Glowing Plants Helps Biological Studies on ISS

plants in space
Arabidopsis plants imaged in white light (left) and Green Fluorescent Protein (GFP) excitation illumination, right. The arabidopsis plants are also part of the Plant Habitat-03 experiment. Image provided by Anna-Lisa Paul, Ph.D. and Robert Ferl, Ph.D., Department of Horticultural Sciences, University of Florida.

[/caption]
Glowing plants from space? Sounds like science fiction or the next B-horror movie. But glowing plants, willow trees, potential biofuels and more are being studied on the International Space Station and are part of key research in biotechnology, physiology, life sciences, and physical sciences going on in space. “This is not your grandfather’s backyard garden,” said Dr. Robert Ferl from the University of Florida, Gainesville.” We are now understanding fundamental biological principals that essentially can only be studied when you leave the surface of the Earth.”

Scientists are abuzz this week with the newly proposed 2011 NASA budget which extends the life of the International Space Station to 2020, and perhaps beyond. “The possibility of an expanded budget for full utilization of the space station means that scientists can do the research and also the technology development that will fulfill the complete potential of ISS,” said Julie Robinson, program scientists for ISS, “and that we will be able to bring back to Earth all the benefits that our new knowledge and technology can provide.”

At a press briefing today at Kennedy Space Center, a group of scientists shared current and future science investigations for the ISS, and the highlight was seeing some plants that actually glow in different colors to give scientists cues to what is taking place within the plant.

Robert Ferl at a press conference at KSC with a device from the APEX-TAGES experiment. Image: Nancy Atkinson

The Advanced Plant EXperiments on Orbit – Transgenic Arabidopsis Gene Expression System (APEX-TAGES) investigation uses Arabidopsis thaliana, or thale cress that has genetically modified so it can glow.

“Plants don’t talk a lot,” said Ferl, “so molecular biologists have been able to equip plants with the tools to have them communicate with us. Plants can glow with certain colors when certain genes are activated, when things happen like changes in their environments.”

APEX-TAGES uses a new real-time imaging system in conjunction with the “glowing” that removes the need for harvesting thereby allowing the plant to continue to grow and making it possible to follow the development of stress in a plant over time. The experiment also doesn’t require a lot of time and interaction from the ISS crew, as digital images can be transmitted from the site of the experiment to the site of the researchers.

Plants get cues from things on Earth, such as light, gravity, humidity. The question is, Ferl said –which applies to all biology — is what happens to terrestrial biology when it is no longer on Earth? Key to the research is understanding the adaptations that have to take place in order for plants in space to continue to grow successfully and produce fruit.

“What are the limts to terrestrial biology? How far can it travel and explore?” said Ferl “50% of plant DNA is like ours, and 80% of plant genes are like ours. So plants can support us with food, air, and water revitalization, but they are interesting because by studying them we learn more about what happens to complex biology as it leaves the surface of the earth.”

Perry Johnson-Green with the Canadian space agency displays the type of Willow trees grown in the ISS. Image: Nancy Atkinson

Also highlighted at the briefing were studies of plant cell metabolism of a potential biofuel plant, Jatropha, and research done on the first trees ever grown on the space station, Canadian Cambium willow trees, that was sponsored by the Canadian Space Agency and performed on orbit by Canadian astronaut Robert Thirsk, who just returned from the ISS in November.

Robinson also discussed an experiment on the ISS that found a better method of producing microencapsulated drugs for cancer and diabetes. A patent was issued at the end of 2009 and clinical trials are now being scheduled.

With $50 million of the proposed budget going directly to ISS, as well as additional funds coming from the NASA’s Science Directorate and technology development, Robinson said that scientists and technology developers will be fully utilizing the ISS as a National Lab in the coming years.

For more info:
The International Space Station Science webpage.

The APEX-TAGES experiment.

Webpage of Dr. Werner Vendrame and his research with the Jatropha plant

Webpage from the Canadian Space Agency on the willow trees grown on the ISS.

ISS Crew Twitpics from Orbit; Live Streaming Video Soon !

