Language in the Cosmos I: Is Universal Grammar Really Universal?

Chomsky (right), octopus (left), universal grammar
On May 26, METI International sponsored a symposium on 'Language in the Cosmos'. The symposium included a new perspective on the famed linguist Noam Chomsky's theories (right) (Credit: METI International). The eye of the octopus (left) illustrates the phenomenon of evolutionary convergence, a key to the possibility that alien languages might have a structure similar to ours. (Credit: Sylke Rohrlach public domain)

The METI Symposium

The symposium

How could you devise a message for intelligent creatures from another planet? They wouldn’t know any human language. Their ‘speech’ might be as different from ours as the eerie cries of whales or the twinkling lights of fireflies. Their cultural and scientific history would have followed its own path. Their minds might not even work like ours. Would the deep structure of language, its so called ‘universal grammar’ be the same for aliens as for us? A group of linguists and other scientists gathered on May 26 to discuss the challenging problems posed by devising a message that extraterrestrial beings could understand. There are growing hopes that such beings might be out there among the billions of habitable planets that we now think exist in our galaxy. The symposium, called ‘Language in the Cosmos’ was organized by METI International. It took place as part of the National Space Society’s International Space Development Conference in Los Angeles. The Chair of the workshop was Dr. Sheri Wells-Jensen, a linguist from Bowling Green State University in Ohio.

What is METI International?

‘METI’ stands for messaging to extraterrestrial intelligence. METI International is an organization of scientists and scholars that aims to foster an entirely new approach in our search for alien civilizations. Since 1960, researchers have been looking for extraterrestrials by searching for possible messages they might send to us by radio or laser beams. They have sought the giant megastructures that advanced alien societies might build in space. METI International wants to move beyond this purely passive search strategy. They want to construct and transmit messages to the planets of relatively nearby stars, hoping for a response.

One of the organization’s central goals is to build an interdisciplinary community of scholars concerned with designing interstellar messages that can be understood by non-human minds. More generally, it works internationally to promote research in the search for extraterrestrial intelligence and astrobiology, and to understand the evolution of intelligence here on Earth. The daylong symposium featured eleven presentations. It main theme was the role of linguistics in communication with extraterrestrial intelligence.

METI International
METI International

This article

This article is the first in a two part series. It will focus on one of the most fundamental issues addressed at the conference. This is the question of whether the deep underlying structure of language would likely be the same for extraterrestrials as for us. Linguists understand the deep structure of language using the theory of ‘universal grammar’. The eminent Linguist Noam Chomsky developed this theory in the middle of the twentieth century.

Two interrelated presentations at the symposium addressed the issue of universal grammar. The first was by Dr. Jeffery Punske of Southern Illinois University and Dr. Bridget Samuels of the University of Southern California. The second was given by Dr. Jeffrey Watumull of Oceanit, whose coauthors were Dr. Ian Roberts of the University of Cambridge, and Dr. Noam Chomsky himself, of the Massachusetts Institute of Technology.

Chomsky’s universal grammar-For humans only?

Universal grammar

Despite its name, Chomsky originally took his ‘universal grammar’ theory to imply that there are major, and maybe insuperable barriers to mutual understanding between humans and extraterrestrials. Let’s first consider why Chomsky’s theories seemed to make interstellar communication virtually hopeless. Then we’ll examine why Chomsky’s colleagues who presented at the symposium, and Chomsky himself, now think differently.

Before the second half of the twentieth century, linguists believed that the human mind was a blank slate, and that we learned language entirely by experience. These beliefs dated to the seventeenth century philosopher John Locke and were elaborated in the laboratories of behaviorist psychologists in the early twentieth century. Beginning in the 1950’s, Noam Chomsky challenged this view. He argued that learning a language couldn’t simply be a matter of learning to associate stimuli with responses. He saw that young children, even before the age of 5, can consistently produce and interpret original sentences that they had never heard before. He spoke of a “poverty of the stimulus”. Children couldn’t possibly be exposed to enough examples to learn the rules of language from scratch.

Chomsky posited instead that the human brain contained a “language organ”. This language organ was already pre-organized at birth for the basic rules of language, which he called “universal grammar”. It made human infants primed and ready to learn whatever language they were exposed to using only a limited number of examples. He proposed that the language organ arose in human evolution, maybe as recently of 50,000 years ago. Chomsky’s powerful arguments were accepted by other linguists. He came to be regarded as one of the great linguists and cognitive scientists of the twentieth century.

Universal grammar and ‘Martians’

Human beings speak more than 6000 different languages. Chomsky defined his “universal grammar” as “the system of principles, conditions, and rules that are elements or properties of all human languages”. He said it could be taken to express “the essence of human language”. But he wasn’t convinced that this ‘essence of human language’ was the essence of all theoretically possible languages. When Chomsky was asked by an interviewer from Omni Magazine in 1983 whether he thought that it would be possible for humans to learn an alien language, he replied:

“Not if their language violated the principles of our universal grammar, which, given the myriad ways that languages can be organized, strikes me as highly likely…The same structures that make it possible to learn a human language make it impossible for us to learn a language that violates the principles of universal grammar. If a Martian landed from outer space and spoke a language that violated universal grammar, we simply would not be able to learn that language the way that we learn a human language like English or Swahili. We should have to approach the alien’s language slowly and laboriously — the way that scientists study physics, where it takes generation after generation of labor to gain new understanding and to make significant progress. We’re designed by nature for English, Chinese, and every other possible human language. But we’re not designed to learn perfectly usable languages that violate universal grammar. These languages would simply not be within the range of our abilities.”

If intelligent, language-using life exists on another planet, Chomsky knew, it would necessarily have arisen by a different series of evolutionary changes than the uniquely improbable path that produced human beings. A different history of climate changes, geological events, asteroid and comet impacts, random genetic mutations, and other events would have produced a different set of life forms. These would have interacted with one another in a different ways over the history of life on the planet. The “Martian” language organ, with its different and unique history, could, Chomsky surmised, be entirely different from its human counterpart, making communication monumentally difficult, if not impossible.

Convergent evolution and alien minds

The tree of life

Why did Chomsky think that the human and ‘Martian‘ language organ would likely be fundamentally different? How come he and his colleagues now hold different views? To find out, we first need to explore some basic principles of evolutionary theory.

Originally formulated by the naturalist Charles Darwin in the nineteenth century, the theory of evolution is the central principle of modern biology. It is our best tool for predicting what life might be like on other planets. The theory maintains that living species evolved from previous species. It asserts that all life on Earth is descended from an initial Earthly life form that lived more than 3.8 billion years ago.

You can think of these relationships as like a tree with many branches. The base of the trunk of the tree represents the first life on Earth 3.8 billion years ago. The tip of each branch represents now, and a modern species. The diverging branches connecting each branch tip with the trunk represent the evolutionary history of each species. Each branch point in the tree is where two species diverged from a common ancestor.

Evolution, brains, and contingency

To understand Chomsky’s thinking, we’ll start with a familiar group of animals; the vertebrates, or animals with backbones. This group includes fishes, amphibians, reptiles, birds, and mammals, including humans.

