Catch a Fine Lunar Planetary Grouping This Weekend

Image Credit: Andrew Symes (@FailedProtostar).

Phew! Our eyes and thoughts have been cast so far out into the outer reaches of the solar system following New Horizons and Pluto this week, that we’re just now getting to the astronomical action going on in our own backyard.

You’ll recall that Venus and Jupiter have made a fine pairing in the evening sky since their close approach on July 1st. Despite some of the incredulous ‘Star of Bethlehem’ claims that this was a conjunction that happens ‘once every two thousand years,’ this sort of pairing is actually quite common. In fact, Venus and Jupiter are set to meet up again in the dawn sky later this year on October 25th. Continue reading “Catch a Fine Lunar Planetary Grouping This Weekend”

Naming Pluto: Christening Features on Brave New Worlds

Artist's impression of Charon (left) and Pluto (right), showing their relative sizes. Credit:

‘Here be Dragons…’ read the inscriptions of old maps used by early seafaring explorers. Such maps were crude, and often wildly inaccurate.

The same could be said for our very understanding of distant planetary surfaces today. But this week, we’ll be filling in one of those ‘terra incognita’ labels, as New Horizons conducts humanity’s very first reconnaissance of Pluto and its moons.

The closest approach for New Horizons is set for Tuesday, July 14th at 11:49 UT/7:49 AM EDT, as the intrepid spacecraft passes 12,600 kilometres (7,800 miles) from Pluto’s surface. At over 4 light hours or nearly 32 astronomical units (AUs) away, New Horizons is on its own, and must perform its complex pirouette through the Pluto system as it cruises by at over 14 kilometres (8 miles) a second.

This also means that we’ll be hearing relatively little from the spacecraft on flyby day, as it can’t waste precious time pointing its main dish back at the Earth. With a downlink rate of 2 kilobits a second—think ye ole 1990’s dial-up, plus frozen molasses—it’ll take months to finish off data retrieval post flyby. A great place to watch a simulation of the flyby ‘live’ is JPL’s Eyes on the Solar System, along with who is talking to New Horizons currently on the Deep Space Network with DSN Now.

A snapshot of the current July 13th view of New Horizons as it nears Pluto. (Image credit: NASA's Eyes on the Solar System).
A snapshot of the current July 13th view of New Horizons as it nears Pluto. (Image credit: NASA’s Eyes on the Solar System).

Launched in 2006, New Horizons is about to join the ranks of nuclear-fueled explorers that have conducted first time reconnaissance of solar system objects.

Bob King also wrote up an excellent timeline of New Horizons events for Universe Today yesterday. Also be sure to check out the Planetary Society’s in-depth look at what to expect by Emily Lakdawalla.

Seems strange that after more than a decade of recycling the same blurry images and artist’s conceptions in articles, we’re now getting a new and improved shot of Pluto and Charon daily!

To follow the tale of Pluto is to know the story of modern planetary astronomy. Discovered in 1930 by American astronomer Clyde Tombaugh from the Lowell Observatory, Pluto was named by 11-year old Venetia Burney. Venetia just passed away in 2009, and there’s a great short documentary interview with her entitled Naming Pluto.

Blink comparitor
The blink comparitor Clyde Tombaugh used to discover Pluto, on display at the Lowell Observatory. Image Credit: David Dickinson

Fun fact: Historians at the Carnegie Institute recently found images of Pluto on glass plates… dated 1925, from five years before its discovery.

Despite the pop culture reference, Pluto was not named after the Disney dog, but after the Roman god of the underworld. Pluto the dog was not named in Disney features until late 1930, and if anything, the character was more than likely named after the buzz surrounding the newest planet on the block.

We’re already seeing features on Pluto and Charon in the latest images, such as the ‘heart,’ ‘donut,’ and the ‘whale’ of Pluto, along with chasms, craters and a dark patch on Charon. The conspicuous lack of large craters on Pluto suggests an active world.

The International Astronomical Union (IAU) convention for naming any new moons discovered in the Plutonian system specifies characters related to the Roman god Pluto and tales of the underworld.

Image credit:
Brake for New Horizons on July 14th… Image credit: David Dickinson

With features, however, cartographers of Pluto should get a bit more flexibility. Earlier this year, the Our Pluto campaign invited the public to cast votes to name features on Pluto and Charon related to famous scientists, explorers and more. The themes of ‘fictional explorers and vessels’ has, of course, garnered much public interest, and Star Trek’s Mr. Spock and the Firefly vessel Serenity may yet be memorialized on Charon. Certainly, it would be a fitting tribute to the late Leonard Nimoy. We’d like to see Clyde Tombaugh and Venetia Burney paid homage to on Pluto as well.

We’ve even proposed the discovery of a new moon be named after the mythological underworld character Alecto, complete with a Greek ‘ct’ spelling to honor Clyde Tombaugh.

The discovery and naming of Charon in 1978 by astronomer Robert Christy set a similar precedent. Christy choose the name of the mythological boatman who plied the river Styx (which also later became a Plutonian moon) as it included his wife Charlene’s nickname ‘Char.’ This shibboleth  also set up a minor modern controversy as to the exact pronunciation of Charon, as the mythological character is pronounced with a hard ‘k’ sound, but most folks (including NASA) say the moon as ‘Sharon’ in keeping with Christy’s in-joke that slipped past the IAU.

And speaking of Pluto’s large moon, someone did rise to the occasion and take our ‘Charon challenge,’ we posed during the ongoing Pluto opposition season recently. Check out this amazing capture of the +17th magnitude moon winking in and out of view next to Pluto courtesy of Wendy Clark:

Image credit
Click here to see the animation of the possible capture of Charon near Pluto. Image credit and copyright: Wendy Clark

Clark used the 17” iTelescope astrograph located at Siding Spring Observatory in Australia to tease out the possible capture of the itinerant moon.

Great job!

What’s in a name? What strange and wonderful discoveries await New Horizons this week? We should get our very first signal back tomorrow night, as New Horizons ‘phones home’ with its message that it survived the journey around 9:10 PM EDT/1:10 UT. Expect this following Wednesday—in the words of New Horizons principal Investigator Alan Stern—to begin “raining data,” as the phase of interpreting and evaluating information begins.