Twitpic of Golden Gate Bridge in San Francisco, CA from the ISS on Jan 30, 2010 Credit Astronaut Soichi Noguchi

[/caption]

“Golden Gate Bridge, San Fransisco, CA. Beautiful shadow :-),” tweeted Astronaut Soichi Noguchi along with a live image he shot from space from inside the International Space Station.

The 5 man crew comprising Expedition 22 aboard the ISS now have the capability to transmit live, unfiltered views and comments from space. And whats more is that starting on Feb. 1 they’ll be streaming live video from the outpost, orbiting some 220 miles above the earth while speeding along at 17,500 MPH.

Astronaut TJ Creamer twittered the first unassisted post only 1 week ago on Jan 22.
Yesterday afternoon (Jan 30) he tweeted about his next picture targets, “Gonna try to take some pix of the Moon and the mesospheric clouds.”

“Noctilucent clouds. Antarctic. Priceless.” Credit: Astronaut Soichi Noguchi
Noguchi sent down other beautiful shots, including “priceless” noctilucent clouds above Antarctica, city lights above Tokyo, and Port-Au-Prince, Haiti with “prayers” from the crew. He shot these In between his station work.

Noguchi tweeted on Jan 29, that he was working with the Japanese robotic arm (JEMRMS) which is attached to Japan’s giant “Kibo” science research module. “JMSRMS is working just fine-just like sim on the ground. I am very excited. The task is to check the status of external experiment facility. KOOL:-).” Kibo is the largest research laboratory on the ISS.

You can follow all the tweets from three of the crew; Astronauts Soichi Noguchi, TJ. Creamer and Jeff Williams at this link: http://twitter.com/NASA_Astronauts

“Great Saturday on board ISS. Taking photos of Earth, preparing for Shuttle arrival, Station maintenance, and calls home.” Reports Jeff Williams in the newest tweet.

“Our internal cameras wlll stream to the Web beginning Monday [Feb 1] ! Wave when you see us!! :)” tweets Creamer.

The live video will be available during all crew duty hours and when the complex is in contact with the ground through its high-speed communications antenna and NASA’s Tracking and Data Relay Satellite System. Live streaming video of the earth and the stations exterior has been available since March 2009.

Meanwhile, everything remains on schedule for the Feb. 7 launch of STS 130 to deliver the Tranquility and Cupola modules.

Earlier STS 130 article by Ken Kremer

Path clear for STS 130 to attach Tranquility module

Endeavour aiming for on time launch with coolant hose fix ahead of schedule

STS 130 flight pressing forward to launch as NASA resolves coolant hose leak

STS-130 Shuttle flight facing delay due to Payload technical glitch

Shuttle Endeavour Rolled to Pad; Countdown to the Final Five Begins

Tranquility Module Formally Handed over to NASA from ESA

“Brilliant city lights over Tokyo, Japan.” Credit: Astronaut Soichi Noguchi

“Haiti as of Jan 26. Port-Au-Prince was partially covered this afternoon. We pray for you...”. Credit: Astronaut Soichi Noguchi

Nuclear Fusion Power Closer to Reality Say Two Separate Teams

Nuclear Physics
Nuclear fusion. Credit: Lancaster University

[/caption]

For years, scientists have been trying to replicate the type of nuclear fusion that occurs naturally in stars in laboratories here on Earth in order to develop a clean and almost limitless source of energy. This week, two different research teams report significant headway in achieving inertial fusion ignition—a strategy to heat and compress a fuel that might allow scientists to harness the intense energy of nuclear fusion. One team used a massive laser system to test the possibility of heating heavy hydrogen atoms to ignite. The second team used a giant levitating magnet to bring matter to extremely high densities — a necessary step for nuclear fusion.

Unlike nuclear fission, which tears apart atoms to release energy and highly radioactive by-products, fusion involves putting immense pressure, or “squeezing” two heavy hydrogen atoms, called deuterium and tritium together so they fuse. This produces harmless helium and vast amounts of energy.

Recent experiments at the National Ignition Facility in Livermore, California used a massive laser system the size of three football fields. Siegfried Glenzer and his team aimed 192 intense laser beams at a small capsule—the size needed to store a mixture of deuterium and tritium, which upon implosion, can trigger burning fusion plasmas and an outpouring of usable energy. The researchers heated the capsule to 3.3 million Kelvin, and in doing so, paved the way for the next big step: igniting and imploding a fuel-filled capsule.