We’ll compare the vertebrates with a less familiar, and distantly related group; the cephalopod molluscs. This group includes octopuses, squids, and cuttlefish. These two groups have been evolving along separate evolutionary paths-different branches of our tree-for more than 600 million years. I’ve chosen them because, as they’ve traveled along their separate branch of our evolutionary tree, each has evolved it own sort of complex brains and complex sense organs.

The brains of all vertebrates have the same basic plan. This is because they all evolved from a common ancestor that already had a brain with that basic plan. The octopus’s brain, by contrast, has an utterly different organization. This is because the common ancestor of cephalopods and vertebrates lies much further back in evolutionary time, on a lower branch of our tree. It probably had only the simplest of brains, if any at all.

With no common plan to inherit, the two kinds of brains evolved independently of one another. They are different because evolutionary change is contingent. That is, it involves varying combinations of influences, including chance. Those contingent influences were different along the path that produced cephalopod brains, than along the one that led to vertebrate brains.

Chomsky believed that many languages might be theoretically possible that violated the seemingly arbitrary constraints of human universal grammar. There didn’t seem to be anything that made our actual universal grammar something special. So, because of the contingent nature of evolution, Chomsky assumed that the ‘Martian’ language organ would arrive at one of these other possibilities, making it fundamentally different from its human counterpart.

This sort of evolution-based pessimism about the likelihood that humans and aliens could communicate is widespread. At the symposium, Dr. Gonzalo Munévar of Lawrence Technological University argued that intelligent creatures that evolved sensory systems and cognitive structures different from ours would not develop similar scientific theories or even similar mathematics.

Evolution, eyes, and convergence

Now lets consider another feature of the octopus and other cephalopods; their eyes. Surprisingly, the eyes of octopuses resemble those of vertebrates in intricate detail. This uncanny resemblance can’t be explained in the same way as the general resemblance of vertebrate brains to one another. It’s almost certainly not due to inheritance of the traits from a common ancestor. It’s true that some of the genes involved in the building of eyes are the same in most animals, appearing far down towards the trunk of our evolutionary tree. But, biologists are almost certain that the common ancestor of cephalopods and vertebrates was much too simple to have any eyes at all.

Biologists think eyes evolved separately more than forty times on Earth, each on its own branch of the evolutionary tree. There are many different kinds of eyes. Some are so strangely different from our own that even a science fiction writer would be surprised by them. So, if evolutionary change is contingent, why do octopus eyes bear a striking and detailed similarity to our own? The answer lies outside of evolutionary theory, with the laws of optics. Many large animals, like the octopus, need acute vision. There is only one good way, under the laws of optics, to make an eye that meets the needed requirements. Whenever such an eye is needed, evolution finds this same best solution. This phenomenon is called convergent evolution.

Life on another planet would have its own separate evolutionary tree, with the base of the trunk representing the appearance of life on that planet. Because of the contingency of evolutionary change, the pattern of branches might be quite different from our Earthly evolutionary tree. But because the laws of optics are the same everywhere in the universe, we can expect that large animals under similar conditions will evolve an eye that looks a lot like that of a vertebrate or a cephalopod. Convergent evolution is potentially a universal phenomenon.

eye evolution universal grammar
The eye of a fish (left), which is an aquatic vertebrate, and that of a cephalopod mollusc like the octopus (right) are almost identical, but the two evolved independently. Their remarkable similarity is due to convergent evolution. The common ancestor of fishes and cephalopods did not have a well developed eye, nor do some molluscs that are not cephalopods. This sort of eye is called a camera eye, because its layout is similar to a camera with the lens at the front, and the light sensing retina at the back (Credit: Jerry Crimson Mann public domain, evolution diagram is by the author).

Not just for humans anymore?

Taking apart the language organ

Jeff Punske universal grammar
Jeffrey Punske, Assistant Professor of Linguistics, Southern Illinois University

By the beginning of the twenty-first century, Chomsky and some of his colleagues started to look at the language organ and universal grammar in a new way. This new view made it seem like the properties of universal grammar were inevitable, much as the laws of optics made many features of the octopus’s eye inevitable.

In a 2002 review, Chomsky and his colleagues Marc Hauser and Tecumseh Fitch argued that the language organ can be decomposed into a number of distinct parts. The sensory-motor, or externalization, system is involved in the mechanics of expressing language through methods like vocal speech, writing, typing, or sign language. The conceptual-intentional system relates language to concepts.

Bridget Samuels universal grammar
Bridget Samuels, Center for Craniofacial Anatomy, University of Southern California

The core of the system, the trio proposed, consists of what they called the narrow faculty of language. It is a system for applying the rules of language recursively, over and over, thereby allowing the construction of an almost endless range of meaningful utterances. Jeffrey Punske and Bridget Samuels similarly spoke of a ‘syntactic spine’ of all human languages. Syntax is the set of rules that govern the grammatical structure of sentences.

The inevitability of universal grammar

Chomsky and his colleagues made a careful analysis of what computations a nervous system might need to perform in order to make this recursion possible. As an abstract description of how the narrow faculty works, the researchers turned to a mathematical model called the Turing machine. The mathematician Alan Turing developed this model early in the twentieth century. This theoretical ‘machine’ led to the development of electronic computers.

Their analysis led to a striking and unexpected conclusion. In a book chapter currently in press, Watumull and Chomsky write that “Recent work demonstrating the simplicity and optimality of language increases the cogency of a conjecture that at one time would have been summarily dismissed as absurd: the basic principles of language are drawn from the domain of (virtual) conceptual necessity”. Jeffrey Watumull wrote that this strong minimalist thesis posits that “there exist constraints in the structure of the universe itself such that systems cannot but conform”. Our universal grammar is something special, and not just one among many theoretical possibilities.

Ian Roberts universal grammar
Ian Roberts, Professor of Linguistics, Faculty of Medieval and Modern Languages, Cambridge University

Plato and the strong minimalist thesis

The constraints of mathematical and computational necessity shape the narrow faculty to be as it is, just like the laws of optics shape both the vertebrate and the octopus eye. ‘Martian’ languages, then, might follow the same universal grammar as human languages because there is only one best way to make the recursive core of the language organ.

Through the process of convergent evolution, nature would be compelled to find this one best way wherever and whenever in the universe that language evolves. Watumull supposed that the brain mechanisms of arithmetic might reflect a similarly inevitable convergence. That would mean that the basics of arithmetic would also be the same for humans and aliens. We must, Watumull and Chomsky wrote “rethink any presumptions that extraterrestrial intelligence or artificial intelligence would really be all that different from human intelligence”.

This is the striking conclusion that Watumull, and in a complementary way, Punske and Samuels presented at the symposium. Universal grammar may actually be universal, after all. Watumull compared this thesis to a modern, computer age version of the beliefs of the ancient Greek philosopher Plato, who maintained that mathematical and logical relationships are real things that exist in the world apart from us, and are merely discovered by the human mind. As a novel contribution to a difficult ages-old philosophical problem, these new ideas are sure to stir controversy. They illustrate the depth of new knowledge that awaits us as we reach out to other worlds and other minds.

universal grammar
The ancient Greek philosopher Plato as imagined by the Renaissance painter Raphael. Plato maintained that mathematical and logical truths existed objectively, apart from our mind and were merely discovered by humans. Jeffrey Watumull, Ian Roberts, and Noam Chomsky’s view of the narrow faculty of language are a modern day version of Plato’s views, in which necessary mathematical, logical, and computational relationships determine the structure of the language faculty, and universal grammar. Since the same necessary relationships would influence the evolution of the language faculty of aliens, alien languages, they contend, are likely to have the same universal grammar as human languages.