Image credit
The women who power the New Horizons mission to Pluto. Image credit: SwRI/JHUAPL

And there’s more in store, as the New Horizons team will make the decision to maneuver the spacecraft for a rendezvous with a Kuiper Belt Object (KBO) next month. Said KBO flyby will occur in the 2019-2020 timeframe, and perhaps, we’ll one day see a Pluto orbiter mission or lander in the decades to come…

Maybe one way journeys to ‘the other Red Planet’ are the wave of the future.’ Pluto One anyone?

Catching Earth at Aphelion

Image credit:

Do you feel a little… distant today? The day after the 4th of July weekend brings with it the promise of barbecue leftovers and discount fireworks. It also sees our fair planet at aphelion, or its farthest point from the Sun. In 2015, aphelion (or apoapsis) occurs at 19:40 Universal Time (UT)/3:40 PM EDT today, as we sit 1.01668 astronomical units (AU) from the Sun. This translates to 152.1 million kilometres, or 94.5 million miles. We’re actually 3.3% closer to the Sun in early January than we are today. This also the latest aphelion has occurred on the calendar year since 2007, and it won’t fall on July 6th again until 2018. The insertion of an extra day every leap year causes the date for Earth aphelion to slowly vary between July 3rd and July 6th in the current epoch.

Image credit:
Perihelion and aphelion versus the solstices and the equinoxes. Image credit: Gothika/Duoduoduo/Wikimedia commons 3.0 license

Aphelion sees the Earth 4.8 million kilometers farther from the Sun than perihelion in early January. The eccentricity of our orbit—that is, how much our planet’s orbit varies from circular to elliptical—currently sits at 0.017 or 1.7%.

It is ironic that we’re actually farther from the Sun in the middle of northern hemisphere summer. It sure doesn’t seem like it on a sweltering Florida summer day, right? That’s because the 23.44 degree tilt of the Earth’s rotational axis is by far the biggest driver of the seasons. But our variation in distance from the Sun does play a factor in long term climate as well. We move a bit slower farther from the Sun, assuring northern hemisphere summers are currently a bit longer (by about 4 days) than winters. The variation in solar insolation between aphelion and perihelion currently favors hot dry summers in the southern hemisphere.

Image credit:
Perihelion and aphelion circumstances for the remainder of the decade. Credit: David Dickinson

But these factors are also slowly changing as well.

The eccentricity of our orbit varies from between 0.000055 and 0.0679 over a span of a ‘beat period’ of 100,000 years. Our current trend sees eccentricity slowly decreasing.

The tilt of our rotational axis varies between 22.1 and 24.5 degrees over 41,000 years. This value is also currently on a decreasing trend towards its shallow minimum around 11,800 AD.

And finally, the precession of the Earth’s axis and apsidal precession combine to slowly move the date of aphelion and perihelion one time around our calendar once every 21,000 years.

Image credit
The precession of the line of apsides versus the seasons. Image credit: Krishnavedala/Wikimedia commons 3.0 license.

These combine to form what are known as Milankovitch Cycles of long-term climate variation, which were first expressed by astronomer Milutin Milankovic in 1924. Anthropogenic climate change is a newcomer on the geologic scene, as human civilization does its very best to add a signal of its very own to the mix.

We also just passed the mid-point ‘pivot of the year’ on July 2nd. More than half of 2015 is now behind us.

Want to observe the aphelion and perihelion of the Earth for yourself? If you have a filtered rig set to photograph the Sun, try this: take an image of the Sun today, and take another on perihelion next year on January 2nd. Be sure to use the same settings, so that the only variation is the angular size of the Sun itself. The disk of the Sun varies from 33’ to 31’ across. This is tiny but discernible. Such variations in size between the Sun and the Moon can also mean the difference between a total solar and annular eclipse.

Image credit:
A perihelion versus aphelion day Sol. Image credit: David Dickinson

Should we term the aphelion Sun a #MiniSol? Because you can never have too many internet memes, right?

And did you know: the rotational axis of the Sun is inclined slightly versus the plane of the ecliptic to the tune of 7.25 degrees as well. In 2015, the Sun’s north pole was tipped our way on March 7th, and we’ll be looking at the south pole of our Sun on September 9th.

And of course, seasons on other planets are much more extreme. We’re just getting our first good looks at Pluto courtesy of New Horizons as it heads towards its historic flyby on July 14th. Pluto reached perihelion in 1989, and is headed towards aphelion 49 AU from the Sun on the far off date in 2114 AD. Sitting on Pluto, the Sun would shine at -19th magnitude—about the equivalent of the twilight period known as the ‘Blue Hour’ here on Earth—and the Sun would appear a scant one arc minute across, just large enough to show a very tiny disk.

All thoughts to consider as we start the long swing inward towards perihelion next January.

Happy aphelion!

River of Fire Smoke Darkens Sun and Moon

The waning gibbous moon was still the color of fire even at midnight last night due to heavy smoke from Canadian forest fires. Credit: Bob King

My eyes are burning. The morning Sun, already 40° high, glares a lemony-orange. It’s meteorologically clear, but the sky looks like paste. What’s going on here?

Forest fires! Many in the Midwest, northern mountain states and Canadian provinces have been living under a dome of high altitude smoke the past few days reflected in the ruddy midday Sun and bloody midnight Moon.

On June 29, 2015 NASA’s Terra satellite captured this image of a river of smoke pouring across the Canadian provinces and central U.S. from hundreds of wildfires (seen at upper left) in western Canada. The difference in color between clouds true clouds and smoke is obvious. Credit: NASA image courtesy Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC
On June 29, 2015 NASA’s Terra satellite captured this image of a river of smoke pouring across the Canadian provinces and central U.S. from hundreds of wildfires (seen at upper left) in western Canada. The difference in color between clouds true clouds and smoke is obvious. Credit: NASA image courtesy Jeff Schmaltz, LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC

Fires raging in the forests of northern Alberta and Saskatchewan have poured tremendous amounts of smoke into the atmosphere. Favorable winds have channeled the fumes into a brownish river of haze flowing south and east across Canada and into the northern third of the U.S. If an orange Sun glares overheard at midday, you’ve got smoke. Sometimes you can smell it, but often you can’t because it’s at an altitude of 1.2 – 3 miles (2-5 km).