In a second report released earlier this week, researchers used a Levitated Dipole Experiment, or LDX, and suspended a giant donut-shaped magnet weighing about a half a ton in midair using an electromagnetic field. The researchers used the magnet to control the motion of an extremely hot gas of charged particles, called a plasma, contained within its outer chamber.

The donut magnet creates a turbulence called “pinching” that causes the plasma to condense, instead of spreading out, which usually happens with turbulence. This is the first time the “pinching” has been created in a laboratory. It has been seen in plasma in the magnetic fields of Earth and Jupiter.
A much bigger ma LDX would have to be built to reach the density levels needed for fusion, the scientists said.

Paper: Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies

Sources: Science Magazine, LiveScience

NASA advanced Solar Observatory nearing February launch; will send IMAX like movies daily

SDO and two piece payload fairing inside “clean room” at Astrotech Spaceflight facility near KSC on Jan 21. Fairing protects spacecraft during ascent through earths atmosphere. Credit: Ben Cooper/Spaceflight Now

[/caption]

NASA’s new solar science satellite, dubbed the Solar Dynamics Observatory, or SDO, moved an important step closer to launch when it was encapsulated inside its two piece payload fairing on Thursday (Jan 21) at the Astrotech Space Operations Facility nearby to the Kennedy Space Center (KSC). SDO is the most sophisticated spacecraft ever designed and constructed to study the sun and its dynamic behavior.

Liftoff of SDO aboard an Atlas V rocket from Cape Canaveral Air Force Station is targeted for Feb 9, just 2 days after the shuttle Endeavour blasts off with the Tranquility module and heads for the ISS.

“SDO will revolutionize our view of the sun. It will reveal how solar activity affects our planet and help us anticipate what lies ahead”, said Madhulika Guhathakurta at a Jan 21 press briefing. She is the SDO program scientist at NASA Headquarters.

The enclosed observatory will be transported on a specially designed trailer to Launch Complex 41 on Tuesday (Jan. 26) and then be hoisted up and bolted atop the two stage booster rocket. The 19 story tall Atlas V will propel the 8,800 pound spacecraft into an inclined geosynchronous orbit where it will study the sun in multiple wavelengths during its 5 year primary mission. It carries sufficient fuel to operate for another 5 years.

An Atlas rocket similar to this vehicle I observed at Cape Canaveral Pad 41 will launch SDO. Credit: Ken Kremer
SDO arrived at KSC on July 9 for final processing, testing and fueling operations. It was shipped from NASA’s Goddard Space flight Center where it was built by teams of technicians, engineers and scientists at a cost of $848 million.

SDO is the first spacecraft to be launched as part of NASA’s Living with a Star (LWS) science program initiative. The goal is to better understand the causes of solar variability and to create better forecasts for predicting “space weather” which directly affects the Earth and all life inhabiting it. Furthermore, this information will be used to help protect and provide early warning to valuable satellites operating in space as well as astronaut crews working aboard the International Space Station.

When active regions on the sun erupt suddenly and violently in the form of a solar flare or coronal mass ejection (CME), they hurl millions of tons of solar material and charged particles toward Earth which can damage orbiting satellites, disrupt navigation systems and cause failures in the power grid.

SDO is equipped with 3 science instruments which will measure and characterize in-depth the Suns interior and atmosphere, magnetic field, hot plasma of the solar corona and the density of the radiation that creates the ionosphere of the planets.

SDO will collect huge volumes of data which amount to a staggering 1.5 terabytes per day. This is the equivalent of downloading a half million songs each day or filling a CD every 36 seconds. “That’s almost 50 times more science data than any other mission in NASA history”, says Dean Pesnell, the SDO project scientist at NASA Goddard.

SDO is enclosed in its payload fairing and ready for transport on Jan 26 to Atlas V launch pad. Credit: NASA/Jim Grossman
“SDO is going to send us images ten times better than high definition television” according to Pesnell. “The pixel count is comparable to an IMAX movie — an IMAX filled with the raging sun, 24 hours a day.”