Universal grammar and messages for aliens

What are the consequences of this new way of thinking about the structure of language for practical attempts to create interstellar messages? Watumull thinks the new thinking is a challenge to “the pessimistic relativism of those who think it overwhelmingly likely that terrestrial (i.e. human) intelligence and extraterrestrial intelligence would be (perhaps in principle) mutually unintelligible”. Punske and Samuels agree, and think that “math and physics likely represent the best bet for common concepts that could be used as a starting point”.

Watumull supposes that while the minds of aliens or artificial intelligences may be qualitatively similar to ours, they may differ quantitatively in having bigger memories, or the ability to think much faster than us. He is confident that an alien language would likely include nouns, verbs, and clauses. That means they could probably understand an artificial message containing such things. Such a message, he thinks, might also profitably include the structure and syntax of natural human languages, because this would likely be shared by alien languages.

Punske and Samuels seem more cautious. They note that “There are some linguists who don’t believe nouns and verbs are universal human language categories”. Still, they suspect that “alien languages would be built of discrete meaningful units that can combine into larger meaningful units”. Human speech consists of a linear sequence of words, but, Punske and Samuels note that “Some of the linearity imposed on human language may be due to the constraints of our vocal anatomy, and already starts to break down when we think about signed languages”.

Overall, the findings foster new hope that devising a message comprehensible to extraterrestrials is feasible. In the next installment, we will look at a new example of such a message. It was transmitted in 2017 towards a star 12 light years from our sun.

References and further reading

Allman J. (2000) Evolving Brains, Scientific American Library

Chomsky, N. (2017) The language capacity: Architecture and evolution, Psychonomics Bulletin Review, 24:200-203.

Gliedman J. (1983) Things no amount of learning can teach, Omni Magazine, chomsky.info

Hauser, M. D. , Chomsky, N. , and Fitch W. T. (2002) The faculty of language: What is it, Who has it, and How did it evolve? Science, 298: 1569-1579.

Land, M. F. and Nilsson, D-E. (2002) Animal Eyes, Oxford Animal Biology Series

Noam Chomsky’s theories on language, Study.com

Patton P. E. (2014) Communicating across the cosmos. Part 1: Shouting into the darkness, Part 2: Petabytes from the stars, Part 3: Bridging the vast gulf, Part 4: Quest for a Rosetta Stone, Universe Today.

Patton P. E. (2016) Alien Minds, I. Are extraterrestrial civilizations likely to evolve, II. Do aliens think big brains are sexy too?, III. The octopus’s garden and the country of the blind, Universe Today

If We Do Hear Signals From Aliens, They’re Probably Long Gone

The Drake Equation, a mathematical formula for the probability of finding life or advanced civilizations in the universe. Credit: University of Rochester

In 1961, famed astrophysics Frank Drake proposed a formula that came to be known as the Drake Equation. Based on a series of factors, this equation sought to estimate the number of extraterrestrial intelligences (ETIs) that would exist within our galaxy at any given time. Since that time, multiple efforts have been launched to find evidence of alien civilizations, which are collectively known as the search for extraterrestrial intelligence (SETI).

The most well-known of these is the SETI Institute, which has spent the past few decades searching the cosmos for signs of extraterrestrial radio communications. But according to a new study that seeks to update the Drake Equation, a team of international astronomers indicates that even if we did find signals of alien origin, those who sent them would be long dead.

Continue reading “If We Do Hear Signals From Aliens, They’re Probably Long Gone”

If We Receive a Message From Aliens, Should We Delete it Without Reading it?

Photo of the central region of the Milky Way. Credit: UCLA SETI Group/Yuri Beletsky, Carnegie Las Campanas Observatory

Roughly half a century ago, Cornell astronomer Frank Drake conducted Project Ozma, the first systematic SETI survey at the National Radio Astronomy Observatory in Green Bank, West Virginia. Since that time, scientists have conducted multiple surveys in the hopes of find indications of “technosignatures” – i.e. evidence of technologically-advanced life (such as radio communications).

To put it plainly, if humanity were to receive a message from an extra-terrestrial civilization right now, it would be the single-greatest event in the history of civilization. But according to a new study, such a message could also pose a serious risk to humanity. Drawing on multiple possibilities that have been explored in detail, they consider how humanity could shield itself from malicious spam and viruses.

The study, titled “Interstellar communication. IX. Message decontamination is impossible“, recently appeared online. The study was conducted by Michael Hippke, a independent scientist from the Sonneberg Observatory in Germany; and John G. Learned, a professor with the High Energy Physics Group at the University of Hawaii. Together, they examine some of the foregone conclusions about SETI and what is more likely to be the case.

Frank Drake writing his famous equation on a white board. Credit: SETI.org

To be fair, the notion that an extra-terrestrial civilization could pose a threat to humanity is not just a well-worn science fiction trope. For decades, scientists have treated it as a distinct possibility and considered whether or not the risks outweigh the possible benefits. As a result, some theorists have suggested that humans should not engage in SETI at all, or that we should take measures to hide our planet.

As Professor Learned told Universe Today via email, there has never been a consensus among SETI researchers about whether or not ETI would be benevolent:

“There is no compelling reason at all to assume benevolence (for example that ETI are wise and kind due to their ancient civilization’s experience). I find much more compelling the analogy to what we know from our history… Is there any society anywhere which has had a good experience after meeting up with a technologically advanced invader? Of course it would go either way, but I think often of the movie Alien… a credible notion it seems to me.”

In addition, assuming that an alien message could pose a threat to humanity makes practical sense. Given the sheer size of the Universe and the limitations imposed by Special Relativity (i.e. no known means of FTL), it would always be cheaper and easier to send a malicious message to eradicate a civilization compared to an invasion fleet. As a result, Hippke and Learned advise that SETI signals be vetted and/or “decontaminated” beforehand.

The Arecibo Radio Telescope in Puerto Rico was the site of NASA’s High Resolution Microwave Survey, a search for extraterrestrial radio messages. Credit: US NSF

In terms of how a SETI signal could constitute a threat, the researchers outline a number of possibilities. Beyond the likelihood that a message could convey misinformation designed to cause a panic or self-destructive behavior, there is also the possibility that it could contain viruses or other embedded technical issues (i.e. the format could cause our computers to crash).

They also note that, when it comes to SETI, a major complication arises from the fact that no message is likely to received in only one place (thus making containment possible). This is unlikely because of the “Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence”, which was adopted by the International Academy of Astronautics in 1989 (and revised in 2010).

Article 6 of this declaration states the following:

“The discovery should be confirmed and monitored and any data bearing on the evidence of extraterrestrial intelligence should be recorded and stored permanently to the greatest extent feasible and practicable, in a form that will make it available for further analysis and interpretation. These recordings should be made available to the international institutions listed above and to members of the scientific community for further objective analysis and interpretation.”

Voyager included a golden record with images and sounds of Earthly life recorded on it… just in case. Credit: NASA

As such, a message that is confirmed to have originated from an ETI would most likely be made available to the entire scientific community before it could be deemed to be threatening in nature. Even if there was only one recipient, and they attempted to keep the message under strict lock and key, it’s a safe bet that other parties would find a way to access it before long.