The Moon sits at lower right with the star Vega visible at the top of the frame in this 30-second time exposure made last night (July 2) under the pall of forest fire smoke. Credit: Bob King
The Moon sits at lower right with the star Vega visible at the top of the frame in this 30-second time exposure made last night (July 2) under the pall of forest fire smoke. Credit: Bob King

But the visual effects are dramatic. Last night, the nearly full Moon looked so red and subdued, it could easily have been mistaken for a total lunar eclipse. I’ve never seen a darker, more remote-looking Moon. Yes, remote. Without its customary glare, our satellite looked shrunken as if untethered from Earth and drifting away into the deep.

And nevermind about the stars. Try as I might, I could only make out zero magnitude Vega last night. The camera and a time exposure did a little better but not much.

This image taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra satellite on June 30, 2015.  Residents of the states affected by the smoke will notice much more vivid sunsets during the time the smoke is in the air.  The size of the smoke particles is just right for filtering out other colors meaning that red, pink and orange colors can be seen more vividly in the sky. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner
This image was taken by the Terra satellite on June 30, 2015. Residents of the states affected by the smoke will notice much more vivid sunsets during the time the smoke is in the air. The size of the smoke particles is just right for filtering out other colors meaning that red, pink and orange colors can be seen more vividly in the sky. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. Caption: NASA/Goddard, Lynn Jenner

These days of deep red suns in the middle of the day fiery moons at night are an occasional occurrence across Canada and the northern half of the U.S. during the summer. Our previous bout with fire haze happened in early June as a result of massive wildfires in the Northwest Territories and northern Alberta. A change in wind direction and thorough atmospheric-cleaning by thunderstorms returned our blue skies days later.

Using a prism, we can take white light and spread it apart into its component colors. Credit: NASA
Using a prism, we can take white light and spread it apart into its component colors. Credit: NASA

While the downsides of fire haze range from poor air quality to starless nights, the upside is a more colorful Sun and Moon.

Back in grade school we all learned that white light is made up of every color of the rainbow. On a sunny day, air molecules, which are exceedingly tiny, scatter away the blue light coming from the Sun and color the sky blue. Around sunset and sunrise, when the Sun’s light passes through the lowest, thickest, haziest part of the atmosphere, greens and yellows are also scattered away, leaving an orange or red Sun.

Fire smoke adds billions of smoke particles to the atmosphere which scatter away purples, blues, greens and yellows to turn an otherwise white Sun into a blood red version smack in the middle of the day.

A ring-billed gull is silhouetted against a yellow sky and orange sun early Monday afternoon. Smoke from forest fires across Canada’s Northwest Territories and northern Alberta drifted over the region and colored the the sun orange long before sunset. Credit: Bob King
A ring-billed gull is silhouetted against a yellow sky and orange Sun  in Duluth, Minn. a few weeks back during the previous series of smoky days.This photo was taken around 3 p.m. local time. Credit: Bob King

Keep an eye on the color of the blue sky and watch for red suns at midday. Forest fires are becoming more common and widespread due to climate change. If you’ve never seen this eerie phenomenon, you may soon. For more satellite images of forest fires, check out NASA’s Fires and Smoke site.

I’ve often wondered what it would look like if Earth orbited a red dwarf star instead of the Sun. These smoky days give us a taste.

See Pluto for Yourself Ahead of New Horizons’ Historic Encounter

Image credit:

Are you ready for July? The big ticket space event of the year is coming right up, as NASA’s New Horizons spacecraft is set to make its historic flyby targeting a pass 12,500 kilometres (7,750 miles) from the surface of Pluto at 11:50 UT on July 14th. Already, Pluto and its moons are growing sharper by the day, as New Horizons closes in on Pluto at over 14 kilometres per second.

And the good news is, this flyby of the distant world occurs just eight days after Pluto reaches opposition for 2015, marking a prime season to track down the distant world with a telescope.

Image credit
The path of Pluto through 2015. Image credit: Starry Night Education Software

Pluto and its large moon Charon are snapping into focus as we reach the two week out mark. Discovered in 1930 by astronomer Clyde Tombaugh while working at the Lowell observatory in Flagstaff Arizona, these far off worlds are about to become real places in the public imagination. It’s going to be an exciting—if tense—few weeks, as new details and features are seen on these brave new worlds, all calling out for names. Are there undiscovered moons? Does Pluto host a ring system? What is the history of Pluto?

Image credit
A wide field view of Sagittarius and Pluto with inset (see chart above) Image credit: Starry Night education software

Hunting for Pluto with a backyard telescope is difficult, though not impossible. We suggest an aperture of 10-inches or greater, though the tiny world has been reliably spotted using a 6-inch reflector. Pluto reaches opposition on July 6th at 10:00 UT/6:00 AM EDT, marking a period when it will rise opposite to the setting Sun and transit highest near local midnight. Pluto spends all of 2015 in the constellation Sagittarius. This presents two difficulties: 1). We’re currently looking at Pluto against the very star-rich backdrop towards the center of the Milky Way Galaxy, and 2). Its southerly declination means that it won’t really ‘clear the weeds’ much for northern hemisphere observers.

Image credit
The path of Pluto through July 2015. Image credit: Starry Night Education software

But don’t despair. With a good finder chart and patience, you too can cross Pluto off of your life list. In fact, the month of July sees Pluto thread its way between the 27’ wide  +4th magnitude pair Xi Sagittarii, making a great guidepost to spot the 14th magnitude world.

Don’t own a telescope? You can still wave in the general direction of New Horizons and Pluto on the evening of July 1st, using the nearby Full Moon as a guide:

Image credit
Pluto near the Full Moon on the night of July 1st. Image credit: Stellarium

Pluto orbits the Sun once every 248 years, and reaches opposition every 367 days. A testament to this slow motion is the fact that Mr. Tombaugh first spied Pluto south of the star Delta Gemini, and it has only moved as far as Sagittarius in the intervening 85 years. Pluto also passed perihelion in 1989, when it was about half a magnitude brighter than it currently is now. Pluto’s distance from the Sun varies from 30 AU to 49 AU, and Pluto will reach aphelion just under a century from now on 2114.

