Kick Back, Look Up, We’re In For a GREAT Perseid Meteor Shower

Multi-photo composite showing Perseid meteors shooting from their radiant point in the constellation Perseus. Earth crosses the orbit of comet 109P/Swift-Tuttle every year in mid-August. Debris left behind by the comet burns up as meteors when it strikes our upper atmosphere at 130,000 mph. Credit: NASA

Every year in mid-August, Earth plows headlong into the debris left behind by Comet 109P/Swift-Tuttle. Slamming into our atmosphere at 130,000 mph, the crumbles flash to light as the Perseid meteor shower. One of the world’s most beloved cosmic spectacles, this year’s show promises to be a real crowd pleaser.

The author tries his best to enjoys this year's moon-drenched Perseids from the "astro recliner". Credit: Bob King
The author takes in last year’s moon-drenched Perseids from a recliner. Credit: Bob King

Not only will the Moon be absent, but the shower maximum happens around 3 a.m. CDT (8 UT) August 13 — early morning hours across North America when the Perseid radiant is highest. How many meteors will you see? Somewhere in the neighborhood of 50-100 meteors per hour. As always, the darker and less light polluted your observing site, the more zips and zaps you’ll see.

Find a place where there’s as few stray lights as possible, the better to allow your eyes to dark-adapt. Comfort is also key. Meteor showers are best enjoyed in a reclining position with as little neck craning as possible. Lie back on a folding lawn chair with your favorite pillow and bring a blanket to stay warm. August nights can bring chill and dew; a light coat and hat will make your that much more comfortable especially if you’re out for an hour or more.

The Perseids appear to radiate from spot below the W of Cassiopeia in the constellation Perseus, hence the name "Perseids". Source: Stellarium
The Perseids appear to radiate from spot below the W of Cassiopeia in the constellation Perseus, hence the shower’s name. This map shows the sky facing northeast around 12:30 a.m. local time August 13. Source: Stellarium

I’m always asked what’s the best direction to face. Shower meteors will show up in every corner of the sky, but can all be traced backwards to a point in Perseus called the radiant. That’s the direction from which they all appear to stream out of like bats flying out of a cave.

Another way to picture the radiant it is to imagine driving through a snowstorm at night. As you accelerate, you’ll notice that the flakes appear to radiate from a point directly in front of you, while the snow off to the sides streams away in long trails. If you’re driving at a moderate rate of speed, the snow flies past on nearly parallel paths that appear to focus in the distance the same way parallel railroad tracks converge.

At some personal peril, I grabbed a photo of snow in the headlights while driving home in a recent storm. Meteors in a meteor shower appear to radiate from a point in the distance in identical fashion. Photo: Bob King
Meteors in a meteor shower appear to radiate from a point in the distance in identical fashion to driving a car in a snowstorm. The motion of the car (Earth) creates the illusion of  meteors radiating from a point in the sky ahead of the observer. Credit: Bob King

Now replace your car with the moving Earth and comet debris for snow and you’ve got a radiant and a meteor shower. With two caveats. We’re traveling at 18 1/2 miles per second and our “windshield”, the atmosphere, is more porous. Snow bounces off a car windshield, but when a bit of cosmic debris strikes the atmosphere, it vaporizes in a flash. We often think friction causes the glow of meteors, but they’re heated more by ram pressure.

A bright fireball breaking to pieces near Yellow Springs, Ohio. Meteors are really tubes of ionized air energized by the passage of comet bits. Credit: John Chumack
A bright fireball breaking to pieces near Yellow Springs, Ohio. Meteors are really tubes of ionized air energized by the passage of comet bits. Credit: John Chumack

The incoming bit of ice or rock rapidly compresses and heats the air in front of it, which causes the particle to vaporize around 3,000°F (1,650°C). The meteor or bright streak we see is really a hollow “tube” of glowing or ionized air molecules created by the tiny rock as its energy of motion is transferred to the surrounding air molecules. Just as quickly, the molecules return to their rest state and release that energy as a spear of light we call a meteor.

Imagine. All it takes is something the size of a grain of sand to make us look up and yell “Wow!”

Speaking of size, most meteor shower particles range in size from a small pebble to beach sand and generally weigh less than 1-2 grams or about what a paperclip weighs. Larger chunks light up as fireballs that shine as bright as Venus or better. Because of their swiftness, Perseids are generally white and often leave chalk-like trails called trains in their wakes.

Comet 109P/Swift-Tuttle captured during its last pass by Earth on Nov. 1, 1992. A filament of dust deposited by the comet in 1862 may cause a temporary spike in activity on Aug. 12 around 18:39 UT. Credit: Gerald Rhemann
Comet 109P/Swift-Tuttle seen during its last pass by Earth on Nov. 1, 1992. A filament of dust deposited by the comet in 1862 may cause a temporary spike in activity around 18:39 UT on August 12. Credit: Gerald Rhemann

This year’s shower is special in another way. According to Sky and Telescope magazine, meteor stream modeler Jeremie Vaubaillon predicts a bump in the number of Perseids around 1:39 p.m. (18:39 UT) as Earth encounters a debris trail shed by the Comet Swift-Tuttle back in 1862. The time favors observers in Asia where the sky will be dark. It should be interesting to see if the prediction holds.

How To Watch

Already the shower’s active. Go out any night through about the 15th and you’ll see at least at least a handful of Perseids an hour. At nightfall on the peak night of August 12-13, you may see only 20-30 meteors an hour because the radiant is still low in the sky. But these early hours give us the opportunity to catch an earthgrazer — a long, very slow-moving meteor that skims the atmosphere at a shallow angle, crossing half the sky or more before finally fading out.

I’ve only seen one good earthgrazer in my earthly tenure, but I’ll never forget the sight. Ambling from low in the northeastern sky all the way past the southern meridian, it remained visible long enough to catch it in my telescope AND set up a camera and capture at least part of its trail!

A Perseid meteor streaks across the northeastern sky two Augusts ago. This year's shower will peak on the night of August 12-13 with up to 100 meteors per hour visible from a dark sky. Credit: Bob King
A Perseid meteor streaks across the northeastern sky two Augusts ago. Give the shower an hour’s worth of your time – you won’t be disappointed. Credit: Bob King

The later you stay up, the higher the radiant rises and the more meteors  you’ll see. Peak activity of 50-100 meteors per hour will occur between about 2-4 a.m. No need to stare at the radiant to see meteors. You can look directly up at the darkest part of the sky or face east or southeast and look halfway up if you like. You’re going to see meteors everywhere. Some will arrive as singles, others in short burst of 2, 3, 4 or more. I like to face southeast with the radiant off to one side. That way I can see a mix of short-trailed meteors from near the radiant and longer, graceful streaks further away just like the snow photo shows.

If there’s a lull in activity, don’t think it’s over. Meteor showers have strange rhythms of their own. Five minutes of nothing can be followed by multiple hits or even a fireball. Get into the feel of the shower as you sense spaceship Earth speeding through the comet’s dusty orbit. Embrace the chill of the August night under the starry vacuum.