The question naturally arises then, what can be done? One possibility that Hippke and Learned suggest is to take a analog approach to interpreting these messages, which they illustrate using the 2017 SETI Decrypt Challenge as an example. This challenge, which was issued by René Heller of the Max Planck Institute for Solar System Research, consisted of a sequence of about two million binary digits and related information being posted to social media.

In addition to being a fascinating exercise that gave the public a taste of what SETI research means, the challenge also sough to address some central questions when it came to communicating with an ETI. Foremost among these was whether or not humanity would be bale to understand a message from an alien civilization, and how we might be able to make a message comprehensible (if we sent one first). As they state:

“As an example, the message from the “SETI Decrypt Challenge” (Heller 2017) was a stream of 1,902,341 bits, which is the product of prime numbers. Like the Arecibo message (Staff At The National Astronomy Ionosphere Center 1975) and Evpatoria’s “Cosmic Calls” (Shuch 2011), the bits represent the X/Y black/white pixel map of an image. When this is understood, further analysis could be done off-line by printing on paper. Any harm would then come from the meaning of the message, and not from embedded viruses or other technical issues.”

The Wow! signal represented as “6EQUJ5”. Credit: Big Ear Radio Observatory/NAAPO

However, where messages are made up of complex codes or even a self-contained AI, the need for sophisticated computers may be unavoidable. In this case, the authors explore another popular recommendation, which is the use on quarantined machines to conduct the analysis – i.e. a message prison. Unfortunately, they also acknowledge that no prison would be 100% effective and containment could eventually fail.

“This scenario resembles the Oracle-AI, or AI box, of an isolated computer system where a possibly dangerous AI is ‘imprisoned’ with only minimalist communication channels,” they write. “Current research indicates that even well-designed boxes are useless, and a sufficiently intelligent AI will be able to persuade or trick its human keepers into releasing it.”

In the end, it appears that the only real solution is to maintain a vigilant attitude and ensure that any messages we send are as benign as possible. As Hippke summarized: “I think it’s overwhelmingly likely that a message will be positive, but you can not be sure. Would you take a 1% chance of death for a 99% chance of a cure for all diseases? One learning from our paper is how to design own message, in case we decide to send any: Keep it simple, don’t send computer code.”

Basically, when it comes to the search for extra-terrestrial intelligence, the rules of internet safety may apply. If we begin to receive messages, we shouldn’t trust those that come with big attachments and send any suspicious looking ones to our spam folder. Oh, and if a sender is promising the cure for all known diseases, or claims to be the deposed monarch of Andromeda in need of some cash, we should just hit delete!

Further Reading: arXiv

Researchers Just Scanned 14 Worlds From the Kepler Mission for “Technosignatures”, Evidence of Advanced Civilizations

A team of astronomers from UCLA searched for "technosignatures" in the Kepler field data. Credit and Copyright: Danielle Futselaar

When it comes to looking for life on extra-solar planets, scientists rely on what is known as the “low-hanging fruit” approach. In lieu of being able to observe these planets directly or up close, they are forced to look for “biosignatures” – substances that indicate that life could exist there. Given that Earth is the only planet (that we know of) that can support life, these include carbon, oxygen, nitrogen and water.

However, while the presence of these elements are a good way of gauging “habitability”, they are not necessarily indications that extra-terrestrial civilizations exist. Hence why scientists engaged in the Search for Extra-Terrestrial Intelligence (SETI) also keep their eyes peeled for “technosignatures”. Targeting the Kepler field, a team of scientists recently conducted a study that examined 14 planetary systems for indications of intelligent life.

The study, titled “A search for technosignatures from 14 planetary systems in the Kepler field with the Green Bank Telescope at 1.15-1.73 GHz“, recently appeared online and is being reviewed for publication by The Astronomical Journal. The team was led by Jean-Luc Margot, the Chair of the UCLA Department of Earth, Planetary, and Space Sciences (UCLA EPSS) and a Professor with UCLA’s Department of Physics and Astronomy.

The Green Bank Telescope is the world’s largest, fully-steerable telescope, which is currently being used in a new SETI (Search for Extraterrestrial Intelligence) attempt to look for possible alien radio signals from Tabby’s Star. Credit: NRAO/AUI/NSF

In addition to Margot, the team consisted of 15 graduate and undergraduate students from UCLA and a postdoctoral researcher from the Green Bank Observatory and the Center for Gravitational Waves and Cosmology at West Virginia University. All of the UCLA students participated in the 2016 course, “Search for Extraterrestrial Intelligence: Theory and Applications“.

Together, the team selected 14 systems from the Kepler catalog and examined them for technosignatures. While radio waves are a common occurrence in the cosmos, not all sources can be easily attributed to natural causes. Where and when this is the case, scientists conduct additional studies to try and rule out the possibility that they are a technosignature. As Professor Margot told Universe Today via email:

“In our article, we define a “technosignature” as any measurable property or effect that provides scientific evidence of past or present technology, by analogy with “biosignatures,” which provide evidence of past or present life.”

For the sake of their study, the team conducted an L-band radio survey of these 14 planetary systems. Specifically, they looked for signs of radio waves in the 1.15 to 1.73 gigahertz (GHz) range. At those frequencies, their study is sensitive to Arecibo-class transmitters located within 450 light-years of Earth. So if any of these systems have civilizations capable of building radio observatories comparable to Arecibo, the team hoped to find out!

Spring 2016 UCLA SETI class with Larry Lesyna. Credit: UCLA

“We searched for signals that are narrow (< 10 Hz) in the frequency domain,” said Margot. “Such signals are technosignatures because natural sources do not emit such narrowband signals… We identified approximately 850,000 candidate signals, of which 19 were of particular interest. Ultimately, none of these signals were attributable to an extraterrestrial source.”

What they found was that of the 850,000 candidate signals, about 99% of them were automatically ruled out because they were quickly determined to be the result of human-generated radio-frequency interference (RFI). Of the remaining candidates, another 99% were also flagged as anthropogenic because their frequencies overlapped with other known sources of RFI – such as GPS systems, satellites, etc.

The 19 candidate signals that remained were heavily scrutinized, but none could be attributed to an extraterrestrial source. This is key when attempting to distinguish potential signs of intelligence from radio signals that come from the only intelligence we know of (i.e. us!) Hence why astronomers have historically been intrigued by strong narrowband signals (like the WOW! Signal, detected in 1977) and the Lorimer Burst detected in 2007.

In these cases, the sources appeared to be coming from the Messier 55 globular cluster and the Large Magellanic Cloud, respectively. The latter was especially fascinating since it was the first time that astronomers had observered what are now known as Fast Radio Bursts (FRBs). Such bursts, especially when they are repeating in nature, are considered to be one of the best candidates in the search for intelligent, technologically-advanced life.

The UCLA SETI Group banner, featuring a photo of the central region of the Milky Way Galaxy. Credit: Yuri Beletsky/Carnegie Las Campanas Observatory

Unfortunately, these sources are still being investigated and scientists cannot attribute them to unnatural causes just yet. And as Professor Margot indicated, this study (which covered only 14 of the many thousand exoplanets discovered by Kepler) is just the tip of the iceberg:

“Our study encompassed only a small fraction of the search volume.  For instance, we covered less than five-millionths of the entire sky.  We are eager to scale the effort to sample a larger fraction of the search volume. We are currently seeking funds to expand our search.”

