Comet Catalina Grows Two Tails, Soars at Dawn

Comet C/2013 US10 Catalina shows off a compact green coma and two tails in this photo taken this morning (Nov. 20, 2015) at dawn from Arizona. Credit: Chris Schur

Amateur astronomer Chris Schur of Arizona had only five minutes to observe and photograph Comet Catalina this morning before twilight got the better of the night. In that brief time, he secured two beautiful images and made a quick observation through his 80mm refractor. He writes:

“Very difficult observation on this one. (I observed) it visually with the 35mm Panoptic ocular. It was a round, slightly condensed object with no sign of the twin tails that show up in the images. After five minutes, we lost it visually as it was 2° degrees up in bright twilight. Images show it for a longer time and a beautiful emerald green head with two tails forming a Y shaped fan.” 

Comet Catalina was about 3 high over Lake Superior near Duluth, Minn. IU.S.) at 5:55 a.m. this morning. Stars are labeled with their magnitudes. Details: 200mm lens, f/2.8, ISO 1250, 3-seconds.
Comet Catalina stands some 3° high over Lake Superior near Duluth, Minn. (U.S.) at 5:55 a.m. this morning, Nov. 22. Stars are labeled with their magnitudes. Details: 200mm lens, f/2.8, ISO 1250, 3-seconds. Credit: Bob King

Schur estimated the comet’s brightness at around magnitude +6. What appears to be the dust tail extends to the lower right (southeast) with a narrower ion tail pointing north. With its twin tails, I’m reminded of a soaring eagle or perhaps a turkey vulture rocking back and forth on its wings. While they scavenge for food, Catalina soaks up sunlight.

I also headed out before dawn for a look. After a failed attempt to spot the new visitor on Saturday, I headed down to the Lake Superior shoreline at 5:30 a.m. today and waited until the comet rose above the murk. Using 7×50 binoculars in a similar narrow observing window, I could barely detect it as a small, fuzzy spot 2.5° south of 4th magnitude Lambda Virginis at 5:50 a.m. 10 minutes after the start of astronomical twilight. The camera did better!

Chris's first photo was taken when the comet rose. This one was photographed minutes later with twilight coming on. Credit: Chris Schur
Chris’s first photo was taken when the comet rose. This one was photographed minutes later with twilight coming on. Credit: Chris Schur

With the comet climbing about 1° per day, seeing conditions and viewing time will continue to improve. The key to seeing it is finding a location with an unobstructed view to the southeast — that’s why I chose the lake — and getting out while it’s still dark to allow time to identify the star field and be ready when the comet rises to greet your gaze.

Two views of Comet C/2013 US10 Catalina made around 6:23 a.m. EST (11:23 Universal Time) on Nov. 21st. The left photo is a 30-second exposure with dawn light approaching fast. Exposure at right was 10 seconds.
North is up and east to the left in these two photos of the comet made by Dr. D.T. Durig at 6:23 a.m. EST on Nov. 21st from Cordell-Lorenz Observatory in Sewanee, Tenn. He estimated the coma diameter at ~2 arc minutes with a tail at least 10 arc minutes long . “I get a nuclear magnitude of 10.3 and an total mag of around 7.8, but that is with only 5-10 reference stars,” wrote Durig. Credit: Dr. Douglas T. Durig

Alan Hale, discoverer of Comet Hale-Bopp, also tracked down Catalina this morning with an 8-inch (20-cm) reflector at 47x. He reported its magnitude at ~+6.1 with a 2-arc-minute, well-condensed coma and a faint wisp of tail to the southeast. In an e-mail this morning, Hale commented on the apparent odd angle of the dust tail:

“Since the comet is on the far side of the sun as seen from Earth, with the typical dust tail lagging behind, that would seem to create the somewhat strange direction. It  (the tail) almost seems to be directed toward the Sun, but it’s a perspective effect.”

Venus glares inside the cone of the zodiacal light this morning at the start of astronomical twilight over the shoreline of northern Wisconsin. Jupiter is seen at top and Mars two-thirds of the way from Jupiter to Venus. Credit: Bob King
Venus glares inside the cone of the zodiacal light this morning at the start of astronomical twilight. Jupiter is seen at top and Mars two-thirds of the way from Jupiter to Venus. Arcturus shines at far left. Credit: Bob King

There were side benefits to getting up early today. Three bright planets lit up Leo’s tail and Virgo’s “Cup” and a magnificent display of zodiacal light rose from the lake to encompass not only the comet but all the planets as well.

It’s Finally Here! Comet Catalina Greets Dawn Skywatchers

Comet C/2013 US10 Catalina photographed from high atop the Himalayas by Ajay Talwar with a 200mm lens on a tracking mount this morning Nov. 20, 2015. Credit: Ajay Talwar

If you love watching comets and live north of the equator, you’ve been holding your breath a l-o-n-g time for C/2013 US10 Catalina to make its northern debut. I’m thrilled to report the wait is over. The comet just passed perihelion on Nov. 15th and has begun its climb into morning twilight. 

Comet C/2013 US10 Catalina leaps into the morning sky in eastern Virgo this weekend at around magnitude +7. Comet positions are marked by small crosses every 5 days around 6 a.m. CST (12:00 Universal Time). Planet positions are shown for Nov. 21st. Stars to mag. +7. Source: Chris Marriott's SkyMap
Map showing the sky facing southeast around the start of dawn. Comet C/2013 US10 Catalina leaps into the morning sky in eastern Virgo beginning this weekend at around magnitude +7. Comet positions are marked by small crosses every 5 days around 6 a.m. CST (12:00 Universal Time) for mid-northern latitudes (Minneapolis, specifically). Planet positions are shown for Nov. 21st. Stars to mag. +7. Source: Chris Marriott’s SkyMap

The first post-perihelion photo, taken on Nov. 19th by astrophotographer Ajay Talwar from Devasthal Observatory high in the Indian Himalayas, show it as a starry dot with a hint of a tail only 1° above the eastern horizon at mid-twilight. Additional photos made on the following mornings show the comet inching up from the eastern horizon into better view. Estimates of its current brightness range from magnitude +6.8-7.0.