Stealing Sedna

An artist's conception of Sedna. this assumes that Sedna has a tiny as yet undiscovered moon. Image credit; NASA/JPl-Caltech

Turns out, our seemly placid star had a criminal youth of cosmic proportions.

A recent study out from Leiden Observatory and Cornell University may shed light on the curious case of one of the solar system’s more exotic objects: 90377 Sedna.

Distant Sedna (circled) moving against the starry background). Image credit: NASA/Hubble
Distant Sedna (circled) moving against the starry background). Image credit: NASA/Hubble

A team led by astronomer Mike Brown discovered 90377 Sedna in late 2003. Provisionally named 2003 VB12, the object later received the name Sedna from the International Astronomical Union, after the Inuit goddess of the sea.

From the start, Sedna was an odd-ball. Its 11,400 year orbit takes it from a perihelion of 76 astronomical units (for context, Neptune is an average of 30 AUs from the Sun) to an amazing 936 AUs from the Sun. (A thousand AUs is 1.6% of a light year, and 0.4% of the way to Proxima Centauri, the closest star to our solar system). Currently at a distance of 86 AU and headed towards perihelion in 2076, we’re lucky we caught Sedna as it ‘neared’ (we use the term ‘near’ loosely in this case!) the Sun.

But this strange path makes you wonder what else is out there, and how Sedna wound up in such an eccentric orbit.

Zooming out; the inner solar system (upper left), the outer solar system (upper right), the orbit of Sedna (lower right) and the inner edge of the Oort cloud (lower left).  Image credit: NASA
Zooming out; the inner solar system (upper left), the outer solar system (upper right), the orbit of Sedna (lower right) and the inner edge of the Oort cloud (lower left). Image credit: NASA

The study, entitled How Sedna and family were captured in a close encounter with a solar sibling  looks at the possibility that Sedna may have been snatched from another star early on in our Sun’s career (of interstellar crime, perhaps?)  The team used supercomputer simulations modeling 10,000 encounters to discover which types of near stellar passages might result in an ice dwarf world in a Sedna-like orbit.

“We constrained the parent star of Sedna to have between one and two times the mass of the Sun and its closest approach to be 200-400 AUs,” Dr. Lucie Jilkova of Leiden Observatory told Universe Today. “Such a close encounter probably happened while the Sun was still a member of its birth star cluster — a family of about 1,000 stars, so called solar siblings, born at the same time relatively close together — which was about 4 billion years ago.”

Image credit:
The orbit of Sedna. (Note Neptune and Pluto towards the center) Image credit: NASA/JPL

The best fit for what we see today in the outer solar system in the case of Sedna, is a close (340 AU) passage from the Sun — that’s over 11 times Neptune’s distance — of a 1.8 solar mass star  inclined at an angle of 17-34 degrees to the ecliptic. Sedna’s current orbital inclination is 12 degrees.

Rise of the Sednitos

The paper assigns the term ‘Sednitos’ (also sometimes referred to as ‘Sednoids’) for these Edgeworth-Kuiper Belt intruders with similar characteristics to Sedna. In 2012, 2012 VP113, dubbed the ‘twin of Sedna,’ was discovered by astronomers at the Cerro Tololo Inter-American Observatory in a similar looping orbit. The ‘VP’ designation earned the as yet unnamed  remote world the brief nickname ‘Biden’ after U.S. Vice President Joe Biden… hey, it was an election year.

There’s good reason to believe something(s?) out there shepherding these Senitos into a similar orbit with a comparable argument of perihelion. Researchers have suggested the existence of one or several planetary mass objects loitering out in the 200-250 AU range of the outer solar system… note that this is

a separate scientific-based discussion versus any would-be Nibiru related non-sense, don’t even get

us started…

If researchers in the study are correct, Sedna may have lots of company, with perhaps 930 planetesimals predicted in the ‘Sednito region’ of the solar system from 50 to 1,000 AUs and 430 more additional planetesimals littering the inner Oort cloud from the same early event.

“We focused on a particular example of a stellar encounter with characteristics from the ranges mentioned,” Dr. Jilkova said. “For this example, we estimated that there would be about 430 bodies similar to Sedna in the outer solar system (beyond 75 AU).”

Fun fact: One possible controversial candidate for the birth cluster of Sol and our solar system is the open cluster M67 in Cancer.  It’s an intriguing notion to try and track down the star we stole Sedna from 4 billion years ago using spectral analysis, though researchers in the study point out that the other more massive star is probably an aging white dwarf by now.

Astronomy from the surface of Sedna is mind-bending to contemplate. Currently 86 AU from the Sun and headed towards perihelion in 2076, Sol would appear only 20” across from the surface of Sedna, but would still shine at magnitude -17 to -18 near perihelion, about 40 to 100 times brighter than a Full Moon. Fast forward about 5,500 years towards aphelion, however, and the Sun would dim to a paltry magnitude -12, a full magnitude (2.5 times) dimmer than the Full Moon.

The view from Sedna looking towards the inner solar system in 2015. Image credit: Starry Night Education Software.
The view from Sedna looking towards the inner solar system in 2015. Note the five degree red field of view marker. Image credit: Starry Night Education Software.

Shining at magnitude +21 in the constellation Taurus, astronomers know little else about Sedna. Based on brightness estimates, Sedna measures about 1,000 km in diameter. It does appear to be the reddest object in the solar system, and may turn out to be the ‘red twin of Pluto’ as recently revealed by NASA’s New Horizons spacecraft, complete with a surface rich in tholins.

And a new generation of observatories may uncover a treasure trove of Sednitos. The European Space Agency’s Gaia astrometry mission should uncover lots of new asteroids, comets, exoplanets and distant Kuiper Belt objects as a spin-off to its primary mission. Then there’s the Large Synoptic Survey Telescope, set to see first light in 2019.

“The key piece of the puzzle is to actually observe more Sedna-like objects.” Dr Jilkova said. “Currently, we know only of two such bodies. More discoveries are expected in the following years and they will shed light on the origin of Sedna and its family and the ‘criminal record’ of the Sun.”

It’s a fascinating story of interstellar whodunit for sure, as our Sun’s early days of wanton juvenile delinquency unravel before the eyes of modern day astronomical detectives.

The Dog Days and Sothic Cycles of August

Image credit:

The month of August is upon us once again, bringing with it humid days and sultry nights for North American observers.

You’ll often hear the first few weeks of August referred to as the Dog Days of Summer. Certainly, the oppressive midday heat may make you feel like lounging around in the shade like our canine companions. But did you know there is an astronomical tie-in for the Dog Days as well?

We’ve written extensively about the Dog Days of Summer previously, and how the 1460 year long Sothic Cycle of the ancient Egyptians became attributed to the Greek adoption of Sothis, and later in medieval times to the ‘Dog Star’ Sirius. Like the Blue Moon, say something wrong enough, long enough, and it successfully sticks and enters into meme-bank of popular culture.