“We’ll be getting IMAX-quality images every 10 seconds,” says Pesnell. “We’ll see every nuance of solar activity.” Because no orbiting spacecraft has ever come even close to this incredible speed, there is a vast potential for ground breaking science discoveries. Scientists hope to learn how storms are generated inside the sun and how they then evolve and propagate outwards through the suns atmosphere and towards earth and the rest of the solar system.

Since SDO has no on-board recording system, the data will be transmitted continuously on a 24/7 basis to dedicated receiving stations on the ground in New Mexico as it maintains position over 22,000 miles high above earths equator.

I will be reporting on site from the Kennedy Space Center in February and directly from the launch pads for both SDO and STS 130. See my earlier STS 130 reports here.

NASA SDO Website

Scientists Get Ready for Suborbital Flights

Alan Stern Twittering during his NASTAR training. Credi: On Orbit.com

Researchers hoping to conduct scientific experiments on commercial suborbital spacecraft completed the first-ever round of training last week at the National Aerospace Training and Research (NASTAR) Center in Pennsylvania. The researchers hope to take advantage of the prospect of quick, low-cost and frequent access to the microgravity environment of suborbital space. They successfully went through full-flight simulation spins in a centrifuge and altitude chamber to simulate the physiological conditions that scientist-astronauts will experience during future missions to 100 km or more altitude. Additionally, they received training on how to best accomplish their science goals in the short 4-6 minute window of zero-g in an actual suborbital flight.

[/caption]

“Man, that NASTAR centrifuge was a kick!” said Dr. Alan Stern via Twitter following his turn in the multi-axis centrifuge. Stern is the chairman of SARG and a principal organizer of the scientist training program. “At 6 G’s you really feel like you’re hauling the mail. I can’t wait to fly a couple of flights to 130 km!”

The group consisted of 11 scientists, including graduate students, professors and researchers. “It was a great group; a really diverse group of researchers from planetary sciences, life sciences and space sciences,” said Erika Wagner, member of SARG – the Suborbital Applications Researcher Group.

Wagner said the training confirmed the growing interest in conducting research and education missions aboard commercial suborbital spacecraft.

“It was wonderful to see such a great show of interest from the science community,” Wagner told Universe Today. “When we first started this about a year ago, we heard some comments that there would be no interest in this. But the second class is already full and the third class is starting to fill up.”

Stern said the scientists invested their own time and money for the training, adding, “This is a true testament to the growing excitement behind the science potential of new commercial spacecraft.”

The training simulated rides aboard Virgin Galactic’s SpaceShipTwo, and the first day of the two-day regimen focused on altitude physiology and the challenges of decompression and spatial disorientation. The second day covered acceleration physiology and how to deal with increased G-forces.

“I think the training itself really made it real for us,” Wagner said. “We’ve been talking about suborbital science for over a year, and up until now it has been a sort of abstract thing. To suddenly be able to work out the details of how an experiment will actually work during a suborbital flight is very important.”

Erika Wagner, Alan Stern, and Dan Durda. Credit: OnOrbit.com

Wagner said some of the attendees had previously participated in parabolic airplane flights, like the “Vomit Comet” where researchers have 15-25 seconds of time in microgravity to do the experiments. “They were able to see the similarities and differences much more clearly,” she said. “The great thing about suborbital is you get this nice extended time of zero g, 4-6 minutes depending on the provider. But the challenge is that you only get one shot per flight, whereas in a parabolic flight, although the time is shorter, you get several attempts.”

Wagner said perhaps the best training was how to use your time most efficiently.

“You’ve got to be ready to deal with the acceleration challenges of launch and not be surprised by them, and be prepared for the challenges of getting out of your seat, unstowing your equipment and conducting an experiment in what may be a somewhat chaotic environment,” she said. “If you’ve never thought about those details before you fly, you’re not going to get very good quality science. But I think NASTAR has done a good job of making it clear to the investigators that you really want to maximize your science.”