Between Kepler‘s first and second mission (K2), a total of 5,118 candidates and 2,538 confirmed exoplanets have been discovered within our galaxy alone. As of February 1st, 2018, a grand total of 3,728 exoplanets have been confirmed in 2,794 systems, with 622 systems having more than one planet. On top of that, a team of researchers from the University of Oklahoma recently made the first detection of extra-galactic planets as well!

It would therefore be no exaggeration to say that the hunt for ETI is still in its infancy, and our efforts are definitely beginning to pick up speed. There is literally a Universe of possibilities out there and to think that there are no other civilizations that are also looking for us seems downright unfathomable. To quote the late and great Carl Sagan: “The Universe is a pretty big place. If it’s just us, seems like an awful waste of space.”

And be sure to check out this video of the 2017 UCLA SETI Group, courtesy of the UCLA EPSS department:

Further Reading: arXiv

Updates on ‘Oumuamua. Maybe it’s a Comet, Actually. Oh, and no Word From Aliens.

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) in Hawaii announced the first-ever detection of an interstellar object, named 1I/2017 U1 (aka. ‘Oumuamua). After originally hypothesizing that it was a comet, observations performed by the European Southern Observatory (ESO) and other astronomers indicated that it was likely a strange-looking asteroid measuring about 400 meters (1312 ft) long.

Since that time, multiple surveys have been conducted to determine the true nature of this asteroid, which have included studies of its composition to Breakthrough Listen‘s proposal to listen to it for signs of radio transmissions. And according to the latest findings, it seems that ‘Oumuamua may actually be more icy than previously thought (thus indicated that it is a comet) and is not an alien spacecraft as some had hoped.

The first set of findings were presented in a study that was recently published in the scientific journal Nature, titled “Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua“. The study was led by Alan Fitzsimmons of Queen’s University Belfast, and included members from The Open University in Milton Keynes, the Institute for Astronomy (IfA) at the University of Hawaii, and the European Southern Observatory (ESO).

‘Oumuamua, as imaged by the William Herschel Telescope on October 29th, 2017. Credit: Queen’s University Belfast/William Herschel Telescope

As they indicate in their study, the team relied on information from the ESO’s Very Large Telescope in Chile and the William Herschel Telescope in La Palma. Using these instruments, they were able to obtain spectra from sunlight reflected off of ‘Oumuamua within 48 hours of the discovery. This revealed vital information about the composition of the object, and pointed towards it being icy rather than rocky. As Fitzsimmons explained in op-ed piece in The Conversation:

“Our data revealed its surface was red in visible light but appeared more neutral or grey in infra-red light. Previous laboratory experiments have shown this is the kind of reading you’d expect from a surface made of comet ices and dust that had been exposed to interstellar space for millions or billions of years. High-energy particles called cosmic rays dry out the surface by removing the ices. These particles also drive chemical reactions in the remaining material to form a crust of chemically organic (carbon-based) compounds.”

These findings not only addressed a long-standing question about ‘Oumuamua true nature, it also addresses the mystery of why the object did not experience outgassing as it neared our Sun. Typically, comets experience sublimation as they get closer to a star, which results in the formation of a gaseous envelope (aka. “halo”). The presence of an outer layer of carbon-rich material would explain why this didn’t happen ‘Oumuamua.

They further conclude that the red layer of material could be the result of its interstellar journey. As Fitzsommons explained, “another study using the Gemini North telescope in Hawaii showed its color is similar to some ‘trans-Neptunian objects’ orbiting in the outskirts of our solar system, whose surfaces may have been similarly transformed.” This red coloring is due to the presence of tholins, which form when organic molecules like methane are exposed to ultra-violet radiation.

Similarly, another enduring mystery about this object was resolved thanks to the recent efforts of Breakthrough Listen. As part of Breakthrough Initiatives’ attempts to explore the Universe and search for signs of Extra-Terrestrial Intelligence (ETI), this project recently conducted a survey of ‘Oumuamua to determine if there were any signs of radio communications coming from it.

While previous studies had all indicated that the object was natural in origin, this survey was more about validating the sophisticated instruments that Listen relies upon. The observation campaign began on Wednesday, December 13th, at 3:00 pm EST (12:00 PST) using the Robert C. Byrd Greenbank Radio Telescope, the world’s premiere single-dish radio telescope located in West Virginia.

The observations period was divided into four “epochs” (based on the object’s rotational period), the first of which ran from 3:45 pm to 9:45 pm ET (12:45 pm to 6:45 pm PST) on Dec 13th, and last for ten hours. During this time, the observation team monitored ‘Oumuamua across four radio bands, ranging from the 1 to 12 GHz bands. In addition to calibrating the instrument, the survey accumulated 90 terabytes of raw data over after observing ‘Oumuamua itself for two hours.

The initial results and data were released last week (Dec. 13th) and are available through the Breakthrough Listen archive. As Andrew Siemion – the Director of Berkeley SETI Research Center who took part in the survey – indicated in a Breakthrough Initiatives press release:

“It is great to see data pouring in from observations of this novel and interesting source. Our team is excited to see what additional observations and analyses will reveal”.

So far, no signals have been detected, but the analysis is far from complete. This is being conducted by Listen’s “turboSETI” pipeline, which combs the data for narrow bandwidth signals that are drifting in frequency. This consists of filtering out interference signals from human sources, then matching the rate at which signals drift relative to the expected drift caused by ‘Oumuamua’s own motion.

In so doing, the software attempts to identify any signals that might be coming from ‘Oumuamua itself. So far, data from the S-band receiver (frequencies ranging from 1.7 to 2.6 GHz) has been processed, and analysis of the remaining three bands – which corresponds to receivers L, X, and C is ongoing. But at the moment, the results seem to indicate that ‘Oumuamua is indeed a natural object – and an interstellar comet to boot.

This is certainly bad news for those who were hoping that ‘Oumuamua might be a massive cylinder-shaped generation ship or some alien space probe sent to communicate with the whales! I guess first contact – and hence, proof we are NOT alone in the Universe – is something we’ll have to wait a little longer for.

Further Reading: The Conversation, Nature, Breakthrough Initiatives

Project Blue: Building a Space Telescope that Could Directly Observe Planets Around Alpha Centauri

Artist's concept of the Project Blue space telescope, which the organization hopes to use to spot exoplanets in Alpha Centauri beginning in 2020. Credit: projectblue.org

In the past few decades, thousands of exoplanets have been discovered in neighboring star systems. In fact, as of October 1st, 2017, some 3,671 exoplanets have been confirmed in 2,751 systems, with 616 systems having more than one planet. Unfortunately, the vast majority of these have been detected using indirect means, ranging from Gravitational Microlensing to Transit Photometry and the Radial Velocity Method.

What’s more, we have been unable to study these planets up close because the necessary instruments do not yet exist. Project Blue, a consortium of scientists, universities and institutions, is looking to change that. Recently, they launched a crowdfunding campaign through Indiegogo to finance the development of a space telescope that will start looking for exoplanets in the Alpha Centauri system by 2021.