Sometimes black and white is better. This is the same chart as above. Credit: Chris Marriott's SkyMap
Sometimes black and white is better. This is the same chart as above but in a handier version for use at the telescope. Source: Chris Marriott’s SkyMap

Talwar, who teaches astrophotography classes and is a regular contributor to The World at Night (TWAN), drove 9 hours from his home to the Himalaya mountains, then climbed up the observatory dome to get enough horizon to photograph the comet. The window of opportunity was very narrow; Talwar had only 10 minutes to bag his images before the comet was overwhelmed by zodiacal light and twilight glow. When asked if it was visible in binoculars, he thought it would be but had too little time to check despite bringing a pair along.

The very first post-perihelion photo of Comet Catalina taken Nov. 19th from Devasthal Observatory. Prior to perihelion, the comet was only visible from the southern hemisphere. Copyright: Ajay Talwar
Ajay Talwar recorded the very first post-perihelion photo of Comet Catalina on Nov. 19th from Devasthal Observatory. Prior to perihelion, the comet was only visible from the southern hemisphere. Copyright: Ajay Talwar

A difficult object at the moment, once it frees itself from the horizon haze in about a week, Catalina should be easily visible in ordinary binoculars. Watch for it to gradually brighten through the end of the year, peaking around magnitude +5.5 — just barely naked eye — in late December and early January, when it will be well-placed high in the northeastern sky near the star Arcturus (see map). Matter of fact, on the first morning of the new year, it creeps only 1/2° southwest of the star for a splendid conjunction.

Even before perihelion, Comet Catalina was a beauty. This photo was taken on October 1, 2015. Credti: Jose Chambo
Even before perihelion, Comet Catalina was a beautiful thing. This photo was taken on October 1, 2015. Credit: Jose Chambo

Halloween 2013 was an auspicious one. That’s when Comet C/2013 US10 was first picked up by the Catalina Sky Survey. The “US10” part comes from initial observations that suggested it was an asteroid. Additional photos and observations instead revealed a fuzzy comet on a steeply tilted orbit headed for the inner Solar System after a long sojourn in the Oort Cloud.

Comet C/2013 US10 Catalina will slice through the plane of the Solar System at an angle of 149 never to return. Credit: JPL Horizons
Comet C/2013 US10 Catalina will slice through the plane of the Solar System at an angle of 149° never to return. It comes closest to Earth on Jan. 12, 2016. After that time, the comet will recede and fade. Credit: JPL Horizons

Its sunward journey has been nothing short of legendary, requiring several million years of inbound travel from the frigid fringe to the relative warmth of the inner Solar System. Catalina will pass closest to Earth on Jan. 12th at 66.9 million miles (107.7 million km) before buzzing off into interstellar space. Yes, interstellar. Perturbations by the planets have converted its orbit into a one-way ticket outta here.

Wow - check this out! Look to the east at the start of dawn on Dec. 7th to see a remarkable pairing of comet, Venus and the waning lunar crescent with earthshine. Source: Stellarium
Check this out! Look to the east at the start of dawn on Dec. 7th to see a remarkable pairing of comet, Venus and the waning lunar crescent with earthshine. Source: Stellarium

When using the maps above, keep in mind they show the comet’s changing position, but the constellations and planets can only be shown for the one date, Nov. 21st. Like the comet, they’ll also be slowly sliding upward in the coming days and mornings due to Earth’s revolution around the Sun; stars that are near the horizon on Nov. 21 at 5:30 or 6 a.m. will be considerably higher up in a darker sky by the same time in December. Adding the shift of the stars to that of the comet, Catalina gains about 1° of altitude per day in the coming two weeks.

When you go out to find Catalina in binoculars, note its location on the map and then use the stars as steppingstones, starting with a bright obvious one like Spica and “stepping” from there to the next until you arrive at the one closest to the comet.

I’m so looking forward to finding Catalina. Nothing like a potentially naked eye comet to warm up those cold December mornings. Mark your calendar for the morning of Dec. 7th, when this rare visitor will join Venus and the crescent Moon in the east at the start of morning twilight. See you in spirit at dawn!

Hunting Unicorns: Is an Alpha Monocerotid Outburst Due in 2015?

Image Credit: Kenneth Brandon

What’s rarer than a unicorn? Perhaps, its spying a a elusive meteor outburst from the heart of one…

Ready for more meteor shower action? Thus far this season, we’ve covered the Orionids, Taurid fireballs, and the Leonid meteors… 

Up for one more? Well, this week’s offering is a bit chancy, but we ‘may’ be in for a minor outburst from a usually quiescent shower. On any given year, the Alpha Monocerotid meteors wouldn’t rate a second look.

Image credit:
A confirmed 2014 Alpha Monocerotid. Image credit: The United Kingdom Meteor Observation Network (UKMON)

First, however, a caveat is in order. Meteor showers never read prognostications and often prove to be fickle, and wild card meteor storms doubly so.

Not to be confused with the straight up Monocerotids which peak in early December, the Alpha Monocerotids are moderately active from November 15th through the 25th, with a soft peak on the 22nd. And though the radiant derives its name from the brightest star in the rambling constellation of Monoceros the Unicorn, the radiant is actually located at its peak at right ascension 7 hours 46 minutes and declination +00 degrees 24 minutes, just across the border in the constellation Canis Minor.

Image credit:
Another bright Alpha Moncerotid meteor under a bright Moon. Image credit: UKMON

The Alpha Monocerotids have a curious history. They first caught the keen eye of observers in 1925, when F.T. Bradley watching from rural Virginia noted 37 meteors over a 13 minute span. In the 20th century, small outbursts seemed to ply the skies around November 22nd on the fifth year of each decade, with brief outbursts seen in 1935 and 1985. NASA astronomer and SETI Institute research scientist Peter Jenniskens predicted a 1995 outburst, and as predicted, a brief 30 minute display greeted members of the Dutch Meteor Society based under dark skies in southern Spain. The shower had a brief 5-minute climax in 1995, with an extrapolated zenithal hourly rate of 420.

6AM local radiant. image credit
The location of the Alpha Monocerotid meteor shower radiant at 6AM local from about 30 degrees latitude north. Image credit: Stellarium

Prospects for the shower in 2015

As of this writing, a major outburst from the Alpha Monocerotids isn’t predicted for 2015… but you just never know. It’s always worth watching for an outburst on the night of November 21/22nd, especially in years ending in five.

In 2015, the Moon phase for the night of Saturday/Sunday November 21st/22nd is waxing gibbous and about 79% illuminated and setting at around 1:00 AM local, putting it safely out of view.