Image credit;
Pluto versus Charon at greatest elongation. Image credit: Starry Night Education software

Up for a challenge? Hunting down Pluto’s elusive moon Charon is an ultimate feat of astronomical athletics. Amazingly, this has actually been done before, as reported here in 2008 on Universe Today.

Image credit:
Pluto… and Charon! Image credit: Antonello Medugno and Daniele Gasparri

Charon reaches greatest elongation 0.8” from Pluto once every three days. Shining at +16th magnitude,  Charon is a faint catch, though not impossible. We’re already seeing supporting evidence from early New Horizons images that these two worlds stand in stark contrast, with dark Charon covered in relatively low albedo dirty water-ice and while brighter Pluto is coated with reflective methane snow.

Credit: Ed Kotapish
Greatest elongation times and dates for Charon through the month of July 2015. Credit: Ed Kotapish

The current forward-looking view from New Horizons of Pluto is amazing to consider. As of July 1st, the spacecraft is 0.11 AU (17 million kilometres) from Pluto and closing, and the world appears as a +1.7 magnitude object about 30 arc seconds across.  The views of Pluto are courtesy of New Horizons’ LORRI (Long Range Reconnaissance Imager), which in many ways is very similar to a familiar backyard 8-inch Schmidt-Cassegrain telescope. It’s interesting to note that the views we’re currently getting very closely resemble amateur views of Mars near opposition, though we suspect that will change radically in about a week.

And it will take months for all of the New Horizons data to make its way back to Earth. The real nail-biter will be the 20 hour period of close rendezvous on July 14th, a period in which the spacecraft will have to acquire Pluto and Charon, do its swift ballet act, and carry out key observations—all on its own before phoning home. This will very likely be the only mission to Pluto in our lifetimes, as New Horizons will head out to rendezvous with several Kuiper Belt Objects in the 2020 time frame before joining the Voyager I & II and Pioneer 10 & 11 spacecraft in an orbit around the Milky Way Galaxy.

Image credit:
Pluto (marked) from the morning of June 25th, 2015. Image credit and copyright: Jim Hendrickson

Just think, in less than a few weeks time, science writers will (at last!) have a wealth of Plutonian imagery to choose from courtesy of New Horizons, and not just a few blurry pics and artist’s conceptions that we’ve recycled for decades… let us know of your tales of tribulation and triumph as you attempt to hunt down Pluto this summer!

Venus and Jupiter Meet At Last

Venus and Jupiter at dusk over Australia's Outback on June 27, 2015. Credit: Joseph Brimacombe

The year’s finest conjunction is upon us. Chances are you’ve been watching Venus and Jupiter at dusk for some time.

Like two lovers in a long courtship, they’ve been slowly approaching one another for the past several months and will finally reach their minimum separation of  just over 1/4° (half a Full Moon diameter) Tuesday evening June 30.

Venus and Jupiter will appear to nearly converge in the western sky starting about an hour after sunset on June 30. Venus is the brighter planet. If you miss the show because of bad weather, they'll be nearly as close on July 1 at the same time. Source: Stellarium
The view facing west-northwest about 50 minutes after sunset on June 30 when Venus and Jupiter will be at their closest. If bad weather moves in, they’ll be nearly as close tonight (June 29) and July 1.  Two celestial bodies are said to be in conjunction when they have the same right ascension or “longitude”and line up one atop the other. Source: Stellarium

Most of us thrill to see a single bright planet let alone the two brightest so close together. That’s what makes this a very special conjunction. Conjunctions are actually fairly common with a dozen or more planet-to-planet events a year and 7 or 8 Moon-planet match-ups a month. It’s easy to see why.

The planets, including Earth, orbit within a relatively flat plane. As we watch them cycle through their orbits, two or more occasionally bunch close together in a conjunction. We see them projected against the
From our perspective in the relatively flat plane of the Solar System we watch the planets cycle around the Sun projected against the backdrop of the zodiac constellations. They – and the Moon – follow the ecliptic and occasionally pass one another in the sky to make for wonderful conjunctions. Credit: Bob King

All eight planets travel the same celestial highway around the sky called the ecliptic but at different rates depending upon their distance from the Sun. Distant Saturn and Neptune travel more slowly than closer-in planets like Mercury and Mars. Over time, we see them lap one another in the sky, pairing up for a week or so and inspiring the gaze of those lucky enough to look up. After these brief trysts, the worlds part ways and move on to future engagements.

Venus and Jupiter above St. Peter's Dome in Rome on Sunday June 28, 2015. Details: Canon 7D Mark II DSLR, with a 17-55-f/2.8 lens at 24mm f/4 and exposure time was 1/40". Credit: Gianluca Masi
Venus and Jupiter above St. Peter’s Dome in Rome on Sunday June 28, 2015. Details: Canon 7D Mark II DSLR, with a 17-55-f/2.8 lens at 24mm f/4 and exposure time was 1/40″. Credit: Gianluca Masi

In many conjunctions, the planets or the Moon and planet are relatively far apart. They may catch the eye but aren’t exactly jaw-dropping events. The most striking conjunctions involve close pairings of the brightest planets. Occasionally, the Moon joins the fray, intensifying the beauty of the scene even more.

As Venus orbits interior to Earth’s orbit, its apparent distance from the Sun (and phase) changes. Since June 6, the planet’s separation from the Sun in the sky has been shrinking and will reach a minimum on August 15, when the planet is directly between the Sun and Earth. Credit: Bob King
As Venus orbits interior to Earth’s orbit, its apparent distance from the Sun (and phase) changes. Since June 6, the planet’s separation from the Sun in the sky has been shrinking and will reach a minimum on August 15, when the planet is directly between the Sun and Earth. Credit: Bob King

While moving planets are behind many conjunctions, they often don’t do it alone. Earth’s orbital motion around the Sun helps move things along. This week’s event is a perfect example. Venus is currently moving away from Jupiter in the sky but not quickly enough to avoid the encounter. Each night, its apparent distance from the Sun decreases by small increments and the planet loses altitude. Meanwhile, Jupiter’s moving away from Venus, traveling east toward Regulus as it orbits around the Sun.