In addition to its commercial and academic partners, Project Blue is a collaborative effort between the BoldlyGo Institute, Mission Centaur, the SETI Institute, and the University of Massachusetts Lowell. It is steered by a Science & Technology Advisory Committee (STAC) composed of science and technology experts who are dedicated to space exploration and the search for life in our Universe.

Artist’s impression of a planet orbiting the star Alpha Centauri B, a member of the triple star system that is the closest to Earth. Credit: ESO

To accomplish their goal of directly studying exoplanets, Project Blue is seeking to leverage recent changes in space exploration, which include improved instruments and methodology, the rate at which exoplanet have been discovered in recent years, and increased collaboration between the private and public sector. As SETI Institute President and CEO Bill Diamond explained in a recent SETI press statement:

“Project Blue builds on recent research in seeking to show that Earth is not alone in the cosmos as a planet capable of supporting life, and wouldn’t it be amazing to see such a planet in our nearest neighboring star system? This is the fundamental reason we search.”

As noted, virtually all exoplanet discoveries that have been made in the past few decades were done using indirect methods – the most popular of which is Transit Photometery. This method is what the Kepler and K2 missions relied on to detect a total of 5,017 exoplanet candidates and confirm the existence of 2,470 exoplanets (30 of which were found to orbit within their star’s habitable zone).

This method consists of astronomers monitoring distant stars for periodic dips in brightness, which are caused by a planet transiting in front of the star.  By measuring these dips, scientists are able to determine the size of planets in that system. Another popular technique is the Radial Velocity (or Doppler) Method, which measures changes in a star’s position relative to the observer to determine how massive its system of planets are.

Project Blue’s mission concept, showing the telescope, its launch and deployment. Credit: projectblue.org

These and other methods (alone or in combination) have allowed for the many discoveries that have been made to take place. But so far, no exoplanets have been directly imaged, which is due to the cancelling effect stars have on optical instruments. Basically, astronomers have been unable to spot the light being reflected off of an exoplanet’s atmosphere because the light coming from the star is up to ten billion times brighter.

The challenge has thus become how to go about blocking this light so that the planets themselves can become visible. One proposed solution to this problem is NASA’s Starshade concept, a giant space structure that would be deployed into orbit alongside a space telescope (most likely, the James Webb Space Telescope). Once in orbit, this structure would deploy its flower-shaped foils to block the glare of distant stars, thus allowing the JWST and other instruments to image exoplanets directly.

But since Alpha Centauri is a binary system (or trinary, if you count Proxima Centauri), being able to directly image any planets around them is even more complicated. To address this, Project Blue has developed plans for a telescope that will be able to suppress light from both Alpha Centauri A and B, while simultaneously taking images of any planets that orbit them. It’s specialized starlight suppression system consists of three components.

First, there is the coronagraph, an instrument which will rely on multiple techniques to block starlight. Second, there’s the deformable mirror, low-order wavefront sensors, and software control algorithms that will manipulate incoming light. Last, there is the post-processing method known as Orbital Differntial Imaging (ODI), which will allow the Project Blue scientist to enhance the contrast of the images taken.

Project Blue’s mission timeline, which woudl commence at the end of the decade and run for six years. Credit: projectblue.org

Given its proximity to Earth, the Alpha Centauri system is the natural choice for conducting such a project. Back in 2012, an exoplanet candidate – Alpha Centauri Bb – was announced. However, in 2015, further analysis indicated that the signal detected was an artefact in the data. In March of 2015, a second possible exoplanet (Alpha Centauri Bc) was announced, but its existence has also come to be questioned.

With an instrument capable of directly imaging this system, the existence of any exoplanets could finally be confirmed (or ruled out). As Franck Marchis – the Senior Planetary Astronomer at the SETI Institute and Project Blue Science Operation Lead – said of the Project:

“Project Blue is an ambitious space mission, designed to answer to a fundamental question, but surprisingly the technology to collect an image of a “Pale Blue Dot” around Alpha Centauri stars is there. The technology that we will use to reach to detect a planet 1 to 10 billion times fainter than its star has been tested extensively in lab, and we are now ready to design a space-telescope with this instrument.”

If Project Blue meets its crowdfunding goals, the organization intends to deploy the telescope into Near-Earth Orbit (NEO) by 2021. The telescope will then spend the next two years observing the Alpha Centauri system with its corongraphic camera. All told, between the development of the instrument and the end of its observation campaign, the mission will last six years, a relatively short run for an astronomical mission.

Project Starshot, an initiative sponsored by the Breakthrough Foundation, is intended to be humanity’s first interstellar voyage. Credit: breakthroughinitiatives.org

However, the potential payoff for this mission would be incredibly profound. By directly imaging another planet in the closest star system to our own, Project Blue could gather vital data that would indicate if any planets there are habitable. For years, astronomers have attempted to learn more about the potential habitability of exoplanets by examining the spectral data produced by light passing through their atmospheres.

However, this process has been limited to massive gas giants that orbit close to their parent stars (i.e. “Super-Jupiters”). While various models have been proposed to place constraints on the atmospheres of rocky planets that orbit within a star’s habitable zone, none have been studied directly. Therefore, if it should prove to be successful, Project Blue would allow for some of the greatest scientific finds in history.

What’s more, it would provide information that could a long way towards informing a future mission to Alpha Centauri, such as Breakthrough Starshot. This proposed mission calls for the use of a large laser array to propel a lightsail-driven nanocraft up to relativistic speeds (20% the speed of light). At this rate, the craft would reach Alpha Centauri within 20 years time and be able to transmit data back using a series of tiny cameras, sensors and antennae.

As the name would suggest, Project Blue hopes to capture the first images of a “Pale Blue Dot” that orbits another star. This is a reference to the photograph of Earth that was taken by the Voyager 1 probe on February 19th, 1990, after the probe concluded its primary mission and was getting ready to leave the Solar System. The photos were taken at the request of famed astronomer and science communicator Carl Sagan.

The “Pale Blue Dot” photograph taken by the Voyager 1 probe. Credit: NASA/JPL

When looking at the photographs, Sagan famously said: “Look again at that dot. That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives.” Thereafter, the name “Pale Blue Dot” came to be synonymous with Earth and capture the sense of awe and wonder that the Voyage 1 photographs evoked.

More recently, other “Pale Blue Dot” photographs have been snapped by missions like the Cassini orbiter. While photographing Saturn and its system of rings in the summer of 2013, Cassini managed to capture images that showed Earth in the background. Given the distance, Earth once again appeared as a small point of light against the darkness of space.

Beyond relying on crowdfunding and the participation of multiple non-profit organizations, this low-cost mission also seeks to capitalize on a growing trend in space exploration, – which is open participation and collaborations between scientific institutions and citizen scientists. This is one of the primary purposes behind Project Blue, which is to engage the public and educate them about the importance of space exploration.

As Jon Morse, the CEO of the BoldlyGo Institute, explained:

“The future of space exploration holds boundless potential for answering profound questions about our existence and destiny. Space-based science is a cornerstone for investigating such questions. Project Blue seeks to engage a global community in a mission to search for habitable planets and life beyond Earth.”