Image credit
The orientation of the Earth’s shadow, Moon, Sun and shower radiant at 4:00 UT, November 22nd. Image credit: Orbitron

The predicted peak for the 2015 Alpha Monocerotids is centered on 4:25 UT/11:25 PM EST as per the International Meteor Organization (IMO), favoring western European longitudes in a similar fashion as 1995 at dawn on Sunday, November 22nd.

Thus far, the source comet for the Alpha Monocerotids remains a mystery, though a prime contender is Comet C/1943 W1 van Gent-Peltier-Daimaca. Discovered during the Second World War, this comet has an undefined long period orbit, and reached perihelion 0.87 AU from the Sun on January 12th, 1944.

Jenniskens notes that orbital configurations of Jupiter and Saturn may play a role in the long term modification of meteor streams such as the Alpha Monocerotids. A fascinating discussion on predicting meteor outbursts and the evolution of meteor streams by Mr Jenniskens can be read here.

The stream seems to have a very brief burst of activity of less than an hour, reminiscent of the elusive January Quadrantids. The Alpha Monocerotid radiant sits highest in the sky at around 4 AM local, and the incoming speed of the meteors is a very respectable 65 kilometers a second, making for brief swift trails.

Meteor Watching and Reporting

But beyond just observing, many sky watchers choose to log what they see and report it. Meteor shower streams—especially obscure ones such as the Alpha Monocerotids—are often poorly understood, and observers provide a valuable service by counting and reporting the number of meteors seen over a particular period of time.

Image credit
NASA’s All-sky meteor network captures a fireball. Image credit: NASA’s All-Sky Fireball Network

Imaging meteors is as simple as setting up a DSLR on a tripod for wide angle shots, and taking repeated exposures of the sky. We generally take a few test shots to get the ISO/f-stop mix just right for the current sky conditions, then set our intervalometer to take repeated 30-second exposures while we visually observe. Aim about 45 degrees away from the radiant to catch meteors in profile, and check the camera lens periodically for morning dew. We generally keep a hair dryer handy to combat condensation under moisture-laden Florida skies.

Maybe a vigil for an Alpha Monocerotid outburst is an exercise in hunting unicorns… but watching an outburst would be an unforgettable sight. Perhaps, the Alpha Monocerotid stream is on the wane in the 21st century… or a new outburst is still in the wings, waiting to greet dawn residents of the Earth.

Sweet Sights for November Nights

A pretty crescent moon will be the first thing you'll see appear in the sky tonight. Look southwest shortly after sunset to spot it. Source: Stellarium

Clear night ahead? Let’s see what’s up. We’ll start close to home with the Moon, zoom out to lonely Fomalhaut 25 light years away and then return to our own Solar System to track down the 7th planet. Even before the sky is dark, you can’t miss the 4-day-old crescent Moon reclining in the southwestern sky. Watch for it to wax to a half-moon by Thursday as it circles Earth at an average speed of 2,200 mph (3,600 km/hr). That fact that it orbits Earth means that the angle the Moon makes with the sun and our planet constantly varies, the reason for its ever-changing phase.

You'll see two and possibly three lunar "seas" tonight (Nov. 15). Only a portion of Mare Tranquilliitatis (Seas of Tranquility) is exposed. The large crater Janssen, 118 miles wide and 1.8 miles deep, is visible in binoculars. Credit: Virtual Moon Atlas / Legrande and Chevalley
You’ll see two and possibly three lunar “seas” tonight (Nov. 15). Only a portion of Mare Tranquilliitatis (Seas of Tranquility) is exposed. The large crater Janssen, 118 miles wide and 1.8 miles deep, is visible in binoculars. Credit: Virtual Moon Atlas / Legrande and Chevalley

With the naked eye you’ll be able to make two prominent dark patches within the crescent — Mare Crisium (Sea of Crises) and Mare Fecunditatis (Sea of Fecundity). Each is a vast, lava-flooded plain peppered with thousands of craters , most of which require a telescope to see. Not so Janssen. This large, 118-mile-wide (190-km) ring will be easy to pick out in a pair of seven to 10 power binoculars. Janssen is named for 19th century French astronomer Pierre Janssen, who was the first to see the bright yellow line of helium in the sun’s spectrum while observing August 1868 total solar eclipse.

Piscis Austrinus, the Southern Fish, has but one bright star, 1st magnitude Fomalhaut. It shines all by its lonesome in the south around 7 p.m. local time at mid-month. The star is located only 25 light years from Earth. Source: Stellarium
Piscis Austrinus, the Southern Fish, has but one bright star, 1st magnitude Fomalhaut. It shines all by its lonesome in the south around 7 p.m. local time at mid-month. The star is located only 25 light years from Earth. Source: Stellarium

English scientist Norman Lockyer also observed the line later in 1868 and concluded it represented a new solar element which he named “helium” after “helios”, the Greek word for sun. Helium on Earth wouldn’t be discovered for another 10 years, making this party-balloon gas the only element first discovered off-planet!

See the fish now? Greek mythology tells us that Piscis Austrinus is the "Great Fish", the parent of the two fish in the zodiacal constellation of Pisces the Fish. Source: Stellarium
See the fish now? Greek mythology tells us that Piscis Austrinus is the “Great Fish”, the parent of the two fish in the zodiacal constellation of Pisces the Fish. Source: Stellarium

Directing your gaze south around 7 o’clock, you’ll see a single bright star low in the southern sky. This is Fomalhaut in the dim constellation of Piscis Austrinus, the Southern Fish. The Arabic name means “mouth of the fish”. If live under a dark, light-pollution-free sky, you’ll be able to make out a loop of faint stars vaguely fish-like in form. Aside from being the only first magnitude star among the seasonal fall constellations, Fomalhaut stands out in another way — the star is ringed by a planet-forming disk of dust and rock much as our own Solar System was more than 4 billion years ago.

The planet Fomalhaut b orbits Fomalhaut inside a circumstellar disk of dust and rock, taking about 1,700 years to orbit. Brilliant Fomalhaut, represented by the small, white dot, has been masked from view, so astronomers could photograph the much fainter disk. Credit: NASA / ESA / Hubble Space Telescope
The planet Fomalhaut b orbits Fomalhaut inside a circumstellar disk of dust and rock, taking about 1,700 years to orbit. Brilliant Fomalhaut, represented by the small, white dot, has been masked from view, so astronomers could photograph the much fainter disk. Credit: NASA / ESA / Hubble Space Telescope

Within that disk is a new planet, Fomalhaut b, with less than twice Jupiter’s mass and enshrouded either by a cloud of dusty debris or a ring system like Saturn. Fomalhaut b has the distinction of being the first extrasolar planet ever photographed in visible light. The plodding planet takes an estimated 1,700 years to make one loop around Fomalhaut, with its distance from its parent star varying from about 50 times Earth’s distance from the sun at closest to 300 times that distance at farthest.