Sirius (to the lower right) along with The Moon, Venus and Mercury and a forest fire taken on July 22, 2014. (Note- this was shot from the Coral Towers Observatory in the southern hemisphere). Image credit and copyright: Joseph Brimacombe
Sirius (to the lower right) along with The Moon, Venus and Mercury and a forest fire taken on July 22, 2014. (Note- this was shot from the Coral Towers Observatory in the southern hemisphere). Image credit and copyright: Joseph Brimacombe

A water monopoly empire, the Egyptians livelihood rested on knowing when the annual flooding of the Nile was about to occur. To this end, they relied on the first seasonal spotting of Sirius at dawn. Sirius is the brightest star in the sky, and you can just pick out the flicker of Sirius in early August low to the southeast if you know exactly where to look for it.

Sundown over Cairo during the annual flooding of the Nile river. Image Credit: Travels through the Crimea, Turkey and Egypt 1825-28 (Public Domain).
Sundown over Cairo during the annual flooding of the Nile river. Image Credit: Travels through the Crimea, Turkey and Egypt 1825-28 (Public Domain).

Sirius lies at a declination of just under 17 degrees south of the celestial equator. It’s interesting to note that in modern times, the annual flooding of the Nile (prior to the completion of the Aswan Dam in 1970) is commemorated as occurring right around August 15th. Why the discrepancy? Part of it is due to the 26,000 year wobbling of the Earth’s axis known as the Precession of the Equinoxes; also, the Sothic calendar had no intercalculary or embolismic (think leap days) to keep a Sothic year in sync with the sidereal year. The Sothic cycle from one average first sighting of Sirius to another is 365.25 days, and just 9 minutes and 8 seconds short of a sidereal year.

Image credit:
The Djoser step pyramid outside of Cairo. Image credit: Dave Dickinson

But that does add up over time. German historian Eduard Meyer first described the Sothic Cycle in 1904, and tablets mention its use as a calendar back to 2781 BC.  And just over 3 Sothic periods later (note that 1460= 365.25 x 4, which is the number of Julian years equal to 1461 Sothic years, as the two cycles ‘sync up’), and the flooding of the Nile now no longer quite coincides with the first sighting of Sirius.

Such a simultaneous sighting with the sunrise is known in astronomy as a heliacal rising. Remember that atmospheric extinction plays a role sighting Sirius in the swampy air mass of the atmosphere low to the horizon, taking its usual brilliant luster of magnitude -1.46 down to a more than a full magnitude and diminishing its intensity over 2.5 times.

This year, we transposed the seasonal predicted ‘first sightings’ of Sirius versus latitude onto a map of North America:

Image credit:
Optimal sighting dates for the heliacal rising of Sirius by latitude. Image credit: Dave Dickinson, adapted from data by Ed Kotapish.

Another factor that has skewed the date of first ‘Sirius-sign’ is the apparent motion of the star itself. At 8.6 light years distant, Sirius appears to move 1.3 arc seconds per year. That’s not much, but over the span of one Sothic cycle, that amounts up to 31.6’, just larger than the average diameter of a Full Moon.

Sirius has been the star of legends and lore as well, not the least of which is the curious case of the Dogon people of Mali and their supposed privileged knowledge of its white dwarf companion star. Alvan Graham Clark and his father discovered Sirius B  in 1862 as they tested out their shiny new 18.5-inch refractor. And speaking of Sirius B, keep a telescopic eye on the Dog Star, as the best chances to spy Sirius B peeking out from the glare of its primary are coming right up around 2020.

Sirius image Credit
The dazzling visage of Sirius. Image credit: Dave Dickinson

Repeating the visual feat of spying Sirius B low in the dawn can give you an appreciation as to the astronomical skill of ancient cultures. They not only realized the first sighting of Sirius in the dawn skies coincided with the annual Nile flooding, but they identified the discrepancy between the Sothic and sidereal year, to boot. Not bad, using nothing but naked eye observations. Such ability must have almost seemed magical to the ancients, as if the stars had laid out a celestial edge for the Egyptians to exploit.

Image credit:
Man’s best (observing) friend… Image credit: Dave Dickinson

You can also exploit one method of teasing out Sirius from the dawn sky a bit early that wasn’t available to those Egyptian astronomer priests: using a pair of binoculars to sweep the skies. Can you nab Sirius with a telescope and track it up into the daytime skies? Sirius is just bright enough to see in the daytime against a clear blue sky with good transparency if you know exactly where to look for it.

Let the Dog Days of 2015 begin!

The Resplendent Inflexibility of the Rainbow

A colorful piece of rainbow begs the question - why Roy G. Biv? Credit: Bob King

Children often ask simple questions that make you wonder if you really understand your subject.  An young acquaintance of mine named Collin wondered why the colors of the rainbow were always in the same order — red, orange, yellow, green, blue, indigo, violet. Why don’t they get mixed up? 

The familiar sequence is captured in the famous Roy G. Biv acronym, which describes the sequence of rainbow colors beginning with red, which has the longest wavelength, and ending in violet, the shortest. Wavelength — the distance between two successive wave crests — and frequency, the number of waves of light that pass a given point every second, determine the color of light.

The familiar colors of the rainbow spectrum with wavelengths shown in nanometers. Credit: NASA
The familiar colors of the rainbow spectrum with wavelengths shown in nanometers. Credit: NASA

The cone cells in our retinas respond to wavelengths of light between 650 nanometers (red) to 400 (violet). A nanometer is equal to one-billionth of a meter. Considering that a human hair is 80,000-100,000 nanometers wide, visible light waves are tiny things indeed.

So why Roy G. Biv and not Rob G. Ivy? When light passes through a vacuum it does so in a straight line without deviation at its top speed of 186,000 miles a second (300,000 km/sec). At this speed, the fastest known in the universe as described in Einstein’s Special Theory of Relativity, light traveling from the computer screen to your eyes takes only about 1/1,000,000,000 of second. Damn fast.

But when we look beyond the screen to the big, wide universe, light seems to slow to a crawl, taking all of 4.4 hours just to reach Pluto and 25,000 years to fly by the black hole at the center of the Milky Way galaxy. Isn’t there something faster? Einstein would answer with an emphatic “No!”

A laser beam (left) shining through a glass of water demonstrates how many times light changes speed — from 186,222 miles per second (mps) in air to 124,275 mps through the glass. It speeds up again to 140,430 mps in water, slows down when passing through the other side of the glass and then speeds up again when leaving the glass for the air. Credit: Bob King
A laser beam (left) shining through a glass of water demonstrates how many times light changes speed — from 186,222 miles per second (mps) in air to 124,275 mps through the glass. It speeds up again to 140,430 mps in water, slows down when passing through the other side of the glass and then speeds up again when leaving the glass for the air. Credit: Bob King

One of light’s most interesting properties is that it changes speed depending on the medium through which it travels. While a beam’s velocity through the air is nearly the same as in a vacuum, “thicker” mediums slow it down considerably. One of the most familiar is water. When light crosses from air into water, say a raindrop, its speed drops to 140,430 miles a second (226,000 km/sec). Glass retards light rays to 124,275 miles/second, while the carbon atoms that make up diamond crunch its speed down to just 77,670 miles/second.