As of the penning of this article, Project Blue has managed to raise $125,561 USD of their goal of $175,000. For those interesting in backing this project, Project Blue’s Indiegogo campaign will remain open for another 11 days. And be sure to check out their promotional video as well:

Further Reading: SETI, Project Blue, Indiegogo

Strange Radio Signals Detected from a Nearby Star

Artist's impression of rocky exoplanets orbiting Gliese 832, a red dwarf star just 16 light-years from Earth. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

Astronomers have been listening to radio waves from space for decades. In addition to being a proven means of studying stars, galaxies, quasars and other celestial objects, radio astronomy is one of the main ways in which scientists have searched for signs of extra-terrestrial intelligence (ETI). And while nothing definitive has been found to date, there have been a number of incidents that have raised hopes of finding an “alien signal”.

In the most recent case, scientists from the Arecido Observatory recently announced the detection of a strange radio signal coming from Ross 128 – a red dwarf star system located just 11 light-years from Earth. As always, this has fueled speculation that the signal could be evidence of an extra-terrestrial civilization, while the scientific community has urged the public not to get their hopes up.

The discovery was part of a campaign being conducted by Abel Méndez – the director of the Planetary Habitability Laboratory (PHL) in Peurto Rico – and Jorge Zuluaga of the Faculty of Exact and Natural Sciences at the University of Antioquia, Colombia. Inspired by the recent discoveries around Proxima Centauri and TRAPPIST-1, the GJ 436 campaign relied on data from Arecibo Observatory to look for signs of exoplanets around nearby red dwarf stars.

Arecibo Observatory, the world’s biggest single dish radio telescope, was and is still being used to image comet 45P/H-M-P. Courtesy of the NAIC – Arecibo Observatory, a facility of the NSF

In the course of looking at data from stars systems like Gliese 436, Ross 128, Wolf 359, HD 95735, BD +202465, V* RY Sex, and K2-18 – which was gathered between April and May of 2017 – they noticed something rather interesting. Basically, the data indicated that an unexplained radio signal was coming from Ross 128. As Dr. Abel Mendez described in a blog post on the PHL website: 

“Two weeks after these observations, we realized that there were some very peculiar signals in the 10-minute dynamic spectrum that we obtained from Ross 128 (GJ 447), observed May 12 at 8:53 PM AST (2017/05/13 00:53:55 UTC). The signals consisted of broadband quasi-periodic non-polarized pulses with very strong dispersion-like features. We believe that the signals are not local radio frequency interferences (RFI) since they are unique to Ross 128 and observations of other stars immediately before and after did not show anything similar.”

After first noticing this signal on Saturday, May 13th at 8:53 p.m., scientists from the Arecibo Observatory and astronomers from the Search for Extra-Terrestrial Intelligence (SETI) Institute teamed up to conduct a follow-up study of the star. This was performed on Sunday, July 16th, using SETI’s Allen Telescope Array and the National Radio Astronomy Observatory‘s (NRAO) Green Bank Telescope.

They also conducted observations of Barnard’s star on that same day to see if they could note similar behavior coming from this star system. This was done in collaboration with the Red Dots project, a European Southern Observatory (ESO) campaign that is also committed to finding exoplanets around red dwarf stars. This program is the successor to the ESO’s Pale Red Dot campaign, which was responsible for discovering Proxima b last summer.

Images of the star systems examined by the GJ 436 Campaign. Credit: PHL/Abel Méndez 

As of Monday night (July 17th), Méndez updated his PHL blog post to announced that with the help of SETI Berkeley with the Green Bank Telescope, that they had successfully observed Ross 128 for the second time. The data from these observatories is currently being collected and processed, and the results are expected to be announced by the end of the week.

In the meantime, scientists have come up with several possible explanations for what might be causing the signal. As Méndez indicated, there are three major possibilities that he and his colleagues are considering:

“[T]hey could be (1) emissions from Ross 128 similar to Type II solar flares, (2) emissions from another object in the field of view of Ross 128, or just (3) burst from a high orbit satellite since low orbit satellites are quick to move out of the field of view. The signals are probably too dim for other radio telescopes in the world and FAST is currently under calibration.”

Unfortunately, each of these possibilities have their own drawbacks. In the case of a Type II solar flare, these are known to occur at much lower frequencies, and the dispersion of this signal appears to be inconsistent with this kind of activity. In the case of it possibly coming from another object, no objects (planets or satellites) have been detected within Ross 128’s field of view to date, thus making this unlikely as well.

The stars currently being examined as part of the GJ 436 campaign. Credit: PHL/Abel Méndez

Hence, the team has something of a mystery on their hands, and hopes that further observations will allow them to place further constrains on what the cause of the signal could be. “[W]e might clarify soon the nature of its radio emissions, but there are no guarantees,” wrote Méndez. “Results from our observations will be presented later that week. I have a Piña Colada ready to celebrate if the signals result to be astronomical in nature.”

And just to be fair, Méndez also addressed the possibility that the signal could be artificial in nature – i.e. evidence of an alien civilization. “In case you are wondering,” he wrote, “the recurrent aliens hypothesis is at the bottom of many other better explanations.” Sorry, alien-hunters. Like the rest of us, you’ll just have to wait and see what can be made of this signal.

Further Reading: AFP, PHL

What is the Drake Equation?

The Drake Equation, a mathematical formula for the probability of finding life or advanced civilizations in the universe. Credit: University of Rochester

Is there life out there in the Universe? That is a question that has plagued humanity long before we knew just how vast the Universe was – i.e. before the advent of modern astronomy. Within the 20th century – thanks to the development of modern telescopes, radio astronomy, and space observatories – multiple efforts have been made in the hopes of finding extraterrestrial intelligence (ETI).

Continue reading “What is the Drake Equation?”

Maybe the Aliens Aren’t Hiding, they’re Sleeping, Waiting for the Universe to Get Better

A new study has offered a new take on the Fermi Paradox - alien civilizations are not visible to us because they are sleeping. Credit and Copyright: Kevin M. Gill

When you consider that age of the Universe – 13.8 billion years by our most recent counts –  and that which is “observable” to us measures about 93 billion light-years in diameter, you begin to wonder why we haven’t found signs of extra-terrestrial intelligence (ETI) beyond our Solar System. To paraphrase Enrico Fermi, the 20th-century physicists who advanced the famous Fermi Paradox – “where the heck are all the aliens?”

Naturally, Fermi’s Paradox has attracted a lot of theoretical explanations over the years – which include ETI being very rare, humanity being early to the Universe, and the aliens being extinct! But a new study by a team of scientists from the Future of Humanity Institute (FHI) offers a different take on this age-old paradox. According to their study, the key to answering this question is to consider the possibility that the aliens are engaged in “aestivation”.

Continue reading “Maybe the Aliens Aren’t Hiding, they’re Sleeping, Waiting for the Universe to Get Better”

Are Aliens Communicating with Neutrino Beams?

One of the Daya Bay detectors. Roy Kaltschmidt, Lawrence Berkeley National Laboratory

It is no easy thing to search for signs of intelligent life beyond our Solar System. In addition to the incredible distances involved and the fact that we really only have indirect methods at our disposal, there is also the small problem of not knowing exactly what to look for. If intelligent life does exist beyond our Solar System, would they even communicate as we do, using radio transmitters and similar forms of technology?

Such has been the preoccupation of groups like the Search for Extra Terrestrial Intelligence (SETI) Institute and, more recently, organizations like Messaging Extraterrestrial Intelligence (METI) International. A non-profit dedicated to communicating with extra-terrestrial intelligence (ETI), the organization recently suggested that looking for neutrinos and other exotic particles could help us find signals as well.