Shoot a diagonal across the Square of Pegasus to 4th magnitude Delta Piscium. Point your binoculars here and slide east to 4th magnitude Epsilon and 2° south to the planet Uranus shines at magnitude +5.7 and can be glimpsed with the naked eye from a dark sky site. Time shown is around 7 p.m. local time. See detailed map below. Source: Stellarium
Shoot a diagonal across the Square of Pegasus to 4th magnitude Delta Piscium. Point your binoculars here and slide east to 4th magnitude Epsilon and 2° south to the planet Uranus shines at magnitude +5.7 and can be glimpsed with the naked eye from a dark sky site. Time shown is around 7 p.m. local time. See detailed map below. Source: Stellarium

Next, we move on to one of the more remote planets in our own solar system, Uranus. The 7th planet from the sun, Uranus reached opposition — its closest to Earth and brightest appearance for the year — only a month ago. It’s well-placed for viewing in Pisces the Fish after nightfall high in the southeastern sky below the prominent sky asterism, the Great Square of Pegasus.

Wide-field binocular view of Uranus' travels now through next April. I've labeled two stars near the planet with their magnitudes - 5.5 and 6.0 - which are similar to Uranus in brightness, so you don't confuse them with the planet. The others are naked eye stars in Pisces. Source: Chris Mariott's SkyMap
Wide-field binocular view of Uranus’ travels now through next April. I’ve labeled several stars near the planet with their magnitudes, which are similar in brightness to Uranus, so you’ll know to tell them apart from the planet. The others are naked eye stars in Pisces. Source: Chris Mariott’s SkyMap

A telescope will tease out its tiny, greenish disk,  but almost any pair of binoculars will easily show the planet as a star-like point of light slowly marching westward against the starry backdrop in the coming weeks. Check in every few weeks to watch it move first west, in retrograde motion, and then turn back east around Christmas. For those with 8-inch and larger telescopes who love a challenge, use this Uranian Moon Finder to track the planet’s two brightest moons, Titania and Oberon, which glimmer weakly around 14th magnitude.

We’ve barely scratched the surface of the vacuum with these offerings; they’re just a few of the many highlights of mid-November nights that also include the annual Leonid meteor shower, which peaks Tuesday and Wednesday mornings (Nov. 17-18). So much to see!

MESSENGER Spies a Meteor Shower… on Mercury

Image credit:

Leonid meteor storms. Taurid meteor swarms. Earth is no stranger to meteor showers, that’s for sure. Now, it turns out that the planet Mercury may experience periodic meteor showers as well.

The news of extraterrestrial meteor showers on Mercury came out of the annual Meeting of the Division of Planetary Sciences of the American Astronomical Society currently underway this week in National Harbor, Maryland. The study was carried out by Rosemary Killen of NASA’s Goddard Spaceflight Center, working with Matthew Burger of Morgan State University in Baltimore, Maryland and Apostolos Christou from the Armagh Observatory in Northern Ireland.  The study looked at data from the MErcury Surface Space Environment Geochemistry and Ranging (MESSENGER) spacecraft, which orbited Mercury until late April of this year. Astronomers published the results in the September 28th issue of Geophysical Research Letters.

Micrometeoroid debris litters the ecliptic plane, the result of millions of years of passages of comets through the inner solar system. You can see evidence of this in the band of the zodiacal light visible at dawn or dusk from a dark sky site, and the elusive counter-glow of the gegenschein.

The orbit of comet 2P Encke. Image credit: NASA/JPL
The orbit of comet 2P Encke. Image credit: NASA/JPL

Researchers have tagged meteoroid impacts as a previous source of the tenuous exosphere tails exhibited by otherwise airless worlds such as Mercury. The impacts kick up a detectable wind of calcium particles as Mercury plows through the zodiacal cloud of debris.

“We already knew that impacts were important in producing exospheres,” says Killen in a recent NASA Goddard press release. “What we did not know was the relative importance of comet streams over zodiacal dust.”

This calcium peak, however, posed a mystery to researchers. Namely, the peak was occurring just after perihelion—Mercury orbits the Sun once every 88 Earth days, and travels from 0.31 AU from the Sun at perihelion to 0.47 AU at aphelion—versus an expected calcium peak predicted by researchers just before perihelion.

Image credit:
STEREO A catches sight of comet 2P Encke. Image credit: NASA/STEREO

A key suspect in the calcium meteor spike dilemma came in the way of periodic Comet 2P Encke. Orbiting the Sun every 3.3 years—the shortest orbit of any known periodic comet—2P Encke has made many passages through the inner solar system, more than enough to lay down a dense and stable meteoroid debris stream over the millennia.

With an orbit ranging from a perihelion at 0.3 AU interior to Mercury’s to 4 AU, debris from Encke visits Earth as well in the form of the November Taurid Fireballs currently gracing the night skies of the Earth.

The Encke connection still presented a problem: the cometary stream is closest to the orbit of Mercury about a week later than the observed calcium peak. It was as if the stream had drifted over time…

Image credit:
Comet 2P Encke, captured by NASA’s MESSENGER spacecraft. Image credit: NASA/Johns Hopkins/APL/SW Research Institute

Enter the Poynting-Robertson effect. This is a drag created by solar radiation pressure over time. The push on cometary dust grains thanks to the Poynting-Robertson effect is tiny, but it does add up over time, modifying and moving meteor streams. We see this happening in our own local meteor stream environment, as once great showers such as the late 19th century Andromedids fade into obscurity. The gravitational influence of the planets also plays a role in the evolution of meteor shower streams as well.

Researchers in the study re-ran the model, using MESSENGER data and accounting for the Poynting-Robertson effect. They found the peak of the calcium emissions seen today are consistent with millimeter-sized grains ejected from Comet Encke about 10,000 to 20,000 years ago. That grain size and distribution is important, as bigger, more massive grains result in a smaller drag force.

Image credit: Kevin Palmer
A 2015 Taurid meteor. Image credit: Kevin Palmer

This finding shows the role and mechanism that cometary debris plays in exosphere production on worlds like Mercury.