Why light slows down is a bit complicated but so interesting, let’s take a moment to describe the process. Light entering water immediately gets absorbed by atoms of oxygen and hydrogen, causing their electrons to vibrate momentarily before it’s re-emitting as light. Free again, the beam now travels on until it slams into more atoms, gets their electrons vibrating and gets reemitted again. And again. And again.

A ray of light refracted by a plastic block. Notice that the light bends twice - once when it enters (moving from air to plastic) and again when it exits (plastic to air).
A ray of light refracted by a plastic block. Notice that the light bends twice – once when it enters (moving from air to plastic) and again when it exits (plastic to air). The beam slows down on entering and then speeds up again when it exits.

Like an assembly line, the cycle of absorption and reemission continues until the ray exits the drop. Even though every photon (or wave – your choice) of light travels at the vacuum speed of light in the voids between atoms, the minute time delays during the absorption and reemission process add up to cause the net speed of the light beam to slow down. When it finally leaves the drop, it resumes its normal speed through the airy air.

Light rays get bent or refracted when they move from one medium to another. We've all seen the "broken pencil" effect when light travels from air into water.
Light rays get bent or refracted when they move from one medium to another. We’ve all seen the “broken pencil” effect when light travels from air into water.

Let’s return now to rainbows. When light passes from one medium to another and its speed drops, it also gets bent or refracted. Plop a pencil in a glass half filled with water and and you’ll see what I mean.

Up to this point, we’ve been talking about white light only, but as we all learned in elementary science, Sir Isaac Newton conducted experiments with prisms in the late 1600s and discovered that white light is comprised of all the colors of the rainbow. It’s no surprise that each of those colors travels at a slightly different speed through a water droplet. Red light interacts only weakly with the electrons of the atoms and is refracted and slowed the least. Shorter wavelength violet light interacts more strongly with the electrons and suffers a greater degree of refraction and slowdown.

Isaac Newton used a prism to separate light into its familiar array of colors. Like a prism, a raindrop refracts  incoming sunlight, spreading it into an arc of rainbow colors  with a radius of 42. Left: NASA image, right, public domain with annotations by the author
Isaac Newton used a prism to separate light into its familiar array of colors. Like a prism, a raindrop refracts incoming sunlight, spreading it into an arc of rainbow colors with a radius of 42. The colors spread out when light enter the drop and then spread out more when they leave and speed up. Left: NASA image, right, public domain with annotations by the author

Rainbows form when billions of water droplets act like miniature prisms and refract sunlight. Violet (the most refracted) shows up at the bottom or inner edge of the arc. Orange and yellow are refracted a bit less than violet and take up the middle of the rainbow. Red light, least affected by refraction, appears along the arc’s outer edge.

Rainbows are often double. The secondary bow results from light reflecting a second time inside the raindrop. When it emerges, the colors are reversed (red on the bottom instead of top), but the order of colors is preserved. Credit: Bob King
Rainbows are often double. The secondary bow results from light reflecting a second time inside the raindrop. When it emerges, the colors are reversed (red on the bottom instead of top), but the order of colors is preserved. Credit: Bob King

Because their speeds through water (and other media) are a set property of light, and since speed determines how much each is bent as they cross from air to water, they always fall in line as Roy G. Biv. Or the reverse order if the light beam reflects twice inside the raindrop before exiting, but the relation of color to color is always preserved. Nature doesn’t and can’t randomly mix up the scheme. As Scotty from Star Trek would say: “You can’t change the laws of physics!”

So to answer Collin’s original question, the colors of light always stay in the same order because each travels at a different speed when refracted at an angle through a raindrop or prism.

Light of different colors have both different wavelengths (distance between successive wave crests) and frequencies. In this diagram, red light has a longer wavelength and more "stretched out" waves  compared to purple light of higher frequency. Credit: NASA
Light of different colors have both different wavelengths (distance between successive wave crests) and frequencies. In this diagram, red light has a longer wavelength and more “stretched out” waves compared to purple light of higher frequency. Credit: NASA

Not only does light change its speed when it enters a new medium, its wavelength changes,  but its frequency remains the same. While wavelength may be a useful way to describe the colors of light in a single medium (air, for instance), it doesn’t work when light transitions from one medium to another. For that we rely on its frequency or how many waves of colored light pass a set point per second.

Higher frequency violet light crams in 790 trillion waves per second (cycles per second) vs. 390 trillion for red. Interestingly, the higher the frequency, the more energy a particular flavor of light carries, one reason why UV will give you a sunburn and red light won’t.

When a ray of sunlight enters a raindrop, the distance between each successive crest of the light wave decreases, shortening the beam’s wavelength. That might make you think that that its color must get “bluer” as it passes through a raindrop. It doesn’t because the frequency remains the same.

We measure frequency by dividing the number of wave crests passing a point per unit time. The extra time light takes to travel through the drop neatly cancels the shortening of wavelength caused by the ray’s drop in speed, preserving the beam’s frequency and thus color. Click HERE for a further explanation.


Why prisms/raindrops bend and separate light

Before we wrap up, there remains an unanswered question tickling in the back of our minds. Why does light bend in the first place when it shines through water or glass? Why not just go straight through? Well, light does pass straight through if it’s perpendicular to the medium. Only if it arrives at an angle from the side will it get bent. It’s similar to watching an incoming ocean wave bend around a cliff. For a nice visual explanation, I recommend the excellent, short video above.

Oh, and Collin, thanks for that question buddy!

Faces of the Solar System

Move over, Pluto... Disney already has dibs on Mercury as seen in this MESSENGER photo. Image credit: NASA/JHAPL/Carnegie institution of Washington

“Look, it has a tiny face on it!”

This sentiment was echoed ‘round the web recently, as an image of Pluto’s tiny moon Nix was released by the NASA New Horizons team. Sure, we’ve all been there. Lay back in a field on a lazy July summer’s day, and soon, you’ll see faces of all sorts in the puffy stratocumulus clouds holding the promise of afternoon showers.

Pluto's moon Nix as imaged by New Horizons from 590,000 kilometers distant. Image credit: NASA/JHUAPL/SWRI
Pluto’s moon Nix as imaged by New Horizons from 590,000 kilometers distant. Image credit: NASA/JHUAPL/SWRI

This predilection is so hard-wired into our brains, that often our facial recognition software sees faces where there are none. Certainly, seeing faces is a worthy survival strategy; not only is this aspect of cognition handy in recognizing the friendlies of our own tribe, but it’s also useful in the reading of facial expressions by giving us cues of the myriad ‘tells’ in the social poker game of life.