Therefore, the most important part of the training was the least ‘flashy,’ Wagner said. “We did an exercise ‘Distraction Factors,’ which simulated the amount of space you’ll have to do your experiment, giving you five minutes to get out of your chair, gather your materials, conduct your experiment, put everything away and get back in your seat while everyone else is doing very different things around you, and then prepare for reentry. It wasn’t flashy but it highlighted the challenges of doing quality science. And also it challenges investigators to develop more efficient experiments.”

Keith Cowing from OnOrbit.com, standing in front of the 25 foot centrifuge

Wagner said the most humorous, albeit sobering part of this training is that when they completed the exercise, the instructor asked them if they had seen what was on the wall. “We all said, ‘What? What wall?’ It turns out they had been showing beautiful images of the Earth and space on a huge wall to simulate what we would see from space, and none of us had any clue they had done that because we were so focused on getting the task done. That highlighted for us the amount of attention and practice it is going to take for us to do an experiment in a four minute period. Plus you’ll want to take time to enjoy the experience.”

SARG is sponsoring the Next-Generation Suborbital Researchers Conference on February 18-20, 2010, in Boulder, Colorado where scientists, engineers, educators, and vehicle developers will gather to discuss the research and education benefits of new commercial suborbital spacecraft. Associate NASA Administrator Lori Garver will be the keynote speaker.

“We want to inform researchers on this opportunity,” Wagner said,”and find out how they want to use the vehicles and any constraints they might have, and feed that back to the vehicle designers and flight providers.”

For more information:

SARG and the Commercial Spaceflight Federation
More pictures of the training from OnOrbit.com
Joe Hill’s blog describing his experience at the NASTAR training
Next-Generation Suborbital Researchers Conference

Physicists Tie Beam of Light into Knots

The colored circle represents the hologram, out of which the knotted optical vortex emerges. Credit: University of Bristol

[/caption]
Imagine taking a beam of light and tying it in knots like a piece of string. Hard to fathom? Well, a group of physicists from the UK have achieved this remarkable feat, and they say understanding how to control light in this way has important implications for laser technology used in wide a range of industries.

“In a light beam, the flow of light through space is similar to water flowing in a river,” said Dr. Mark Dennis from the University of Bristol and lead author of a paper published in Nature Physics this week. “Although it often flows in a straight line – out of a torch, laser pointer, etc – light can also flow in whirls and eddies, forming lines in space called ‘optical vortices.’ Along these lines, or optical vortices, the intensity of the light is zero (black). The light all around us is filled with these dark lines, even though we can’t see them.”

Optical vortices can be created with holograms which direct the flow of light. In this work, the team designed holograms using knot theory – a branch of abstract mathematics inspired by knots that occur in shoelaces and rope. Using these specially designed holograms they were able to create knots in optical vortices.

This new research demonstrates a physical application for a branch of mathematics previously considered completely abstract.

“The sophisticated hologram design required for the experimental demonstration of the knotted light shows advanced optical control, which undoubtedly can be used in future laser devices,” said Miles Padgett from Glasgow University, who led the experiments

“The study of knotted vortices was initiated by Lord Kelvin back in 1867 in his quest for an explanation of atoms,” addeds Dennis, who began to study knotted optical vortices with Professor Sir Michael Berry at Bristol University in 2000. “This work opens a new chapter in that history.”

Paper: Isolated optical vortex knots by Mark R. Dennis, Robert P. King, Barry Jack, Kevin O’Holleran and Miles J. Padgett. Nature Physics, published online 17 January 2010.

Source: University of Bristol

How Do You Pronounce ‘Uranus’?


Uranus is the planet with the funny name and the odd orientation. So, when you say the word ‘Uranus’ do you stress the first syllable or the second? Or, perhaps you do as Dr. Pamela Gay suggests, in order to avoid “being made fun of by any small schoolchildren … when in doubt, don’t emphasize anything and just say ‘Uranus.’ And then run, quickly.”

This video is the latest offering from “Sixty Symbols,” a video series put together by the University of Nottingham which provides explanations for the “squiggly lines and Greek letters that astronomers and physicists use to describe physical properties of the Universe and how they apply to modern life,” said Dr. Amanda Bauer, who gave a presentation about Sixty Symbols at the dotAstronomy conference I attended in December (and who is the first person you see on the Uranus video.)