“Finding that we can move the location of stream to match MESSENGER’s observations is gratifying, but the fact that the shift agrees with what we know about Encke and its stream from independent source makes us confident that the cause-and-effect relationship is real, says Christou in this week’s NASA Goddard press release.

Launched in 2004, MESSENGER arrived at Mercury in March 2011 and orbited the world for over four years, the first spacecraft to do so. MESSENGER mapped the entire surface of Mercury for the first time, and became the first human-made artifact to impact Mercury on April 30th, 2015.

The joint JAXA/ESA mission BepiColombo is the next Mercury mission in the pipeline, set to leave Earth on 2017 for insertion into orbit around Mercury on 2024.

An interesting find on the innermost world, and a fascinating connection between Earth and Mercury via comet 2P Encke and the Taurid Fireballs.

From a Roar to a Purr: Prospects for the 2015 November Leonid Meteors

Image credit:

A November rain hails from the Sickle of the Lion.

Hot on the heels of the October Orionids and the Halloween fireballs of the Taurid meteors comes the Leonid meteor shower. On most years, the Leonids are a moderate shower, with hourly local rates reaching around 20. Once every 33 years, however, the Leonids are responsible for putting on one of the greatest astronomical shows ever witnessed, producing a grand storm with a zenithal hourly rate topping thousands per hour.

Image credit: Stellarium
The orientation of the Earth and the relative positions of the Sun, Moon and the Leonid meteor radiant on November 17th at 4:00 UT. Image credit: Stellarium

Prospects for 2015

First, the bad news. 2015 isn’t forecast to be a ‘storm year’ for the Leonids, though that shouldn’t stop a vigilant observer from watching.  The good news is, we’re just about midway betwixt the storm years of 1998-99 and 2031-32. The Leonids intensify once every 33 years, and if the increased activity seen in the late 1990s was any indication, we’d bet we’ll start seeing a pickup in rates from the Leonids in the late 2020’s or so. The good news for 2015, however, is that the peak for the Leonids occur on November 18th at around 4:00 Universal Time (UT)/ (11:00 PM EST on November 17th). This places the waxing crescent Moon out of the picture, just a day before reaching First Quarter phase. New Moon for November 2015 occurs on November 11th at 17:47 UT/12:47 PM EST.

Image credit:
A composite of the 2014 Leonids. Image credit: Alan Dyer/Amazing Sky Photography

Fun fact: the August Perseids, November Leonids and the December Geminid meteor showers are spaced out on the calendar in such a way that, when the Moon phase is favorable for one shower on a particular year, it is nearly always favorable across all of them.

The Leonids are mildly active from November 6th through November 30th, and though the above prediction for activity in 2015 favors European longitudes at dawn, some predictions have the peak arriving up to seven hours early this year.

Image credit: Stellarium
A simulated ‘Leonid storm.’ Note the true position of the radiant in the center of the backwards ‘?’ asterism is slightly offset.  Image credit: Stellarium

The Leonids are the dusty remnants laid down by periodic comet 55P Tempel-Tuttle on its 33-year path through the inner solar system. The Leonids are fast-movers, hitting the Earth nearly head-on in the dawn. You can see this in the relative position of the radiant, which rises in mid-November around 11PM local, and reaches the zenith around 6AM local time.

A late season Leonid meteor from 2014. Image credit: The UK Monitoring network (UKMON)
A late season Leonid meteor from 2014. Image credit: The UK Monitoring network (UKMON)

Often bluish in color, the Leonids hit the Earth’s atmosphere at over 70 km/sec… almost the fastest theoretical speed possible. For best results, watch for Leonids to spike in activity close to local dawn.

A 1799 woodcut depicting the Leonids at sea. Image credit: Public Domain
A 1799 woodcut depicting the Leonids at sea. Image credit: Public Domain

The Leonids have a storied history, going back 902 AD report from Arabic annals of the ‘Year of Stars.’ The Great Meteor Storm of 1833 dazzled (and terrified) residents of the eastern seaboard of the United States, and the spectacle not only inspired astronomer Denison Olmsted to pioneer studies into the fledgling field of meteor shower science, but has been attributed to adding fervor to many of the religious revivalist movements that sprang up in the 1830s in the United States as well.

The last outburst from the Leonids that reached such an apocalyptic scale was in 1966, when observers across the southwestern United States reported hourly rates approaching an amazing ZHR=144,000. Witnesses that remember this spectacle say it produced an illusion reminiscent of the Star Trek ‘warp speed’ effect, as Earth rammed headlong into the dense Leonid meteor stream.

Our own personal encounter with a Leonid meteor storm in 1998 from the dark desert skies of Kuwait wasn’t quite that intense, but thrilling to see nonetheless. Rates neared one every few seconds towards sunrise, with several fireballs punctuating the action, lighting up the desert floor. Here, as US coalition forces were on the verge of unleashing what would become Operation: Desert Fox over Iraq, the Universe was putting on a fireworks show of its own.

The Leonid meteor storms are the stuff of astronomical legend, a once in a lifetime event. Ever since we witnessed just what the Leonids are capable of, we never miss this annual shower, as we remember one night back in 1998, and look forward to the storms of 2032.

Here’s what the Leonids have been doing on previous recent years:

ZHR=15 +/-4 (2014)

Mostly washed out by the near-Full Moon (2013)

ZHR=47 +/-11 (2012)

ZHR=22 +/-3 (2011)

ZHR=32+/-4 (2010)

  • Report those Leonid sightings to the International Meteor Organization, and also be sure to Tweet em to #Meteorwatch
  • Got an image of a Leonid meteor? Send ‘em in to Universe Today at our Flickr Forum… we just might feature it in an after-action round up!

The Moon Greets the Planets in the November Dawn

A tri-planetary grouping from the morning of October 31st. Image credit and copyright: Joseph Brimacombe

So, did this past weekend’s shift back to Standard Time for most of North America throw you for a loop? Coming the day after Halloween, 2015 was the earliest we can now shift back off Daylight Saving Time. Sunday won’t fall on November 1st again until 2020. Expect evenings get darker sooner for northern hemisphere residents, while the planetary action remains in the dawn sky.