So how can they possibly get together? Earth to the rescue! Every day, our planet travels some 1.6 million miles in our orbit, completing 584 million miles in one year. We see this movement reflected in the rising and setting times of the stars and planets.

View of Earth’s orbit seen from above the northern hemisphere. As our planet moves to the left or counterclockwise around the Sun, the background constellations appear to drift to the right or westward. This causes constellations and planets in the western sky to gradually drop lower every night, while those in the east rise higher. Credit: Bob King
View of Earth’s orbit seen from above the northern hemisphere. As our planet moves to the left or counterclockwise around the Sun, the background constellations appear to drift to the right or westward. This causes constellations and planets in the western sky to gradually drop lower every night, while those in the east rise higher. Credit: Bob King

Every night, the stars rise four minutes earlier than the night before. Over days and weeks, the minutes accumulate into hours. When stars rise earlier in the east, those in the west set earlier. In time, all stars and planets drift westward due to Earth’s revolution around the Sun.

It’s this seasonal drift that “pushes” Jupiter westward to eventually overtake a reluctant Venus. Despite appearances, in this particular conjunction, both planets are really fleeing one another!

Johannes Kepler's depiction of the conjunction of Mercury (left), Jupiter and Saturn shortly before Christmas in the year 1603. He believed a similar conjunction or series of conjunctions may have heralded the birth of Christ.
Johannes Kepler’s depiction of the conjunction of Mercury (left), Jupiter and Saturn shortly before Christmas in the year 1603. He believed a similar conjunction or series of conjunctions – the Christmas Star – may have heralded the birth of Christ.

We’re attuned to unusual planetary groupings just as our ancestors were. While they might have seen a planetary alignment as a portent of kingly succession or ill fortune in battle, we’re free to appreciate them for their sheer beauty. Not to say that some might still read a message or experience a personal revelation at the sight. There’s something in us that sees special meaning in celestial alignments. We’re good at sensing change in our environment, so we sit up and take notice when unusual sky events occur like eclipses, bright comets and close pairings of the Moon and planets.

Venus and Jupiter over the next few nights facing west at dusk. Times and separations shown for central North America at 10 p.m. CDT. 30 minutes of arc or 30' equals one Full Moon diameter.  Source: Stellarium
Venus and Jupiter over the next few nights facing west at dusk. Times and separations shown for central North America at 10 p.m. CDT. 30 minutes of arc or 30′ equals one Full Moon diameter. Source: Stellarium

You can watch the Jupiter-Venus conjunction several different ways. Naked eye of course is easiest. Just face west starting about an hour after sunset and drink it in. My mom, who’s almost 90, will be watching from her front step. Binoculars will add extra brilliance to the sight and perhaps show several moons of Jupiter.

The view through a small telescope of Jupiter (top) and Venus on June 30 around 9:30 p.m. CDT. Jupiter's moons are G = Ganymede, E = Europa, I = Io and C = Callisto. Source: Stellarium
The view through a small telescope of Jupiter (top) and Venus on June 30 around 9:30 p.m. CDT. Jupiter’s moons are G = Ganymede, E = Europa, I = Io and C = Callisto. Source: Stellarium

If you have a telescope, I encourage you to point it at the planetary doublet. Even a small scope will let you see Jupiter’s two dark, horizontal stripes — the North and South Equatorial Belts — and several moons. Venus will appear as a pure white, thick crescent 32 arc seconds across virtually identical in apparent size to Jupiter. To tame Venus’ glare, start observing early when the sky is still flush with pale blue twilight. I think the best part will be seeing both planets in the same field of view even at moderate magnification — a rare sight!

To capture an image of these shiny baubles try using your cellphone. For many, that’s the only camera we have. First, find a pretty scene to frame the pair. Hold your phone rock-solid steady against a post or building and click away starting about an hour after sundown when the two planets have good contrast with the sky, but with light still about. If your pictures appear too dark or light, manually adjust the exposure. Here’s a youtube video on how to do it with an iPhone.

Jupiter and Venus at dusk on June 26. This is a 6-second exposure at f/2.8 and ISO 80 taken with a basic point-and-shoot digital camera. I braced the camera on top of a mailbox. Credit: Bob King
Jupiter and Venus at dusk on June 26. This is a 6-second exposure at f/2.8 and ISO 80 taken with a basic point-and-shoot digital camera. I braced the camera on top of a mailbox and stuck my phone underneath to prop up the lens. Credit: Bob King

Point-and-shoot camera owners should place their camera on a tripod, adjust the ISO or sensitivity to 100, open the aperture or f/stop to its widest setting (f/2.8 or f/4), autofocus on the planets and expose from 5-10 seconds in mid-twilight or about 1 hour to 90 minutes after sunset. The low ISO is necessary to keep the images from turning grainy. High-end digital SLR cameras have no such limitations and can be used at ISO 1600 or higher. As always, review the back screen to make sure you’re exposing properly.

I’m not a harmonic convergence kind of guy, but I believe this week’s grand conjunction, visible from so many places on Earth, will stir a few souls and help us appreciate this life that much more.

About Time: Is the June 30th Leap Second the Last?

Out with the old... changing out the historic coundown clock at the Kennedy Space Center, perhaps an easier 'time change' than the insertion of the leap second. Image credit: NASA/Frankie Martin

The month of June 2015 is just a tad longer than usual… but not for the reason you’ve been told.

Chances are, you’ll soon be hearing that we’re tacking on an extra second to the very end of June 30th, though the reason why is a bit more complex than the explanation you’ll be hearing.

It’s an error that comes around and is repeated about every 500 days or so, as we add a leap second to June 30th or December 31st.

‘The rotation of the Earth is slowing down,’ your local weather newscaster/website/anonymous person on Twitter will say. ‘This is why we need to add in an extra second every few years, to keep our accounting for time in sync.’

Image credit:
The observed variation of the Earth’s rotation in milliseconds since the adoption of the leap second. Image credit: The United States Naval Observatory

Now, I know what you’re thinking.