And yes, there’s a term for the illusion of seeing faces in the visual static: pareidolia. We deal lots with pareidolia in astronomy and skeptical circles. As NASA images of brave new worlds are released, an army of basement bloggers are pouring over them, seeing miniature bigfoots, flowers, and yes, lots of humanoid figures and faces. Two craters and the gash of a trench for a mouth will do.

Now that new images of Pluto and its entourage of moons are pouring in, neural circuits ‘cross the web are misfiring, seeing faces, half-buried alien skeletons and artifacts strewn across Pluto and Charon. Of course, most of these claims are simply hilarious and easily dismissed… no one, for example, thinks the Earth’s Moon is an artificial construct, though its distorted nearside visage has been gazing upon the drama of humanity for millions of years.

Do you see the 'Man in the Moon?' Image credit: Dave Dickinson
Do you see the ‘Man in the Moon?’ Image credit: Dave Dickinson

The psychology of seeing faces is such that a whole region of the occipital lobe of the brain known as the fusiform face area is dedicated to facial recognition. We each have a unique set of neurons that fire in patterns to recognize the faces of Donald Trump and Hillary Clinton, and other celebs (thanks, internet).

Damage this area at the base of the brain or mess with its circuitry, and a condition known as prosopagnosia, or face blindness can occur. Author Oliver Sacks and actor Brad Pitt are just a few famous personalities who suffer from this affliction.

The 'Snowman of Vesta,' as imaged by NASA's Dawn spacecraft. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
The ‘Snowman of Vesta,’ as imaged by NASA’s Dawn spacecraft. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Conversely, ‘super-recognizers’ at the other end of the spectrum have a keen sense for facial identification that verges on a super-power. True story: my wife has just such a gift, and can immediately spot second-string actors and actresses in modern movies from flicks and television shows decades old.

It would be interesting to know if there’s a correlation between face blindness, super-recognition and seeing faces in the shadows and contrast on distant worlds… to our knowledge, no such study has been conducted. Do super-recognizers see faces in the shadowy ridges and craters of the solar system more or less than everyone else?

A well-known example was the infamous ‘Face on Mars.’ Imaged by the Viking 1 orbiter in 1976, this half in shadow image looked like a human face peering back up at us from the surface of the Red Planet from the Cydonia region.

Image credit: The 'Face on Mars': HiRISE vs Viking 1 (inset): Image credit: NASA/JPL
Image credit: The ‘Face on Mars’: HiRISE vs Viking 1 (inset): Image credit: NASA/JPL

But when is a face not a face?

Now, it’s not an entirely far-fetched idea that an alien entity visiting the solar system would place something (think the monolith on the Moon from Arthur C. Clarke’s 2001: A Space Odyssey) for us to find. The idea is simple: place such an artifact so that it not only sticks out like a sore thumb, but also so it isn’t noticed until we become a space-faring society. Such a serious claim would, however, to paraphrase Carl Sagan, demand serious and rigorous evidence.

But instead of ‘Big NASA’ moving to cover up the ‘face,’ they did indeed re-image the region with both the Mars Reconnaissance Orbiter and Mars Global Surveyor at a much higher resolution. Though the 1.5 kilometer feature is still intriguing from a geological perspective… it’s now highly un-facelike in appearance.

A 'face' or... more fun with 'scifi spacecraft pareidolia. Image credit: NASA/JPL/Paramount Pictures
A ‘face’ or… more fun with ‘scifi spacecraft pareidolia.’ Image credit: NASA/JPL/Paramount Pictures

Of course, it won’t stop the deniers from claiming it was all a big cover-up… but if that were the case, why release such images and make them freely available online? We’ve worked in the military before, and can attest that NASA is actually the most transparent of government agencies.

We also know the click bait claims of all sorts of alleged sightings will continue to crop up across the web, with cries of ‘Wake up, Sheeople!’ (usually in all caps) as a brave band of science-writing volunteers continue to smack down astro-pareidolia on a pro bono basis in battle of darkness and light which will probably never end.

What examples of astro-pareidolia have you come across in your exploits?

Blues for the Second Full Moon of July

An artificially created 'Blue Moon,' using the white balance settings on the camera. Image credit and copyright: John Chumack

Brace yourselves for Blue Moon madness. The month of July 2015 hosts two Full Moons: One on July 2nd and another coming right up this week on Friday, July 31st at 10:43 Universal Time (UT)/6:43 AM EDT.

In modern day vernacular, the occurrence of two Full Moons in one calendar month has become known as a ‘Blue Moon.’ This is a result of the synodic period (the amount of time it takes for the Moon to return to a like phase, in this case Full back to Full) of 29.5 Earth days being less than every calendar month except February.

In the ‘two Full Moons in one month’ sense, the last time a Blue Moon occurred was on August 31st, 2012, and the next is January 31st, 2018. The next time a Blue Moon occurs in the month of July is 2034, and the last July Blue Moon was 2004.

We say “once in a blue Moon,” as if it’s a rarity, but as you can see, they’re fairly frequent, occurring nearly once every 2-3 years or so.

Now, we’ll let you in on a secret. Like its modern internet meme cousin the ‘Super-Moon,’ astronomers don’t sit in mountain top observatories discussing the vagaries of the Blue Moon. In fact, astronomers rarely like to observe during the weeks surrounding the light-polluting Full Moon, and often compile data from the comfort of their university offices rather than visit mountaintop observatories these days…

The modern Blue Moon is now more of a cultural phenomenon. We’ve written previously about how an error brought us to the current ‘two Full Moons in one month definition.’ A more convoluted old timey definition was introduced in ye ole Maine Farmer’s Almanac circa 1930s as “the third Full Moon in an astronomical season with four.”

Legend has it that the Maine Farmer’s Almanac denoted this pesky extra seasonal Full Moon with ‘blue’ instead of black ink… to our knowledge, no examples exist to support this intriguing tale. Anyone have any old almanacs in the attic holding such a revelation out there?

The ghostly glow of the gibbous moon in Jean-Francois Millet's The Sheepfold. Image Credit: Public Domain
The ghostly glow of the gibbous moon in Jean-Francois Millet’s The Sheepfold. Image Credit: Public Domain

We’ve also laid out the occurrences for both types of Blue Moons for the remainder of the decade, as well as its New Moon cousin and internet meme to be, the Black Moon.

Untitled
The rising waxing gibbous Moon on the night of September 23rd, 1950. Image credit: Stellarium

Of course, the Moon most likely won’t appear to be physically blue, no matter what friends/family/co-workers/anonymous persons on Twitter say. The Moon can actually appear blue, as it did on September 23rd, 1950 for much of the eastern United States and Canada through the haze of several forest fires in western Canada. The Moon was actually at waxing gibbous phase on the evening of this phenomenon, and as far as we can tell, no photographic documentation of this event exists. Spaceweather, has, however gathered a gallery of blue moon eyewitness reports over the years, including a few images. This occurs when moonlight is filtered through suspended oil drops about a micrometer in diameter which scattered yellow and red light, leaving a Moon with a ghostly indigo glow.