Though Mercury has exited the morning twilight stage, the planets Jupiter, Venus and Mars continue to put on a fine show, joined by the waning crescent Moon later this week. The action starts today on November 3rd, which finds +1.9 magnitude Mars passing just 0.68 degrees (40’, just over the apparent diameter of a Full Moon) from brilliant -3.9 magnitude Venus. Though the two nearest planets to the Earth appear to meet up in the dawn sky, Mars is actually 2.5 times more distant than Venus, which sits 74.4 million miles (124 million kilometres) from the Earth. Venus exhibits a 57% illuminated gibbous phase 21” across this week, versus Mars’ paltry 4.5” disc.

November 6th. Image credit: Starry Night Education Software
The lunar planetary lineup on the morning of November 6th… Image credit: Starry Night Education Software

Watch the scene shift, as the Moon joins the dance this weekend. The mornings of Friday, November 6th and Saturday, November 7th are key, as the Moon passes just two degrees from the Jupiter and Mars pair and just over one degree from Venus worldwide. Similar close pairings of the Moon and Venus adorn many national flags, possibly inspired by a close grouping of Venus and the Moon witnessed by skywatchers of yore.

November 7th
… and the view the next morning on November 7th. Image credit: Starry Night Education software

Saturday November 7th is also a fine time to try your hand at seeing Venus in the daytime, using the nearby crescent Moon as a guide. The Moon will be only four days from New, and the pair will be 46 degrees west of the Sun, an optimal situation as Venus just passed greatest western elongation 46.4 degrees west of the Sun on October 26th.

Nov 3
Mars meets Venus on November 3rd-4th… the center circle = 1 degree FoV. Image credit: Stellarium

Though Venus may seem like a difficult daytime object, it’s actually intrinsically brighter than the Moon per square arc second. Difficulty finding it stems from seeing it against a low contrast blue daytime sky, its small size, and lack of context and depth. The larger but dimmer Moon actually serves as a good anchor to complete this feat of visual athletics.

Venus from the morning of November 3rd. Image credit and copyright: Shahrin Ahmad
Venus from the morning of November 3rd. Image credit and copyright: Shahrin Ahmad

Looking for more? Comet C/2013 US10 Catalina will join the planetary lineup next lunation ‘round, hopefully shining at magnitude +5 as it glides past Venus and the Moon on December 7th. Karl Battams at the U.S. Naval Research Labs has confirmed that Comet US10 Catalina—which reaches perihelion this month on November 15th –should also briefly graze the field of view for SOHO’s LASCO C3 camera on November 7th.

There’s also a few notable lunar occultations this week. The Moon also occults the +5 magnitude star Chi Leonis for viewers around the Gulf of Mexico on November 4th, including a dramatic grazing event for Northern Florida. The Moon also occults the +3.5 magnitude star Omicron Leonis on Nov 4th for Alaska as well.

Image credit:
The occultation footprint for Chi Leonis. The solid lines indicate where the event will occur during darkness and twilight hours, while the dashed lines denote where the event transpires during the daytime. Image credit: Occult 4.2 software

See a bright star near the Venus this week? It’s none other than +3.6 magnitude Beta Virginis (Zavijava). The star passes 15’ from Venus on the morning of November 6th. Stick around ‘til 2069, and you can actually witness Venus occult Beta Virginis. Between Beta Virginis and Mars, Venus has the appearance this week of having the large pseudo-moon it never possessed. From Venus, our Moon would appear near magnitude +0.4 with a disk 6.4” this week, and range 12’ from the Earth.

Nov 7
The closeup view on the morning of November 7th along with a 5 degree Telrad FoV. image credit: Stellarium

Now for the wow factor. All of these disparate objects merely lie along our Earthbound line of sight this week. Traveling at the speed of light (186,282 miles or 299,792 kilometers a second), the Moon lies just over a second away. Venus, Mars and Jupiter are next, at 6, 18, and 49 light minutes out, respectively… and Beta Virginis? It lies 36 light years distant.

This pass of the Moon also sets us up for an occultation of Mars and a dramatic daytime occultation of Venus for North America during the next lunation…

More to come!

-Got pictures of the planetary grouping this week with the Moon? Be sure to send ’em in to Universe Today and our Flickr forum.

Artificial Object in Trans-lunar Orbit to Impact Earth on November 13

WT1190F observed on 9 October 2015 with the University of Hawaii 2.2 meter telescope on Mauna Kea, Hawaii. [Credits: B. Bolin, R. Jedicke, M. Micheli]

Get ready for a man-made fireball. A object discovered by the Catalina Sky Survey on Oct 3rd temporarily designated WT1190F is predicted to impact the Earth about 60 miles (100 km) off the southern coast of Sri Lanka around 6:20 Universal Time (12:20 a.m CST) on November 13.

The object orbits Earth with a period of about three weeks. Because it was also observed twice in 2013 by the same survey team, astronomers have the data they need to model its orbit and trajectory, and as far anyone can tell,  it’s likely man-made. 

S-IVB stage of Apollo 17. Credit: NASA
The first two stages of the Saturn V rockets used to send the seven Apollo missions to the Moon fell back to Earth, but the third stage (S-IVB), pictured here, propelled the spacecraft into a lunar trajectory. Could this be WT1190F? Credit: NASA

Solar radiation pressure, the physical “push” exerted by photons of sunlight, is proportional to a space object’s area-to-mass ratio. Small, lightweight objects get pushed around more easily than heavier, denser ones. Taking that factor into account in examining WT1190F’s motion over two years, the survey team has indirectly measured WT1190F’s density at about 10% that of water. This is too low to be a typical asteroid made of rock, but a good fit with a hollow shell, possibly the upper stage of a rocket.

Spectacular re-entry of the Jules Verne ATV-1 cargo ship over the Pacific Ocean on September 29, 2008. Still image definition TV camera operated by Jessie Carpenter and Bill Moede of NASA Ames Research Center
Spectacular re-entry of the Jules Verne ATV-1 cargo ship over the Pacific Ocean on September 29, 2008. Still image from a TV camera operated by Jessie Carpenter and Bill Moede of NASA Ames Research Center. A similar spectacle is expected on November 13 south of Sri Lanka.

It’s also quite small, at most only about six feet or a couple of meters in diameter. Most or all of it is likely to burn up upon re-entry, creating a spectacular show for anyone near the scene. During the next week and a half, the European Space Agency’s NEO (Near-Earth Object) Coordination Center is organizing observing campaigns to collect as much data as possible on the object, according to a posting on their website. The agency has two goals: to better understand satellite re-entries from high orbits and to use the opportunity to test our readiness for a possible future event involving a real asteroid. The latter happened once before when 2008 TC3 (a real asteroid) was spotted on October 6, 2008 and predicted to strike Earth the very next day. Incredibly, it did and peppered the Sudan with meteorites that were later recovered.