Doesn’t adding a second once every 18-24 months or so add up to an awful lot? Are we really slowing down to the tune of (calculator apps out) over 11 minutes per millennium? What’s going on here?

Here’s what your weatherman won’t tell you.

The story of the second and the insertion of the modern day leap second is a curious case of modern astronomical history.

Universe Today recently covered the quirks of the Earth’s rotation on this past weekend’s June solstice. We are indeed slowing down, to the tune of an average of 2.3 milliseconds (thousands of a second) of a day per century in the current epoch, mostly due to the tidal braking action of the Moon. The advent of anthropogenic global warming will also incur variations in the Earth’s rotation rate as well.

Historically, the second was defined as 1/86,400th (60 seconds x 60 minutes x 24 hours) of a mean solar day. We’ve actually been on an astronomical standard of time of one sort or another for thousands of years, though it’s only been over the last two centuries that we’ve really needed—or could even reliably measure—time to an accuracy of less than a second. These early observations were made by astronomers using transit instruments as they watched stars ‘cross the wire’ in an eyepiece using nothing more sophisticated than a Mark-1 eyeball.

Image credit:
A transit instrument on display at the Quito Observatory in Quito, Ecuador. Image credit: David Dickinson

The whole affair was addressed in 1956 by the International Committee for Weights and Measures, which defined what was known as the ephemeris, or astronomical second as a fraction—1/31,556,925.9747th to be precise—of the tropical year set at noon on January 1st 1900.

Image credit:
Simon Newcomb. Image in the Public Domain

Now, this decision relied on measurements contained in Simon Newcomb’s 1895 book Tables of the Sun to describe the motion of the Earth. Extrapolating back, a day was exactly 86,400 modern seconds long… in 1820.

In the intervening 195 years, the modern day is now about an extra 1/500th (86,400.002) of an SI second long. In turn, the SI second was defined in 1967 as:

The duration of 9,192,631,770 periods of radiation corresponding to the transition between two hyperfine levels of the ground state of the Cesium-133 atom.

Image credit:
An atomic clock at the Federal Office of Metrology in Bern, Switzerland. Image credit: Wikimedia Commons/Public Domain

Now, physicists love to have an SI definition that isn’t reliant on an artifact. In fact, the pesky holdout known as the kilogram is the last of the seven SI base units that is based on an object and not a constant that anyone can measure in a lab worldwide. Simply locking a second at 1/86,400th of a mean solar day would mean that the second itself was slowly lengthening, creating its own can of worms…

So the leap second came to be, as a compromise between UT1 (Astronomical observed time) and UTC (Coordinated Universal Time), which defines a day as being comprised of 86,400 SI seconds. These days, the United States Naval Observatory utilizes observations which include quasars, GPS satellites and laser ranging experiments left on the Moon by Apollo astronauts to measure UT1.

The difference between Universal and Terrestrial Time is often referred to as Delta T.

Image credit:
An 1853 Universal Dial Plate depicting time worldwide before the adoption of Universal Time. Image credit: Wikimedia Commons/Public Domain image

The first leap second was inserted on June 30th 1972, and 25 leap seconds have been introduced up until the extra June 30th second next week.

But the Earth’s rotation isn’t actually slowing down a second every time we add one… this is the point most folks get wrong. Think of it this way: the modern Gregorian calendar inserts a leap day every four years to keep it in sync with the mean tropical year… but the length of the year itself doesn’t increase by a day every four years. Those fractions of a second per day just keep adding up until the difference between UT1 and UTC mounts towards one second, and the good folks at the International Earth Rotation Service  decide something must be done.

And don’t fear the leap second, though we’ve already seen many ‘Y2K redux’ cries already cropping up around the web. We do this every 18-24 months or so, and Skynet hasn’t become self-aware… or at least, not yet.

Of course, programmers hate the leap second, and much like the patchwork of daylight saving time and time zone rules, it causes a colossal headache to assure all of those exceptions and rules are accounted for. Consider, for example, how many transactions (emails, tweets, etc) fly around the globe every second. Many services such as Google instead apply what’s known as a ‘leap smear,’ which slices the leap second out into tinier micro-second sized bites.

With the current system in place, leap seconds will become ever more frequent as the Earth’s rotation continues to slow. There have been calls over the years to even do away with the astronomical standard for measuring time entirely, and go exclusively to the SI second and UTC. This would also create a curious situation of not only, say, throwing off local sunset and sunrise times, but users of GOTO telescope pointing systems would probably note errors within a few decades or so.

This coming November, The World Radiocommunication Conference being held in Geneva, Switzerland is looking to address the issue, though we suspect that, for now at least, the future of the leap second is secure… perhaps, if we did indeed go off the astronomical time standard for the first time in the history of modern human civilization, a leap hour might have to be instituted somewhere around oh say, 2600 AD.

What do you, the reader think? Should it be ‘down with the leap second,’ or should we keep our clocks in lock step with the cosmos?

Iridium NEXT Set to Begin Deployment This Year

An artist's conception of an Iridium-NEXT satellite in low Earth orbit. Credit: Iridium Communications Inc.

The skies, they are uh changin’…  I remember reading in Astronomy magazine waaaay back in the late 1990s (in those days, news was disseminated in actual paper magazines) about a hot new constellation of satellites that were said to flare in a predictable fashion.

This is the Iridium satellite constellation, a series of 66 active satellites and six in-orbit and nine ground spares. The ‘Iridium’ name comes from the element with atomic number 77 of the same name (the original project envisioned 77 satellites in low Earth orbit), and the satellites serve users with global satellite phone coverage.

A 'double Iridium flare' capture! Image credit: Mary Spicer
A ‘double Iridium flare’ capture! Image credit: Mary Spicer

Over the years, Iridium satellite flares have become a common sight in the night sky… but that may change soon.

The next generation of Iridium communications satellites begins launching later this year through 2017.

Known as Iridium-NEXT, the first launch is set for October of this year from Dombarovsky air base Russia atop a converted ICBM Dnepr rocket. The Dnepr can carry two satellites on each launch, and SpaceX has also recently agreed to deploy 70 satellites over the span of seven missions launching from Vandenberg Air Force Base in California later this year.