Image credit
The 2012 Blue Moon as seen rising from Hudson, Florida. Image credit: Dave Dickinson

So there’s definitely another challenge to catch and photograph a truly ‘Blue Moon’ under such rare atmospheric circumstances… and remember, the Moon doesn’t have to be near Full to do it!

Watch that Moon, as we’ve got a few red letter dates coming up through the remainder of 2015.  First up: the Supermoon season cometh in August, as we have a series of three Full Moons falling less than 24 hours from perigee on August 29th, September 28th, and October 27th. Our money is on that middle one as having the potential to generate the most online lunacy, as it’s also the last  total lunar eclipse of the current tetrad of four total lunar eclipses for 2014 and 2015, a ‘super-blood moon eclipse’ anyone? Though the dead won’t rise from the grave to mark such an occasion, you can be sure that many a sky aficionado will stumble zombie-like into the office the next day after pulling an all-nighter for the last good North American total lunar eclipse until 2018.

And it’s worth noting the path of the Moon, as it reaches its shallow mid-point in the last half of 2015. The Moon’s orbit is tilted about five degrees relative to the ecliptic, meaning that it can ride anywhere from 18 degrees—as it does this year—to 28 degrees from the celestial equator. This cycle takes about 19 years to complete, and a wide-ranging ‘long nights Moon’ last occurred in 2006, and will next occur in 2025.

A 'mock Blue Moon...'
A ‘mock Blue Moon…’ induced by use of a military flashlight filter. Image credit: Dave Dickinson

So don’t fear the Blue Moon, but be sure to take a stroll under its light this coming Friday… and perhaps enjoy a frosty Blue Moon beer on the eve of the sultry month of August.

Astronomers Spot a Intriguing ‘5-Star’ Multiple System

Image credit:

An interesting multiple star discovery turned up in the ongoing hunt for exoplanetary systems.

The discovery was announced by Marcus Lohr of Open University early this month at the National Astronomy Meeting that was held at Venue Cymru in Llandudno, Wales.

The discovery involves as many as five stars in a single stellar system, orbiting in a complex configuration.

The name of the system, 1SWASP J093010.78+533859.5, is a phone number-style designation related to the SuperWASP exoplanet hunting transit survey involved with the discovery. The lengthy numerical designation denotes the system’s position in the sky in right ascension and declination in the constellation Ursa Major.

Image credit:
The SuperWASP-North array of cameras at La Palma in the Canary Islands. Image credit: The SuperWASP consortium

And what a bizarre system it is. The physical parameters of the group are simply amazing, though not as unique as some media outlets have led readers to believe. What is amazing is the fact that both pairs of binaries in the quadruple group are also eclipsing along our line of sight. Only five other quadruple eclipsing binary systems of this nature are known, to include BV/BW Draconis and V994 Herculis.

The very fact that the orbits of both pairs of stars are in similar inclinations will provide key insights for researchers as to just how this system formed.

The first pair in the system are contact binaries of 0.9 and 0.3 solar masses respectively in a tight embrace revolving about each other in just under six hours. Contact binaries consist of distorted stars whose photospheres are actually touching. A famous example is the eclipsing contact binary Beta Lyrae.

 

 

 

 

 

 

 

An animation of the orbits of the contact binary pair Beta Lyrae captured using the CHARA interferometer. Image credit: Ming Zhao et al. ApJ 684, L95 

A closer analysis of the discovery revealed another pair of detached stars of 0.8 and 0.7 solar masses orbiting each other about 21 billion kilometres (140 AUs distant) from the first pair. You could plop the orbit of Pluto down between the two binary pairs, with room to spare.

But wait, there’s more. Astronomers use a technique known as spectroscopy to tease out the individual light spectra signatures of close binaries too distant to resolve individually. This method revealed the presence of a fifth star in orbit 2 billion kilometers (13.4 AUs, about 65% the average distance from Uranus to the Sun) around the detached pair.

“This is a truly exotic star system,” Lohr said in a Royal Society press release. “In principle, there’s no reason it couldn’t have planets in orbit around each of the pairs of stars.”

Indeed, ‘night’ would be a rare concept on any planet in a tight orbit around either binary pair. In order for darkness to occur, all five stellar components would have to appear near mutual conjunction, something that would only happen once every orbit for the hypothetical world.

Such a planet is a staple of science fiction, including Tatooine of Star Wars fame (which orbits a relatively boring binary pair), and the multiple star system of the Firefly series. Perhaps the best contender for a fictional quadruple star system is the 12 colonies of the re-imagined Battlestar Galactica series, which exist in a similar double-pair configuration.

How rare is this discovery, really? Multiple systems are more common than solitary stars such as our Sun by a ratio of about 2:1. In fact, it’s been suggested by rare Earth proponents that life arose here on Earth in part because we have a stable orbit around a relatively placid lone star. The solar system’s nearest stellar neighbor Alpha Centauri is a triple star system. The bright star Castor in the constellation of Gemini the Twins is a famous multiple heavyweight with six components in a similar configuration as this month’s discovery. Another familiar quadruple system to backyard observers is the ‘double-double’ Epsilon Lyrae, in which all four components can be split. Mizar and Alcor in the handle of the Big Dipper asterism is another triple-pair, six-star system. Another multiple, Gamma Velorum, may also possess as many as six stars. Nu Scorpii and AR Cassiopeiae are suspected septuple systems, each perhaps containing up to seven stars.

Fun fact: Gamma Velorum is also informally known as ‘Regor,’ a backwards anagram play on Apollo 1 astronaut ‘Roger’ Chaffee’s name. The crew secretly inserted their names into the Apollo star maps during training!

What is the record number of stars in one system? Hierarchy 3 systems such as Castor are contenders. A.A. Tokivinin’s Multiple Star Catalogue lists five components in a hierarchy 4 system in Ophiuchus named Gliese 644AB, with the potential for more.

How many stars are possible in one star system? Certainly, a hierarchy 4 type system could support up the eight stars, though to our knowledge, no example of such a multiple star system has yet been confirmed. Still, it’s a big universe out there, and the cosmos has lots of stars to play with.

A wide-field view of the constellation Ursa Major, with Theta Ursae Majoris selected (inset). image credit; Stellarium
A wide-field view of the constellation Ursa Major, with Theta Ursae Majoris selected (inset). Image credit; Stellarium

And you can see 1SWASP J093010.78+533859.5 for yourself. At 250 light years distant, the +9th magnitude binary is about 1.5 degrees north-northwest of the star Theta Ursa Majoris, and is an tough but not impossible split with a separation of 1.88” between the two primary pairs.

Image credit: Stellarium
Finder chart for 1SWAP J093010.78+533859.5 with a five degree Telrad foV. Image credit: Stellarium

Congrats to the team on this amazing discovery… to paraphrase Haldane, the Universe is proving to be stranger than we can imagine!

Moonspotting-A Guide to Observing the Moons of the Solar System

Triple crescents. Image credit:

Like splitting double stars, hunting for the faint lesser known moons of the solar system offers a supreme challenge for the visual observer.

