s primary mirror is 21.3 feet across (this provides about seven times the amount of collecting power that Hubble currently employs).
The JWST’s mirrors were polished using computer modeling guides that allowed engineers to predict that they will enter into the proper alignment when in space. Each of the mirrors on the JWST has been smoothed down to within 1/1000th the thickness of a human hair. The JWST traveled to points across the country to assemble and test the JWST’s various components.
Eventually the mirrors were then sent to NASA’s Marshall Space Flight Center in Huntsville, Alabama. Once there they measured how the mirrors reacted at extremely cold temperatures. With these tests complete, the mirrors were given a thin layer of gold. Gold is very efficient when it comes to reflecting light in the infrared spectrum toward the JWST’s sensors.
The telescope’s array of mirrors is comprised of beryllium, which produces a lightweight and more stable form of glass. The JWST requires lightweight yet strong mirrors so that they can retain their shape in the extreme environment of space. These mirrors have to be able to function perfectly in temperatures reaching minus 370 degrees Fahrenheit.
After all of this is done, still more tests await the telescope. It will be placed into the same vacuum chamber that tested the Apollo spacecraft before they were sent on their historic mission’s to the moon. This will ensure that the telescopes optics will function properly in a vacuum.
With all of the effort placed into the JWST – a lot of spinoff technology was developed that saw its way into the lives of the general populace. Several of these – had to be invented prior to the start of the JWST program.
“Ten technologies that are required for JWST to function did not exist when the project was first planned, and all have been successfully achieved. These include both near and mid-infrared detectors with unprecedented sensitivity, the sunshield material, the primary mirror segment assembly, the NIRSpec microshutter array, the MIRI cryo-cooler, and several more,” said the James Webb Space Telescope’s Deputy Project Scientist Jason Kalirai. Kalirai holds a PhD in astrophysics and carries out research for the Space Telescope Science Institute. “The new technologies in JWST have led to many spinoffs, including the production of new electric motors that outperform common gear boxes, design for high precision optical elements for cameras and cell phones, and more accurate measurements of human vision for people about to undergo Laser Refractive Surgery.”
If all goes according to plan, the James Webb Space Telescope will be launched from French Guiana atop the European Space Agency’s Arianne V Rocket. The rationale behind the Ariane V’s selection was based on capabilities – and economics.
“The Ariane V was chosen as the launch vehicle for JWST at the time because there was no U.S. rocket with the required lift capacity,” Kalirai said. “Even today, the Ariane V is a better tested vehicle. Moreover, the Ariane is provided at no cost by the Europeans while we would have had to pay for a U.S. rocket.”
It still remains to be seen as to whether or not the JWST will even fly. As of July 6 of this year the project is slated to be cancelled by the United States Congress. The James Webb Space Telescope was initially estimated at costing $1.6 billion. As of this writing an estimated $3 billion has been spent on the project and it is has been estimated that the telescope is about three-quarters complete.
In as much time as it takes to give birth to human life, a supercomputer and a team of researchers at the University of California, Santa Cruz, and the Institute for Theoretical Physics in Zurich have given rise to the first simulation of the physics involved in galaxy formation that produced the Milky Way. They named their child Eris…
“Previous efforts to form a massive disk galaxy like the Milky Way had failed, because the simulated galaxies ended up with huge central bulges compared to the size of the disk,” said Javiera Guedes, who recently earned her Ph.D. in astronomy and astrophysics at UC Santa Cruz and is first author of a paper which has been accepted for publication in the Astrophysical Journal.
Like the Milky Way, Eris is a lovely barred spiral galaxy – her figure and star content as identical as modeling can make it. By studying our own galaxy and others like it, this simulation fits the mold from every angle. “We dissected the galaxy in many different ways to confirm that it fits with observations,” Guedes said.
And “seven sisters” were involved in the project, too. NASA’s state-of-the-art Pleiades supercomputer took on the task of 1.4 million processor-hours. But the calculations didn’t stop there. Simulations on supercomputers at UCSC and the Swiss National Supercomputing Center were involved, too. “We took some risk spending a huge amount of supercomputer time to simulate a single galaxy with extra-high resolution,” Madau said.