Both the initial Iridium satellites and Iridium NEXT are operated by Iridium Communications Incorporated. The original satellites were built by Motorola and Lockheed Martin, and the prime contract for Iridium NEXT construction went to Thales Alenia Space.

There are also several fascinating issues surrounding the history of the Iridium constellation, both past and present.

Originally fielded by Motorola in the 1990s, satellite phones were to be “the next big thing” until mobile phones took over. Conceived in the late 1980s, the concept of satellite phones was practically obsolete before the first Iridium satellite got off the ground. The high cost of satellite phone services assured they could never manage to compete with the explosive growth of the mobile phone industry, and satellite phones at best only found niche applications for remote operations worldwide.  Iridium Communications declared bankruptcy in 1999, and the $6 billion US dollar project was bought by a group of private investors for only $35 million dollars.

Airmen using an Iridium satellite phone in Antarctica. Image credit: Robert Tingle/USAF
Airmen using an Iridium satellite phone in Antarctica. Image credit: Robert Tingle/USAF

The original Iridium constellation employed a unique system of Inter-Satellite Links, enabling them to directly route signals from satellite to satellite. Iridium NEXT will use an innovative L-band phased array antenna, allowing for larger bandwidth and faster data transmission. The Iridium NEXT constellation is planned to eventually contain 81 satellites including spares, and the system will be much more robust and reliable.

The Iridium NEXT constellation will also face some stiff competition, as Google, SpaceX and OneWeb are also looking to get into the business of satellite Internet and communications. This will also place hundreds of new satellites—not to mention the growing flock of CubeSats—into an already very crowded region of low Earth orbit. The Iridium 33 satellite collision with the defunct Kosmos 2251 satellite in 2009 highlighted the ongoing issues surrounding space debris.

The company applied for a plan to deorbit the original Iridium constellation starting in 2017 as soon as the new Iridium NEXT satellites are in place.

Now, I know what the question of the hour is, as it’s one that we get frequently from other satellite spotters and lovers of artificial things that flash in the sky:

Will the Iridium NEXT satellites flare in manner similar to their predecessors?

Unfortunately, the prospects aren’t good. Missing on Iridium NEXT are the three large refrigerator-sized antennae which are the source of those brilliant -8 magnitude flares. And sure, while these flares weren’t Iridium’s sole mission purpose, they were sure fun to watch!

An 'Iridium classic...' note the trio of reflective antenae on the lower bus. Image credit: Iridium Communications inc.
An ‘Iridium classic…’ note the trio of reflective antennae on the lower bus. Image credit: Iridium Communications inc.

David Cubbage, Associate Director of NEXT Spacecraft Development and Satellite Production recently told Universe Today:

“It was very exciting when we first discovered that the Iridium Block 1 satellite vehicles (SVs) reflected the sunlight into a concentrated “flare” that could be viewed in the night sky.  The unique design of the Block 1 SV, with three highly reflective Main Mission Antennas (MMA) deployed at an angle from the SV body, is what caused that to happen.  For the Iridium NEXT constellation, the SVs will be built under a different design with a single MMA that faces the Earth — a design that requires fewer parts that do not need to be as reflective.  As a result, it will not likely produce the spectacular flares of the Block 1 design.”

But don’t despair. Though the two decade ‘Age of the Iridium flare’ may be coming to an end, lots of other satellites, including the Hubble Space Telescope, MetOp-A and B,  and the COSMO-SkyMed series of satellites can ‘slow flare’ on occasion. We recently saw something similar during a pass of the U.S. Air Force’s super-secret ATV-4 space plane currently carrying out its OTV-4 mission, suggesting that a large reflective solar panel may be currently deployed.

An Iridium flare through the constellations Orion and Lepus. Image credit: David Dickinson
An Iridium flare passing through the constellations Orion and Lepus. Image credit: David Dickinson

And though the path to commercial viability for satellite internet and communications is a tough one, we hope it does indeed take off soon… we personally love the idea of being able to stay connected from anywhere worldwide.

Be sure to catch those Iridium flares while you can… we’ll soon be telling future generations of amateur astronomers that we remember “back when…”

-Check out the chances for the next Iridium flare coming to a sky near you on Heavens-Above.

Catch Jupiter Homing in on Venus Through June

Getting closer... Venus, Jupiter, the Moon and an iridium flare on the night of May 26th, 2015. Image credit and copyright: Chris Lyons

Are you ready to hear an upswing in queries from friends/family and/or strangers on Twitter asking “what are those two bright stars in the evening sky?”

It’s time to arm yourself with knowledge against the well-meaning astronomical onslaught. The month of June sees the celestial action heat up come sundown, as the planet Jupiter closes in on Venus in the dusk sky. Both are already brilliant beacons at magnitudes -1.5 and -4 respectively, and it’s always great to catch a meeting of the two brightest planets in the sky.

June 5th
Looking west on the evening of June 5th from latitude 30 degrees north… Image credit: Stellarium

Be sure to follow Venus and Jupiter through June, as they close in on each other at a rate of over ½ a degree—that’s more than the diameter of a Full Moon—per day.

June 20th
…and looking west on the evening of June 20th…

Venus starts June at 20 degrees from Jupiter on the first week of the month, and closes to less than 10 degrees separation by mid-month before going on to a final closing of less than one degree on the last day of the June. Th climax comes on July 1st, when Venus and Jupiter sit just over 20’ apart—2/3rds the diameter of a Full Moon—on July 1st at 3:00 UT or 11:00 PM EDT (on June 30th). This translates to a closest approach on the evening of June 30th for North America.

July 1st
… and finally, looking westward on the evening of July 1st.

Venus starts the first week of June forming a straight line equally spaced with the bright stars Castor and Pollux in the astronomical constellation Gemini. On June 12-13, Venus actually nicks the Beehive cluster M44 in the constellation Cancer, a fine sight through binoculars.

Credit: Starry night Education software
The apparent paths of Venus versus Jupiter through the month of June. Credit: Starry Night Education software

Jupiter and Venus will then be joined by the Moon on the evening of June 20th to form a skewed ‘smiley face’ emoticon pairing. Not only is the pairing of Venus and the crescent Moon represented on many national flags, But the evening of June 20th will also be a great time to try your hand at daytime planet spotting before sunset, using the nearby crescent Moon as a guide.