Sixty Symbols covers symbols like Lambda and the Hubble Constant (H) to the speed of light (c), imaginary numbers (j) and propulsion efficiency — explaining their meanings in everyday language, and taking advantage of the passion and the unique senses of humor the scientists at The University of Nottingham all seem to possess!

Bauer said, however, the real genius behind these videos is filmmaker Brady Haran.

In the fall of 2009, the Sixty Symbols team completed their first sixty symbols, and they proved so popular they are now working on another sixty. The project follows The University of Nottingham’s ‘Periodic Table of Videos’ project , which features an entertaining short film about the properties of every single element in the Periodic Table, from aluminium to xenon.

Check out the Sixty Symbols website, and the Sixty Symbols You Tube site to learn more

You can also watch Bauer’s dotAstronomy presentation about Sixty Symbols here.

India Launched 11 Rockets to Monitor Eclipse

India launched a small fleet of rockets to monitor the effects of the annular solar eclipse that occurred today. A total of 11 Rohini sounding rockets – suborbital rockets designed for scientific experiments – were launched from several different sites, including the Satish Dhawan Space Centre (SDSC) in Sriharikota. These rockets, launched by the Indian Space Research Organization (ISRO), carried instruments to measure the effect the eclipse had on the Earth’s atmosphere.

The eclipse – which lasted 11 minutes and 8 seconds at its peak, was visible to observers in Africa, southern Asian countries, India and China. This was an annular eclipse, meaning that the Moon blocked the Sun’s light enough for a bright ring to be seen around the silhouette of the Moon, and was the longest such eclipse of the millennium.

There are several phenomena that take place in the lessening of the Sun’s rays during an eclipse. When the solar radiation drops during an eclipse, the ionization that occurs in the atmosphere is temporarily lowered, causing disruptions in the Equatorial Electrojet – a ribbon of electric current that flows east to west near the equator.

The temperature and wind of the atmosphere are also altered by the cessation of sunlight, and were measured by the rockets. India launched five rockets yesterday to record pre-eclipse data, and then six more were launched today to measure the changes after the eclipse, which peaked at 1:15pm local time. Over 90% of the Sun’s light was blocked near the Thumba Equatorial Rocket Launching Station (TERLS), which lies on the southern tip of India, and was well-placed to measure the eclipse.

“Results of these experiments will coordinate ground-based eclipse observations with in situ space measurements. Interpretation of eclipse data together with space data is expected to give new insights to the earlier eclipse observations,” the ISRO wrote in a press release.

Sounding rockets have been used by other space agencies to monitor the ionosphere and the role of the Sun in atmospheric phenomenon. In 1994, NASA cooperated with Brazil on the Guara Campaign, named after the Guara bird that is native to Brazil. In August-October of that year, NASA launched a total of 33 rockets with various experiments to measure the photochemistry and plasma of the atmosphere near the equator. All of the rockets were launched from the Alcantara launch range in Brazil.

Source: ISRO press release

Faster-Than-Light Pulsar Phenomena

Artist's impression of an anomalous X-ray pulsar. Credit: ESA

Observational data from nine pulsars, including the Crab pulsar, suggest these rapidly spinning neutron stars emit the electromagnetic equivalent of a sonic boom, and a model created to understand this phenomenon shows that the source of the emissions could be traveling faster than the speed of light. Researchers say as the polarization currents in these emissions are whipped around with a mechanism likened to a synchrotron, the sources could be traveling up to six times light speed, or 1.8 million km per second. However, although the source of the radiation exceeds the speed of light, the emitted radiation travels at normal light speed once it leaves the source. “This is not science fiction, and no laws of physics were broken in this model,” said John Singleton of Los Alamos National Laboratory at a press briefing at the American Astronomical Society meeting in Washington, DC. “And Einstein’s theory of Special Relativity is not violated.”

This model, called the superluminal model of pulsars, was described by Singleton and colleague Andrea Schmidt as solving many unanswered issues about pulsars.”We can account for a number of probabilities with this model,” said Singleton, “and there is a huge amount of observational data available, so there will be ample opportunities to verify this.”