For over two decades, attempts at creating the evolution of a Milky Way type galaxy have been just outside the grasp of researchers. They just weren’t able to produce the proper shape, size and population to fit known properties. Thanks to this new breakthrough, support for the “cold dark matter” theory has predominated and the Big Bang theory supported. What gave Eris the edge? Try our now better understanding star formation.
“Star formation in real galaxies occurs in a clustered fashion, and to reproduce that out of a cosmological simulation is hard,” Madau said. “This is the first simulation that is able to resolve the high-density clouds of gas where star formation occurs, and the result is a Milky Way type of galaxy with a small bulge and a big disk. It shows that the cold dark matter scenario, where dark matter provides the scaffolding for galaxy formation, is able to generate realistic disk-dominated galaxies.”
Giving birth to Eris wasn’t an easy task. Through low-resolution simulations, researchers began assembling clumps of dark matter – shaping them into galactic halos. From there they selected information on a halo with similar mass and merger history to our own and “rewound the tape” to its infancy. By focusing on a small area, they were able to add additional particle information and step up the resolution.
“The simulation follows the interactions of more than 60 million particles of dark matter and gas. A lot of physics goes into the code–gravity and hydrodynamics, star formation and supernova explosions–and this is the highest resolution cosmological simulation ever done this way,” said Guedes, who is currently a postdoctoral researcher at the Swiss Federal Institute of Technology in Zurich (ETH Zurich).
What sets Eris apart from its predecessors is the ability to “see” in high resolution / high density. This allows for a more pragmatic approach to star formation and placement. It’s an important consideration, because supernova occur in high density regions and high resolution allows them to be taken into account.
“Supernovae produce outflows of gas from the inner part of the galaxy where it would otherwise form more stars and make a large bulge,” Madau said. “Clustered star formation and energy injection from supernovae are making the difference in this simulation.”
NASA’s powerful lunar mapping duo of GRAIL spacecraft are now poised for liftoff in just one weeks time on Thursday, Sept. 8.
Mission managers held a Flight Readiness Review on Wednesday (Aug.31) and gave a tentative approval to begin fueling the Delta II rockets second stage on Sept. 2 and 3 after evaluating all issues related to the rocket, launch pad and payloads.
Launch preparations are proceeding on schedule towards an early morning lift off from the seaside Space Launch Complex 17B (SLC-17B) at Cape Canaveral Air Force Station, Florida. There are two instantaneous launch windows at 8:37:06 a.m. and 9:16:12 a.m. EDT lasting one second each.
“Launch vehicle and spacecraft closeouts will begin on Tuesday, and the Launch Readiness Review is also scheduled for Tuesday morning,” NASA KSC spokesman George Diller told Universe Today.
“This morning’s launch countdown dress rehearsal went fine.”
“Delta II 2nd stage fueling has been rescheduled for Friday and Saturday [Sept. 2 and 3]. Last evening a software error was found in the launch processing system data base. ULA (United Launch Alliance) decided they would like to look for any additional errors before the fueling begins. There is no impact to the launch date and currently no work is scheduled on Sunday or on Labor Day,” said Diller.
The launch period extends through Oct. 19, with liftoff occurring approximately four minutes earlier each day in case of a delay. The flight plan was designed to avoid a pair of lunar eclipses occurring on December 10th, 2011 and June 4th 2012 which would interfere with the missions operations and science.
The team is keeping a close watch on the weather as the season’s next Atlantic Ocean storm heads westwards. Katia has just been upgraded to Hurricane status and follows closely on the heels of the continuing vast destruction, misery and deaths caused by Hurricane Irene earlier this week.
“The preliminary weather forecast is favorable for launch day as long as the wind remains out of the west as is currently forecast for that time of the morning,” Diller told me.
The twin probes known as GRAIL-A and GRAIL-B (Gravity Recovery and Interior Laboratory) were encapsulated inside the clamshell like payload fairing on Aug. 23 The nearly identical spacecraft are mounted side by side and sit atop the Centaur upper stage.
The fairing shields the spacecraft from aerodynamic pressures, friction and extreme heating for the first few minutes of flight during ascent through the Earth atmosphere.
This Delta II Heavy booster rocket is the most powerful version of the Delta II family built by ULA. The booster’s first stage is augmented with larger diameter solid rocket motors.