The daytime view of Venus, the Moon and Jupiter of the evening of June 20th. Image Credit: Stellarium
The daytime view of Venus, the Moon and Jupiter of the evening of June 20th. Image Credit: Stellarium

The Moon will actually occult Venus three times in 2015: On July 19th as seen from the South Pacific, on October 8th as seen from Australia and New Zealand, and finally, on December 7th as seen from North America in the daytime.

This conjunction of Venus and Jupiter occurs just across the border in the astronomical constellation of Leo. As Venus can always be found in the dawn or dusk sky, Jupiter must come to it, and conjunctions of the two planets occur roughly once every calendar year. A wider dawn pass of the two planets occurs this year on October 25th, and in 2019 Jupiter again meets up with Venus twice, once in January and once in November. The last close conjunction of Venus and Jupiter occurred on August 18th, 2014, and an extremely close (4’) conjunction of Venus and Jupiter is on tap for next year on August 27th. Check out our nifty list of conjunctions of Venus and Jupiter for the remainder of the decade from last year’s post.

The view through the telescope on the evenings June 30th and July 1st will be stunning, as it’ll be possible to fit a 34% illuminated 32” crescent Venus and a 32” Jupiter plus its four major moons all in the same low power field of view. Jupiter sits 6 astronomical units (AU) from Earth, and Venus is 0.5 AU away on July 1st.

30 FoV
Looking at Jupiter and Venus on July 1st using a 30 arc minute filed of view. Image credit: Starry Night Education Software

And just think of what the view from Jupiter would be like, as Venus and Earth sit less than 3 arc minutes apart:

View from jupiter
The view from Jupiter on July 1st looking at the Earth. Image credit: Starry Night Education software

Venus reaches solar conjunction this summer on August 15th, and Jupiter follows suit on August 26th. Both enter the field of view of the European Space Agency’s Solar Heliospheric Observatory (SOHO) LASCO C3 camera in mid-August, and are visible in the same for the remainder of the month before they pass into the dawn sky.

But beyond just inspiring inquires, close conjunctions of bright planets can actually raise political tensions as well. In 2012, Indian army sentries reported bright lights along India’s mountainous northern border with China. Thought to be reconnaissance spy drones, astronomers later identified the lights as Venus and Jupiter, seen on repeated evenings. We can see how they got there; back in the U.S. Air Force, we’ve seen Venus looking like a ‘mock F-16 fighter’ in the desert dusk sky as we recovered aircraft in Kuwait. Luckily, cooler heads prevailed during the India-China incident and no shots were exchanged, which could well have led to a wider conflict…

Remember:  Scientific ignorance can be harmful, and astronomical knowledge of things in the sky can save lives!

Allergies? Must Be Pollen Corona Season Again

A multi-ringed, oval shaped corona around the Sun on May 30, 2015 seen from northern Minnesota. The white spots are aspen seeds better known as "cotton fluff". Credit: Bob King

Don’t be surprised if you look up in the Sun’s direction and squint with itchy, watery eyes. You might be staring into billows of tree pollen wafting through your town. It’s certainly been happening where I live.

When conditions are right, billions of microscopic pollen grains consort to create small, oval-shaped rings around a bright Moon during the peak of the spring and early summer allergy season. With the Full Moon coming up this week, there’s no better time to watch for them. 

Pollen grains from a variety of different common plants including sunflower, morning glory, prairie hollyhock and evening primrose. Credit: Dartmouth Electron Microscope Facility, Dartmouth College
Pollen grains from a variety of different common plants including sunflower, morning glory, prairie hollyhock and evening primrose magnified 500x and colorized.  The green, bean-shaped grain at lower left is 0.05 mm across. Credit: Dartmouth Electron Microscope Facility

Because they’re often lost in the glare of the Sun or Moon, the key to finding one is to hide the solar or lunar disk behind a thick tree branch, roof or my favorite, the power pole. Look for a telltale oval glow, sometimes tinted with rainbow colors, right up next to the Moon or Sun’s edge. Common halos, those that form when light is refracted by ice crystals, span 44° compared to pollen coronas, which measure just a few degrees in diameter.

To see or photograph coronas, you need plenty of light. The Sun’s ideal, but so is the Moon around full. Fortunately, that happens on June 2, neatly fitting into the sneezing season. Last night, the same grains — most likely pine tree pollen — also stoked a lunar corona. Once my eyes were dark adapted and the Moon hidden by an arboreal occulting instrument (tree branch), it was easy to see.

A lunar pollen corona on May 30, 2015. The Moon was hidden by a utility pole.  Like the solar version, this one is elongated too. The shape is caused by pollen grains' elongated shape and the fact that they tend to orient themselves as they drift in the wind. Credit: Bob King
A lunar pollen corona on May 30, 2015. The Moon was hidden by a utility pole. Like the solar version, this one was also oval and measured about 3.5° across. The shape is caused by elongated pollen grains fact that orient themselves as they drift in the wind. Credit: Bob King

One of things you’ll notice right away about these biological bullseyes is that they’re not circular. Pollen coronas are oval because the pollen particles are elongated rather than spherical like water droplets. When light from the moon or sun strikes pollen, the minute grains diffract the light into a series of closely-spaced colored rings. I’ve read that pine and birch produce the best coronas, but spruce, alder and and others will work, too.

And here’s another amazing thing about these coronas. You don’t need a transparent medium to produce them. No ice, no water. All that’s necessary are very small, similarly-shaped objects. Light waves are scattered directly off their surfaces; the waves interfere with one another to create a diffraction pattern of colored rings.

A lunar pollen corona photographed on June 22, 2008 displays “bumps” or extensions at approximately 90° angles around its periphery. Credit: Bob King

Pollen coronas tend to become more elongated when the Sun or Moon is closer to the horizon, so look be on the lookout during those times for more extreme shapes. For some reason I’ve yet to discover,  pollen disks sometimes exhibit “bumps” or extensions at their tops, bottoms and sides.

So many of us suffer from allergies, perhaps the glowing presence of what’s causing all the inflammation will serve as partial compensation for our misery.