Sure, you’ve seen the Jovian moons do their dance, and Titan is old friend for many a star party patron as they check out the rings of Saturn… but have you ever spotted Triton or Amalthea?

Welcome to the challenging world of moon-spotting. Discovering these moons for yourself can be an unforgettable thrill.

One of the key challenges in spotting many of the fainter moons is the fact that they lie so close inside the glare of their respective host planet. For example, +11th magnitude Phobos wouldn’t be all that tough on its own, were it not for the fact that it always lies close to dazzling Mars. 10 magnitudes equals a 10,000-fold change in brightness, and the fact that most of these moons are swapped out is what makes them so tough to see. This is also why many of them weren’t discovered until later on.

But don’t despair. One thing you can use that’s relatively easy to construct is an occulting bar eyepiece.   This will allow you to hide the dazzle of the planet behind the bar while scanning the suspect area to the side for the faint moon. Large aperture, steady skies, and well collimated optics are a must as well, and don’t be afraid to crank up the magnification in your quest. We mentioned using such a technique previously as a method to tease out the white dwarf star Sirius b in the years to come.

Image credit
A homemade occulting bar eyepiece with the barrel removed. One bar is a strip of foil, and the other is a E-string from a guitar. Image credit: Dave Dickinson

What follows is a comprehensive list of the well known ‘easy ones,’ along with some challenges.

We included a handy drill down of magnitudes, orbital periods and maximum separations for the moons of each planet right around opposition. For the more difficult moons, we also noted the circumstances of their discovery, just to give the reader some idea what it takes to see these fleeting worlds.  Remember though, many of those old scopes used speculum metal mirrors which were vastly inferior to commercial optics available today. You may have a large Dobsonian scope available that rivals these scopes of yore!

Image credit:
The orbits of the Martian moons. Image credit: Starry Night Education Software

Mars- The two tiny moons of Mars are a challenge, as it’s only possible to nab them visually near opposition, which occurs about once every 26 months.   Mars next reaches opposition on May 22nd, 2016.

Phobos:

Magnitude:  +11.3

Orbital period:  7 hours 39 minutes

Maximum separation: 16”

Deimos:

Magnitude:  +12.3

Orbital period: 1 day 6 hours and 20 minutes

Maximum separation: 54”

The moons of Mars were discovered by American astronomer Asaph Hall during the favorable 1877 opposition of Mars using the 26-inch refracting telescope at the U.S. Naval Observatory.

Jupiter- Though the largest planet in our solar system also has the largest number of moons at 67, only the four bright Galilean moons are easily observable, although owners of large light buckets might just be able to tease out another two.  Jupiter next reaches opposition March 8th, 2016.

Ganymede:

Magnitude: +4.6

Orbital period: 7.2 days

Maximum separation: 5’

Callisto

Magnitude: +5.7

Orbital period: 16.7 days

Maximum separation: 9’

Io

Magnitude: +5.0

Orbital period: 1.8 days

Maximum separation: 1’ 50”

Europa

Magnitude: +5.3

Orbital period: 3.6 days

Maximum separation: 3’

Amalthea

Magnitude:  +14.3

Orbital period: 11 hours 57 minutes

Maximum separation: 33”

Himalia

Magnitude: +15

Orbital period: 250.2 days

Maximum separation: 52’

Note that Amalthea was the first of Jupiter’s moons discovered after the four Galilean moons. Amalthea was first spotted in 1892 by E. E. Barnard using the 36” refractor at the Lick Observatory. Himalia was also discovered at Lick by Charles Dillon Perrine in 1904.

Titan and Rhea imaged via Iphone and a Celestron NexStar 8SE telescope. Image credit: Andrew Symes (@failedprotostar)
Titan and Rhea imaged via Iphone and a Celestron NexStar 8SE telescope. Image credit: Andrew Symes (@failedprotostar)

Saturn- With a total number of moons at 62, six moons of Saturn are easily observable with a backyard telescope, though keen-eyed observers might just be able to tease out another two:

(Note: the listed separation from the moons of Saturn is from the limb of the disk, not the rings).

Titan

Magnitude: +8.5

Orbital period: 16 days

Maximum separation: 3’

Rhea

Magnitude: +10.0

Orbital period: 4.5 days

Maximum separation: 1’ 12”

Iapetus

Magnitude: (variable) +10.2 to +11.9

Orbital period: 79 days

Maximum separation: 9’

Enceladus

Magnitude: +12

Orbital period: 1.4 days

Maximum separation: 27″

Dione

Magnitude: +10.4

Orbital period: 2.7 days

Maximum separation: 46”

Tethys

Magnitude: +10.2

Orbital period: 1.9 days

Maximum separation: 35”

Mimas

Magnitude: +12.9

Orbital period: 0.9 days

Maximum separation: 18”

Hyperion

Magnitude: +14.1

Orbital period: 21.3 days

Maximum separation: 3’ 30”

Phoebe

Magnitude: +16.6

Orbital period: 541 days

Maximum separation: 27’

Hyperion was discovered by William Bond using the Harvard observatory’s 15” refractor in 1848, and Phoebe was the first moon discovered photographically by William Pickering in 1899.

Image credit:
The orbits of the moons of Uranus. Image credit: Starry Night Education software

Uranus- All of the moons of the ice giants are tough. Though Uranus has a total of 27 moons, only five of them might be spied using a backyard scope. Uranus next reaches opposition on October 12th, 2015.

Titania

Magnitude: +13.9

Orbital period:

Maximum separation: 28”

Oberon

Magnitude: +14.1

Orbital period: 8.7 days

Maximum separation: 40”

Umbriel

Magnitude: +15

Orbital period: 4.1 days

Maximum separation: 15”

Ariel

Magnitude: +14.3

Orbital period: 2.5 days

Maximum separation: 13”

Miranda

Magnitude: +16.5

Orbital period: 1.4 days

Maximum separation: 9”

The first two moons of Uranus, Titania and Oberon, were discovered by William Herschel in 1787 using his 49.5” telescope, the largest of its day.

Triton in orbit around Neptune near opposition in 2011. Image credit: Efrain Morales
Triton in orbit around Neptune near opposition in 2011. Image credit: Efrain Morales

Neptune- With a total number of moons numbering 14, two are within reach of the skilled amateur observer. Opposition for Neptune is coming right up on September 1st, 2015.

Triton

Magnitude: +13.5

Orbital period: 5.9 days

Maximum separation: 15”

Nereid

Magnitude: +18.7

Orbital period: 0.3 days

Maximum separation: 6’40”

Triton was discovered by William Lassell using a 24” reflector in 1846, just 17 days after the discovery of Neptune itself. Nereid wasn’t found until 1949 by Gerard Kuiper.

Pluto-Yes… it is possible to spy Charon from Earth… as amateur astronomers proved in 2008.