First, some clarification should be made as to what SETI and METI are all about it and what sets them apart. The term METI was coined by Russian scientist Alexander Zaitsev, who sought to draw a distinction between SETI and METI. As he explained in a 2006 paper on the subject:

“The science known as SETI deals with searching for messages from aliens. METI science deals with the creation of messages to aliens. Thus, SETI and METI proponents have quite different perspectives. SETI scientists are in a position to address only the local question “does Active SETI make sense?” In other words, would it be reasonable, for SETI success, to transmit with the object of attracting ETI’s attention? In contrast to Active SETI, METI pursues not a local and lucrative impulse, but a more global and unselfish one – to overcome the Great Silence in the Universe, bringing to our extraterrestrial neighbors the long-expected annunciation ‘You are not alone!'”

One of the 42 dishes in the Allen Telescope Array that searches for signals from space. Credit: Seth Shostak/SETI Institute.

In short, METI looks for ways in which we might be able to contact aliens instead of waiting to hear from them. However, this does not mean that organizations like METI International are without ideas on how me might better listen to our (potential) alien neighbors. After all, communication goes beyond mere messages, and also requires that a medium exist with which to convey the message.

Such is the recommendation put forth by Dr. Morris Jones, a space analyst and writer who serves on the METI advisory council. In a recent article published on METI International’s website, he addressed the two main challenges when it comes to looking for ETI. On the one hand, you have the need for multiple methodologies to increase the odds of finding something. But as he indicates, there’s also the problem of knowing what to look for:

“We are not really sure of how extraterrestrials would communicate with us. Would they use radio waves, lasers, or something more exotic? Perhaps the universe is awash in extraterrestrial signals that we cannot even receive. SETI and METI practitioners spend a lot of time wondering how a message would be encoded in terms of language and content. It’s also important to consider the medium of transmission.”

In the past, says Jones, SETI searches were based on radio astronomy because that was the only practical means of doing so. Since then, efforts have expanded to include optical telescopes and the search for laser signals. This is due to the fact that in the past few decades, human beings have developed the technology to use laser for the sake of communications.

An artist’s illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. Could the part of the beam that misses the sail be our mysterious Fast Radio Bursts? Image Credit: M. Weiss/CfA

In a 2016 SETI paper, Dr. Philip Lubin of the University of California, Santa Barbara, explained how the development of directed-energy propulsion could help us search for evidence of aliens. As one of the scientific minds behind Breakthrough Starshot – a laser-driven lightsail that would be fast enough to make the trip to Alpha Centauri in just 20 years – he believes it’s a safe bet that ETI could be using similar technology to travel or communicate.

In addition, Dr. Avi Loeb from the Harvard-Smithsonian Center for Astrophysics (also one of the minds behind Starshot) has also suggested that fast-radio bursts (FRBs) could be evidence of alien activity. FRBs have been a subject of fascination to scientists since they were first detected in 2007 (the “Lorimer Burst“), and could also be a sign of alien communications or a means of propulsion.

Another means involves searching for artefacts – i.e. looking for evidence of physical infrastructure in other star systems. Case in point, since 2015, astronomers have been seeking to determine what is responsible for the periodic dimming of KIC 8462852 (aka. Tabby’s Star). Whereas most studies have sought to explain this in terms of natural causes, others have suggested it could be evidence of an alien megastructure.

To this array of search methods, Dr. Jones offers a few other possibilities. One way is to look for neutrinos, a type of subatomic particle that is produced by the decay of radioactive elements and interacts with matter very weakly. This allows them to pass through solid matter and also makes them very difficult to detect. Neutrinos are produced in large quantities by our Sun and astronomical sources, but they can also be produced artificially by nuclear reactors.

Ever since it was first announced in 2015, there has been speculation as to what could account for the dimming of KIC 8462852. Credit: SentientDevelopments.com

These, claims Jones, could be used for the sake of communications. The only problem is that looking for them would require some specialized equipment. Currently, all means of detecting neutrinos involve expensive facilities that have to be built either underground or in extremely isolated locations to ensure that they are not subject to any kind of electromagnetic interference.

These include the Super-Kamiokande facility, the world’s largest neutrino detector which is located under Mt. Ikeno in Japan. There’s also the IceCube Neutrino Observatory, located at the Amundsen–Scott South Pole Station in Antarctica and operated by the University of Wisconsin–Madison; and the Sudbury Neutrino Observatory, located in a former mine complex near Sudbury, Ontario, and operated by SNOLAB.

Another possibility is searching for evidence of communications that rely on gravitational waves. Predicted by Einstein’s Theory of General Relativity, the first detection of these mysterious waves was first made in February 2016. And in the coming years and decades, it is expected that gravitational wave observatories will be established so the presence of these “ripples” in spacetime can be visualized.

However, compared to neutrinos, Jones admits that this seems like a long shot. “It’s hard to conceive with our current grasp of physics,” he writes. “They are extremely difficult to generate at a detectable level. You would need abilities similar to those of superheroes, and be able to smash neutron stars and black holes together at will. There are probably easier ways to get a message across the stars.”

Breakthrough Listen will monitor the 1 million closest stars to Earth over a ten year period. Credit: Breakthrough Initiatives

Beyond these, there is the even more exotic possibility of “Zeta Rays”, which Dr. Jones is not prepared to rule out. Basically, “Zeta Rays” is a term used by physicists to describe physics that go beyond the Standard Model. As scientists are currently looking for evidence of new particles with the Large Hadron Collider and other particle accelerators, it stands to reason that anything they discover will be the added to the SETI and METI search manifest.

But could such physics entail new forms of communication? Hard to say, but definitely worth considering. After all, the physics that power our current technology certainly existed before we did. Or as Jones put it:,

“Is it possible to transmit with something better than we already have? Until we know a lot more physics, we just won’t know. Humanity in the twenty-first century could be like an isolated tribe in the Amazon jungle a century ago, unaware that the air around them was filled with radio signals. SETI uses the science and technology provided to us by other disciplines. Thus, we must wait until physics itself makes some more major breakthroughs. Only then can we consider such exotic methods of searching. We think a lot about the message. But we should also think about the medium.”

Other projects that are dedicated to METI include Breakthrough Listen, a ten-year initiative launched by Breakthrough Initiatives to conduct the largest survey to date for extraterrestrial communications – encompassing the 1,000,000 closest stars and 100 closest galaxies. Back in April of 2017, the scientists behind this project shared their analysis of the first year of Listen data. No definitive results have been announced yet, but they are just getting started!

Ever since Drake proposed his famous equation, human beings have eagerly sought to find evidence of extra-terrestrial intelligence. Unfortunately, all of our efforts have been haunted by Fermi’s equally-famous paradox! But of course, as space exploration goes, we’ve really only begun to scratch the surface of our Universe. And the only way we can ever expect to find evidence of intelligent life out there is to keep looking.

And with greater knowledge and increasingly sophisticated methods at our disposal, we can be sure that if intelligent life is out there somewhere, we will find it eventually. One can always hope, right? And be sure to check out this video of Dr. Jones 2014 presentation at the SETI Institute, titled “A Journalistic Perspective on SETI-Related Message Composition“:

Further Reading: METI