Pulsars emit amazingly regular, short bursts of radio waves. Within the emissions from the pulses, the circulating polarization currents move in a circular orbit, and its emitted radiation is analogous to that of electron synchrotron facilities used to produce radiation from the far-infrared to X-ray for experiments in biology and other subjects. In other words, the pulsar is a very broadband source of radiation.

However, Singleton said, the fact that the source moves faster than the speed of light results in a flux that oscillates as a function of frequency. “Despite the large speed of the polarization current itself, the small displacements of the charged particles that make it up means that their velocities remain slower than light,” he said.

These superluminal polarization currents are disturbances in the pulsar’s plasma atmosphere in which oppositely-charged particles are displaced by small amounts in opposite directions; they are induced by the neutron star’s rotating magnetic field. This creates the electromagnetic equivalent of a sonic boom from accelerating supersonic aircraft. Just as the “boom” can be very loud a long way from the aircraft, the analogous signals from the pulsar remain intense over very long distances.

Rapid condensation of water vapor due to a sonic shock produced at sub-sonic speed creates a vapor cone (known as a Prandtl–Glauert singularity), which can be seen with the naked eye.

Back in the 1980s, Nobel laureate Vitaly Ginzburg and colleagues showed that such faster than light polarization currents will act as sources of electromagnetic radiation. Since then, the theory has been developed by Houshang Ardavan of Cambridge University, UK, and several ground-based demonstrations of the principle have been carried out in the United Kingdom, Russia and the USA. So far, polarization currents traveling at up to six times the speed of light have been demonstrated to emit tightly-focused bursts of radiation by the ground-based experiments.

Although Singleton and Schmidt’s highly technical presentation was admittedly over the heads of many in attendance (and watching online), LANL researchers said the superluminal model fits data from the Crab pulsar and eight other pulsars, spanning electromagnetic frequencies from the radio to X-rays. In each case, the superluminal model accounted for the entire data set over 16 orders of magnitude of frequency with essentially only two adjustable parameters. In contrast to previous attempts, where several disparate models have been used to fit small frequency ranges of pulsar spectra, Schmidt said that a single emission process can account for the whole of the pulsar’s spectrum.

“We think we can explain all observational data using this method,” Singleton said.

When asked, Singleton said they have received some hostile reactions to their model from the pulsar community, but that many others have been “charitably disposed because it explains a lot of their data.”

Lead image caption: Artist’s impression of an anomalous X-ray pulsar. Credit: ESA

Papers: Singleton et al,, Ardavan, et al, Ardavan, et al
Sources: AAS press conference, LANL,

The Invasion of “Teapots From Space!”

With a combination of alien invasion and British invasion, a new video series provides an amusing way to learn about different aspects of astronomy and space. “Teapots from Space” was created by UK astronomers Edward Gomez, Jon Yardley and Olivia Gomez, and these vodcasts convey lots of science in a short and entertaining package.

“The aim of the series to make astronomy a bit more light hearted but still give a good representation of the science,” said Edward Gomez, from Cardiff University. “I took a lot of inspiration from Douglas Adams when I wrote the episodes, and so the Teapots are like a cross between a sci-fi B-movie and Douglas Adams’ ‘Hitchhikers Guide to the Galaxy.'”

The Teapots come to learn about Earth and the humans that inhabit it. They abduct human scientists who explain all the questions the Teapots have about astronomy, technology and space. But before sending them back to Earth, the scientists’ minds are wiped so they don’t remember the abduction. Sometimes, disembodied robot astronomers provide the answers. Don’t worry, though: no astronomers were harmed in the making of these “potcasts.”

“There are lots of vodcasts available in the world of science but I wanted to make some which were fun and accessible but did not turn down the volume on the science,” Gomez said. “The idea of the Teapots from Space came into being as a vehicle for telling different scientific stories. Nothing is taken too seriously, but the science is all correct.”

Currently there are four episodes available, and another should be released soon. The first episode is about space junk while #2 is about the Herschel and Planck spacecraft; episode 3 is about how to spot (and abduct) astronomers, and the newest episode is about supernovae.

So, settle in on a comfy chair for some afternoon tea and tasty biscuits to watch Teapots From Space.