Charon

Magnitude: +16

Orbital period: 6.4 days

Maximum separation: 0.8”

Image credit
Pluto! Click here for a (possible) capture of Charon as well. Image credit: Wendy Clark

In order to cross off some of the more difficult targets on the list, you’ll need to know exactly when these moons are at their greatest elongation. Sky and Telescope has some great apps in the case of Jupiter and Saturn… the PDS Rings node can also generate corkscrew charts of lesser known moons, and Starry Night has ‘em as well. In addition, we tend to publish cork screw charts for moons right around respective oppositions, and our ephemeris for Charon elongations though July 2015 is still active.

Good luck in crossing off some of these faint moons from your astronomical life list!

Three-tailed Comet Q1 PanSTARRS Lights Up Southern Skies

A cosmic pair extraordinaire! Comet C/2014 Q1 PanSTARRS joins the crescent Moon (overexposed here to show details of the comet) on July 18 from Australia. Credit: Terry Lovejoy

Call it the comet that squeaked by most northern skywatchers. Comet C/2014 Q1 PanSTARRS barely made an appearance at dawn in mid-June when it crept a few degrees above the northeastern horizon at dawn. Only a few determined comet watchers spotted the creature.

Two weeks later in early July it slipped into the evening and brightened to magnitude +4. But decreasing elongation from the Sun and bright twilight made it virtually impossible to see. Now it’s returned — with three tails! 

Comet C/2014 Q1 PanSTARRS looks pretty against pink dusk seen from Swan Hill, Victoria, Australia on July 15. The comet is quickly moving up from the western horizon into a darker sky. Credit: Michael Mattiazzo
Comet C/2014 Q1 PanSTARRS looks pretty against pink dusk seen from Swan Hill, Victoria, Australia on July 15. The comet is quickly moving up from the western horizon into a darker sky. Credit: Michael Mattiazzo
Comet Q1 PANSTARRS photographed at extremely low altitude just 10° from the Sun 45 minutes after sunset from Austria on July 4, 2015, with a 10-inch telescope.  Credit: Michael Jaeger
Comet Q1 PANSTARRS photographed at extremely low altitude just 10° from the Sun 45 minutes after sunset from Austria on July 4, 2015, with a 10-inch telescope. Credit: Michael Jaeger

After taunting northerners, it’s finally come out of hiding, climbing into the western sky during evening twilight for observers at low and southern latitudes. C/2014 Q1 peaked at about 3rd magnitude at perihelion on July 6, when it missed the Sun by just 28 million miles (45 million km). The comet is now on a collision course with the Venus-Jupiter planet pair. Not a real collision, but the three will all be within about 7° of each other from July 21 to about the 24th.  A pair of wide-field binoculars will catch all three in the same view.

An amazing three tails are visible in this photo taken with a 200mm lens on July 15 at dusk. Credit: Michael Mattiazzo
Not one, not two but three tails are visible in this photo of C/2014 Q1 taken with a 200mm lens on July 15 at dusk. The ion or gas tail splits from the dust tail a short distance up from the comet’s head. A third broad dust tail 1° long points north (to the right and below head). See photo below for further details. Credit: Michael Mattiazzo

More striking, a sliver Moon will hover just 2.5° above the comet on Saturday the 18th, one day before its closest approach to Earth of 109.7 million miles (176.6 million km). Q1 has been fading since perihelion but not too much. Australian observers Michael Mattiazzo and Paul Camilleri pegged it at magnitude +5.2 on July 15-16. Although it wasn’t visible with the naked eye because of a bright sky, binoculars and small telescopes provided wonderful views.

C/2014 Q1 PanSTARRS photographed through visual (top) and red filters with a 300mm telephoto lens on July 14, 2015. Credit: Martin Masek
Another excellent capture. C/2014 Q1 PanSTARRS photographed through visual (top) and red filters with a 300mm telephoto lens on July 14, 2015. Credit: Martin Masek

Here’s Mattiazzo’s observation:

“The view through my 25 x 100 mm binoculars showed a lovely parabolic dust hood about half a degree to the east,” he wrote in an e-mail communication. “Photographically the comet showed three separate tails, a forked ion tail about 1.5° long. Embedded within this was the main dust tail about half a degree long to the east and an unusual feature at right angles to the main tail —  a broad “dust trail” 1° long to the north”.

Mattiazzo points out that the unusual trail, known as a Type III dust tail, indicates a massive release of dust particles around the time of perihelion. This comet got cooked!

Comet C/2014 Q1 PanSTARRS is now best seen from the southern hemisphere (Alice Springs, Australia here) during the winter months of July and August. On July 18th (shown here) the comet joins the crescent Moon, Jupiter, and Venus for a scenic gathering in the west at nightfall. Stars to magnitude 6.
Comet C/2014 Q1 PanSTARRS is best seen from the southern hemisphere during the winter months of July and August. The map shows the nightly position of the comet seen from Alice Springs, Australia facing west about an hour after sundown from July 16 – August 11. Stars to magnitude 6. Source: Chris Marriott’s SkyMap

In the coming nights, C/2014 Q1 will cool, fade and slide into a darker sky and may be glimpsed with the naked eye before moving into binoculars-only territory. It should remain an easy target for small telescopes through August. Use the map above to help you find it. For longer-term viewing, try this map.

Comet C/2014 Q1 PanSTARRS displays three remarkable tails in this photo taken on July 15, 2015. The ion or gas tail stretches to the left. The primary dust tail is bright and overlaps the gas tail. A third broad and diffuse tail juts off to the upper left of the coma. Credit: Michael Jaeger
Comet C/2014 Q1 PanSTARRS displays three remarkable tails in this photo taken on July 15, 2015. The ion or gas tail stretches to the left. The primary dust tail is bright and overlaps the gas tail. The Type III dust tail juts off to the upper left of the coma. Click for another amazing image taken July 18. Credit: Michael Jaeger

While I’m happy for our southern brothers and sisters, many of us in the north have that empty stomach feeling when it comes to bright comets. We’ve done well by C/2014 Q2 Lovejoy (still visible at magnitude +10 in the northern sky) for much of the year, but unless a bright, new comet comes flying out of nowhere, we’ll have to wait till mid-November. That’s when Comet Catalina (C/2013 US10) will hopefully jolt us out of bed at dawn with naked eye comet written all over it.

Catch a Fine Lunar Planetary Grouping This Weekend

Image Credit: Andrew Symes (@FailedProtostar).

Phew! Our eyes and thoughts have been cast so far out into the outer reaches of the solar system following New Horizons and Pluto this week, that we’re just now getting to the astronomical action going on in our own backyard.

You’ll recall that Venus and Jupiter have made a fine pairing in the evening sky since their close approach on July 1st. Despite some of the incredulous ‘Star of Bethlehem’ claims that this was a conjunction that happens ‘once every two thousand years,’ this sort of pairing is actually quite common. In fact, Venus and Jupiter are set to meet up again in the dawn sky later this year on October 25th. Continue reading “Catch a Fine Lunar Planetary Grouping This Weekend”