GRAIL was processed for launch inside at the Astrotech payload processing facility in Titusville, Fla. See my GRAIL spacecraft photos from inside the Astrotech clean room facilities here.
“The GRAIL spacecraft inside the handling can departed Astrotech and arrived at the launch pad, SLC-17B on Aug. 18” said Tim Dunn, NASA’s Delta II Launch Director in an interview with Universe Today. “The spacecraft was then hoisted by crane onto the Delta II launch vehicle and the spacecraft mate operation was flawlessly executed by the combined ULA and NASA Delta II Team.”
An Integrated Systems Test (IST) of the mated booster and payload was completed on Aug. 22
The dynamic duo will orbit the moon in a tandam formation just 50 kilometers above the lunar surface with an average separation of 200 km. During the 90 day science phase the goal is to determine the structure of the lunar interior from crust to core and to advance understanding of the thermal evolution of the moon.
GRAIL-A & GRAIL-B will measure the lunar gravity field with unprecedented resolution up to 100 times improvement on the near side and 1000 times improvement for the far side.
Universe Today: You’ve been really busy, with writing books, filming two television series and DVDs. Do you have time to do research in particle physics as well?
Brian Cox: Well, I must say I’ve been a bit restricted over the past couple of years in how much research I’ve done. I’m still attached to the experiment at CERN, but it’s just one of those things! In many ways it’s a regret because I would love to be there full time at the moment because it is so genuinely exciting. We’re making serious progress and we’re going to discover something like the Higgs particle, I would guess, within the next 12 months.
But then again, you can’t do everything and it’s a common regret amongst academics, actually, that that as they get older, they get taken away from the cutting-edge of research if they’re not careful! But I suppose it is not a bad way to be taken away from the cutting edge, to make TV programs and push this agenda that I have to make science more relevant and popular.
UT : Absolutely! Outreach and educating the public is very important, especially in the area of research you are in. I would guess a majority of the general public are not exceptionally well-versed in particle physics.
Cox: Well, Carl Sagan is a great hero of mine and he used to say it is really about teaching people the scientific method – or actually providing the understanding and appreciation of what science is. We look at these questions, such as what happened just after the Universe began, or why the particles in the Universe have mass – they are very esoteric questions.
But the fact that we’ve been able build some reasonable theories about the how old universe is — and we have a number 13.73 ± 0.12 billion years old, quite a precise number — so the question of showing how you get to those quite remarkable conclusions is very important. When you look at what we might call more socially-important subjects – for example how to respond to global warming, or what should be our policy for vaccinating the population against disease, or how should we produce energy in the future, and if you understand what the scientific method is and that it is apolitical and a-religious and it is a-everything and there is no agenda there, and is just pure way of looking of universe, that’s the important thing for society to understand.
“Wonders of the Universe” is a book about the television series. Traditionally these books are quite ‘coffee table,’ image-heavy books. The filming of the series took longer than we anticipated, so actually the book got written relatively quickly because I had time to sit down and really just write about the physics. Although it is tied with the television series, it does go quite a lot deeper in many areas. I’m quite pleased about that. So it’s more than just snapshots of my view of the physics of the TV series.
I should say also, some parts of it are in the form of a diary of what it was like filming the TV series. There are always some things you do and places you go that have quite an impact on you. And I tend to take a lot of pictures so many of the photographs in the book are mine. So, it is written on two levels: It is a much deeper view of the physics of the television series, but secondly it is a diary of the experience of filming the series and going to those places.
(Editor’s note, Cox is also just finishing a book on quantum mechanics, so look for that in the near future)
UT : What were some of your best experiences while filming ‘Wonders?’
Cox: One thing that, well, I wouldn’t say enjoyed filming, because it was quite nerve-wracking – but something that really worked was the prison demolition sequence in Rio. We used it as an analog for a collapsing star, a star at the end of its life that has run out of fuel and it collapses under its own gravity. It does that in a matter of seconds, on the same timescale as a building collapses when you detonate it.
Wandering around a building that is full of live dynamite and explosives is not very relaxing! It was all wired up and ready to go. But when we blew it up, and I thought it really worked well, and I enjoyed it a lot, actually as a television piece.