Assuming WT1190F is artificial, its trans-lunar orbit (orbit that carries it beyond the Moon) hints at several possibilities. Third stages from the Saturn-V rockets that launched the Apollo missions to the Moon are still out there. It could also be a stage from one of the old Russian or more recent Chinese lunar missions. Even rockets used to give interplanetary probes a final push are game.

J002E3 discovery images taken by Bill Yeung on September 3, 2002. J002E3 is in the circle. Images taken with Astroworks Centurion 18" f2.8 scope and Apogee AP9e CCD camera, 10 u second exposure. Auto detected with PinPoint Astrometry Engine by Bob Denny. North is up. Animation created by Bob Denny.
Near-Earth object J002E3 discovery images taken by Bill Yeung on September 3, 2002. The 16th magnitude object was tentatively identified as the Apollo 12 third stage rocket. Animation created by Bob Denny.

Case in point. What was thought initially to be a new asteroid discovered by amateur astronomer Bill Yeung on September 3, 2002 proved a much better fit with an Apollo 12 S-IVB (third) stage after University of Arizona astronomers found that spectra taken of the object strongly correlated with absorption features seen in a combination of man-made materials including white paint, black paint, and aluminum, all consistent with Saturn V rockets.

On April 14th 1970, the Apollo 13 Saturn IVB upper stage impacted the moon north of Mare Cognitum, at -2.55° latitude, -27.88° East longitude. The impact crater, which is roughly 30 meters in diameter, is clearly visible in LROC NAC image M109420042LE. Credit: NASA/Goddard/Arizona State University
On April 14th 1970, the Apollo 13 Saturn IVB upper stage impacted the moon north of Mare Cognitum. The impact crater, which is roughly 30 meters in diameter, is clearly visible in this photo taken by the Lunar Reconnaissance Orbiter. Credit: NASA/Goddard/Arizona State University

Apollo 13’s booster was the first deliberately crashed into the Moon, where it blew out it a crisp, 98-foot-wide (30-meter) crater. Why do such a crazy thing? What better way to test the seismometers left by the Apollo 12 crew? All subsequent boosters ended their lives similarly in the name of seismography. Third stages from earlier missions — Apollos 8, 10 and 11 —  entered orbit around the Sun, while Apollo 12, which is orbiting Earth, briefly masqueraded as asteroid J002E3.

The nominal impact point is located about 60 miles south of the island nation Sri Lanka. Credit: Bill Gray at Project Pluto
The nominal impact point is located about 60 miles south of the island nation Sri Lanka. Given the object’s small size and mass, it will likely be completely incinerated during re-entry. Credit: Bill Gray at Project Pluto

Bill Gray at Project Pluto has a page up about the November 13 impact of WT1190F with more information. Satellite and asteroid watchers are hoping to track the object before and right up until it burns up in the atmosphere. Currently, it’s extremely faint and moving eastward in Orion. You can click HERE for an ephemeris giving its position at the JPL Horizons site. How exciting if we could see whatever’s coming down before its demise on Friday the 13th!

Tonight’s the Night! Maps to Help You Spot Asteroid TB145

Map showing TB145's position for an observer in the north central U.S. at 15-minute intervals starting at 5:00 UT. Subtract 4 hours from UT for EDT, 5 hours for CDT, 6 for MDT and 7 for PDT. Stars are shown to magnitude +12 and north is up. Credit: Chris Marriott's SkyMap


This simulation by Tom Ruen shows the trajectory of 2015 TB145 across the sky, showing tracer spheres spaced at one hour intervals along its path.

Halloween fireballs, a Supermoon and now a near-Earth asteroid flyby. What a week! While 2015 TB145 won’t be visible in binoculars because of its relative faintness and glare from a nearby waning gibbous Moon, you should be able to see it in an 8-inch telescope or larger telescope without too much difficulty.

Determined amateurs might even catch it in instruments as small as 4.5 inches  especially tomorrow morning when the fleeing space mountain will brighten to around magnitude +10.

For western hemisphere observers, TB145 begins the evening in Orion’s Shield not far below the Hyades Cluster looking like a magnitude +11.5 star crawling northeast through the star field. By dawn on Halloween, it will top out around magnitude +10.2 as it zips through Taurus and Auriga traveling around 3-5° per hour depending on the time you look. For most of the night, TB145 will move swiftly enough to notice its motion in real time, resembling an Earth-orbiting satellite. Closest approach occurs around 17:00 UT (noon CDT) when it pass along bottom of the Big Dipper Bowl at around 10° hour. Amazing!

Map showing the asteroid's progress across the horns of Taurus from 9-10:45 UT October 31st. It passes about 1.5 northwest of the Crab Nebula around 5:30 UT. Credit: Chris Marriott's SkyMap
Map showing the asteroid’s progress across the horns of Taurus from 9-10:45 UT (4 – 5:45 a.m.) October 31st. It passes about 1° northwest of the Crab Nebula around 10:30 UT. Credit: Chris Marriott’s SkyMap

My hope is that these maps will help you spot and follow this zippy, aircraft carrier-sized boulder. Three of the four maps cover most of the time between 5:00 and 11:45 UT, equivalent to midnight CDT tonight to 6:45 a.m. tomorrow morning. I used the very latest orbital elements and hand plotted the positions (a tedious exercise but worth it!) at 15-minute intervals. For convenience, when you print them out, I’d suggest using a straight edge to draw a line connecting the position dots.

As we discussed in the previous Universe Today storyparallax comes into play when viewing any nearby Solar System object. Three of the maps show the asteroid’s position from the North Central U.S. One depicts the view from the South Central U.S. from 11-11:45 UT. Parallax is minor early on from midnight to 2 or 3 a.m. but becomes more significant near closest approach. This is based on comparisons I made between latitudes 47°-32° North.

By this time, TB145 will be around magnitude +10.4 and easier to see than at the start our run. The map covers the time from 11-11:4 5 UT (6 - 6:45 a.m. CDT). Credit: Chris Marriott's SkyMap
By this time, TB145 will be around magnitude +10.4 and easier to see than at the start our run. The map covers the time from 11-11:45 UT (6 – 6:45 a.m. CDT). Credit: Chris Marriott’s SkyMap

I apologize for the limited number of maps in this article but hope these and the do-it-yourself approach described in the earlier article will be enough to set you on TB145’s trail.