The ambition of the series is to try and get away from using too many graphics, if possible. You obviously have to use some graphics because we are talking about quite esoteric concepts, but we tried to put these things ‘on Earth’, by using real physical things to talk about the processes. What we did, we went inwards into the prison and at each layer we said, here’s where the hydrogen fuses to helium, and here’s the shell where helium goes to carbon and oxygen, and another shell all the way down to iron at the center of the stars. That’s the way stars are built, so we used this layered prison to illustrate that and then collapse it. That’s a good example of what the ambition of the series was.
UT : You’ve been called a rock star in the physics and astronomy field but in actuality you did play in a rock band before returning to science. What prompted that shift in your career?
Cox: I always wanted to be a physicist or astronomer from as far back as I can remember, that was always my thing when I was growing up. I got distracted when I was in my teens, or interested I should say, in music and being in a band. The opportunity came to join a band that was formed by an ex-member of Thin Lizard, a big rock band in the UK, and the States as well, so I did that. We made two albums; we toured with lots of people. That band split up and I went to university and then joined another band as a side line, and that band got successful as well. That was two accidents, really! It was a temporary detour rather than a switch, because I always wanted to do physics.
UT : Thanks for taking the time to talk with us on Universe Today – we appreciate all the work you do in making science more accessible so everyone can better appreciate and understand how it impacts our lives.
Universe Today: The Juno mission just launched to Jupiter and there are lots of other space missions going on. What are some your favorites and your hopes of what those kinds of missions will discover?
Brian Cox: The enormous question for space exploration is origin of life on other worlds. That is currently THE big question. We’ve seen discoveries recently about possible, plausible evidence of flowing water on Mars. There’s been evidence for awhile that there is perhaps subsurface water, but seeing what looks to be the signature of flowing, briny water — today — is very suggestive. On Earth, where we have water we have life, so this new finding makes Mars even more fascinating. The ExoMars project, the joint European-American mission to Mars to look for life is going to be one of most exciting missions yet, because there’s a good chance of finding it.
Now we’re heading off to Jupiter, and Europa is actually a fascinating place for the same reason. There is a huge amount subsurface water on Europa, and there has been speculation that colored markings on the surface of Europa could be life. It looks as though there may be seasonal shifts, and that could be possible cyanobacteria in the ice. This is really speculative, but this is the kind of language people are using now, talking about finding life with real optimism.
Beyond the solar system, the search for exoplanets is going very, very well. Virtually every star we survey we find planets! Well, that might be a bit of an exaggeration, but we’ve found hundreds and hundreds of planets. We’ve begun to see Earth-like planets and so the next step is to do spectroscopy to look at light passing through the atmospheres of those planets and look for signatures of elements like oxygen. Again, if you find oxygen-rich atmospheres — which we are on the verge of looking for now — if you find that, then you’ve got pretty good evidence there is life on those planets.
So, it could be we find life on a distant planet before we find life in the solar system, which would be tremendous. But really, I do think the big discoveries will be all about life, certainly in solar system exploration.
UT : What are your hopes for the future regarding physics, technology and space?
COX: I’d like to see an increase in rational thinking, which is synonymous with
scientific thinking.
Scientifically, the Large Hadron Collider is going to make a huge difference. It really is going to revolutionize our fundamental understanding of the way the universe works. Then there are these huge questions in fundamental physics, the question of why gravity is so weak, why the universe began in such an ordered way.
Then, what is 96% of the Universe made of? We know our Universe is full of something called Dark Matter and we don’t know what it is. The Universe is accelerating in its expansion, which we call Dark Energy and we don’t know what that is either. There is something fundamental going on.
I’d like to think this period of time is like the period of 1890 onwards to the turn of the 20th century. There were some small problems with things like understanding the spectrum of light, what atoms were; little problems really. But when we finally understood, it revolutionized our understanding of the Universe. Shortly after the turn of the century we got quantum theory, relativity – a complete change in our understanding. I’d like to think that maybe it’s a bit like that at the moment. There are so many little — and big — chinks in the armor of our picture of the Universe at the fundamental level. I think within the next few years, there will be big shifts, and probably, they will be led by the data from the LHC.