The view from the southern U.S. (about 32 latitude). Compared to the northern U.S., the asteroid's path lies about 5 arc minutes to the north. Credit: Chris Marriott's SkyMap
The view from the southern U.S. (about 32° latitude) from 11-11:45 UT. Compared to the northern U.S., the asteroid’s path lies about 5 arc minutes further to the north. Credit: Chris Marriott’s SkyMap

As always when trying to spot asteroids on the move, pick a time and camp out at that spot with your telescope five minutes before the expected arrival time. Take the time to casually memorize the star patterns, so when the interloper arrives, you’ll pick it out straightaway. Again, depending on your location both east-west and north-south of the paths charted, TB145 may arrive a couple minutes earlier or later, but once you spot it, hold on tight. You’ll be going on a most exciting ride!

Map showing TB145's approximate path starting at 4 hours UT on Oct. 31 (11 p.m. CDT Oct. 30). This view faces east. Tick marks show its hourly position. This map provides context for the detailed maps above. Credit: Chris Marriott's SkyMap
Map showing TB145’s approximate path starting at 4 hours UT on Oct. 31 (11 p.m. CDT Oct. 30). This view faces east. Tick marks show its hourly position. This map provides context for the detailed maps above. Credit: Chris Marriott’s SkyMap

We’d love to hear from you whether or not you were successful seeing it. If the weather’s uncooperative or you don’t have a telescope,  Gianluca Masi’s got your back. He’ll webcast the flyby live on his Virtual Telescope site starting at 7 p.m. CDT (0:00 UT) tonight Oct. 30-31.


Now let’s see the flyby of Earth from the asteroid’s point of view, also by Tom Ruen. Enjoy!

A Halloween Season ‘Taurid Meteor Swarm’ on Tap for 2015?

Image credit: NASA

Asteroid 2015 TB145 isn’t the only cosmic visitor paying our planet a trick-or-treat visit over the coming week. With any luck, the Northern Taurid meteor shower may put on a fine once a decade show heading into early November.

About once a decade, the Northern Taurid meteor stream puts on a good showing. Along with its related shower the Southern Taurids, both are active though late October into early November.

The motion of the radiant of the Northern Taurid meteors from mid-October through mid-November. Image credit: Stellarium
The motion of the radiant of the Northern Taurid meteors from mid-October through mid-November. The shower typically peaks around November 12th annually. Image credit: Stellarium

Specifics for 2015

This year sees the Moon reaching Full on Tuesday October 27th, just a few days before Halloween. The Taurid fireballs, however, have a few things going for them that most other showers don’t. First is implied in the name: the Northern Taurids, though typically exhibiting a low zenithal hourly rate of around 5 to 10, are, well, fireballs, and thus the light-polluting Moon won’t pose much of a problem. Secondly, the Taurid meteor stream is approaching the Earth almost directly from behind, meaning that unlike a majority of meteor showers, the Taurids are just as strong in the early evening as the post midnight early morning hours.  As a matter of fact, we saw a brilliant Taurid just last night from light-polluted West Palm Beach in Florida, just opposite to the Full Moon and a partially cloudy sky.

A 2014 Taurid. Image credit and copyright: Brian who is called Brian
A 2014 Taurid. Image credit and copyright: Brian who is called Brian

In stark contrast to the swift-moving Orionids from earlier this month, expect the Taurid fireballs to trace a brilliant and leisurely slow path across the night sky, moving at a stately 28 kilometre per second (we say stately, as the October Orionids smash into our atmosphere at over twice that speed!)

Ever since the 2005 event, the Northern Taurids seemed to have earned the name as “The Halloween Fireballs” in the meme factory that is the internet. It’s certainly fitting that Halloween should have its very own pseudo-apocalyptic shower. The last good return for the Northern Taurids was 2005-2008, and 2015 may see an upswing in activity as well.

Obviously, something interesting has to be occurring on Comet 2P Encke—the source of the two Taurid meteor streams—to shed the pea-sized versus dust-sized material seen in the Southern and Northern Taurids. With the shortest orbital period 3.3 years of all periodic comets known, the Taurid meteor stream—like Encke itself—follows a shallow path nearly parallel to the ecliptic plane.

Discovered in 1822 by astronomer Johann Encke, Comet 2P Encke has been observed through many perihelion passages over the last few centuries, and passes close to Earth once 33 years, as it last did in 2013.

What constitutes a ‘meteor swarm?’ As with many terms in meteoritics, no hard-and-fast definition of a true ‘meteor swarm’ exists. A meteor storm is generally quoted as having a zenithal hourly rate greater than 1000. Expect activity to be broad over the next few weeks, and the Taurid fireballs always have the capacity to produce the kind of brilliant events captured by security cams and dashboard video cameras that go viral across ye ole Internet.

Watching for fireballs is a thrilling pursuit. These may often leave persistent glowing meteor trails in their wake.  We caught the 1998 Leonids from the dark sky deserts of Kuwait, and can attest to the persistence of glowing fireball trails from this intense storm, sometimes for minutes. Again, the 2015 Taurids aren’t expected to reach that level of intensity, though the ratio of fireballs to faint meteors will be enhanced.

The path of the stream isn’t fully understood, and that is where volunteer observations can come in handy. The International Meteor Organization is always looking for reports from skilled observers, as is the American Meteor Society (AMS).

Image Credit:
The light curve of the suspected Taurid that hit the Moon on Nov 7th. Image Credit: NASA

There’s even been evidence for a recorded meteorite strike related to the northern Taurid fireballs back in 2015 on the dark limb of the Moon as well, a rare event indeed.

After a slow summer, Fall meteor shower activity is definitely heating up. And though 2015 is an off year for the November Leonids, we’re now almost midway between the 1998-99 outbursts, and the possibility of another grand meteor storm in the early 2030s. And another obscure wildcard shower known as the Alpha Monocerotids may put on a surprise showing in November 2015 as well…

Bright Meteor 4th November 2013 from Richard Fleet on Vimeo.

More to come on that. Keep watching the skies, and don’t forget to tweet those Northern Taurid fireball sightings and images to #Meteorwatch!

-Got an image of a Northern Taurid fireball? Send ‘em in to Universe Today for our Flickr forum… we may just feature your pic in an after action round up!