Slender Moonspotting, Occultations, Daytime Planets and More

Credit and copyright:

One of nature’s grandest ‘occultations’ of all is coming right up this Friday, as the Moon passes in front of the Sun for viewers in the high Arctic for a total solar eclipse. And although 99.999+% percent of humanity will miss totality, everyone can trace the fascinating path of the Moon as it moves back into the evening sky this weekend.

As of this writing, it looks like the fickle March weather is going to keep us guessing right up to eclipse day. Fear not, as the good folks over at the Virtual Telescope Project promise to bring us views of the eclipse live.  Not only does this eclipse fall on the same day as the start of astronomical spring in the northern hemisphere known as the vernal (northward) equinox, but it also marks the start of lunation 1141.

Ever try hunting for the slender crescent Moon in the dawn or dusk sky? The sport of thin Moon-spotting on the days surrounding the New Moon can push visual skills to the very limit. Binoculars are your friend in this endeavor, as you sweep back and forth attempting to see the slim fingernail of a Moon against the low contrast background sky.  Thursday morning March 19th provides a great chance for North American observers to spy an extremely thin Moon about 24 hours prior to Friday’s eclipse.

Credit:
Projected locales for the first sightings of the slim crescent Moon on the evening of March 20th. Credit: Created by author.

Unfortunately, most of North America misses the eclipse, though folks on the extreme east coast of Newfoundland might see a partially eclipsed sunrise if the day dawns clear.

The Moon will first be picked up in the evening sky post-eclipse this weekend. On Friday evening, folks in the southern United States might just be able to spy a 15 hour old Moon with optical assistance if skies are clear.

As the Moon fattens, expect to see it at its most photogenic as Ashen light or Earthshine illuminates its nighttime side. What you’re seeing is sunlight from the Earth being reflected back in a reverse (waning gibbous) phase as seen from the earthward side of the Moon. The prominence of Earthshine can vary depending on the amount of cloud and snow cover currently turned moonward, though of course, if it’s cloudy from your location, you won’t see a thing…

Credit
The universe smiles back: A skewed emoticon grouping of Venus, Mars and the Moon plus Earthshine on February 20th. Photo by author.

Watch that Moon over the coming weeks, as it has a date with destiny.

The Moon occults (passes in front of) two planets and one bright star in the coming week. First up is an occultation of Uranus on March 21st at around 11:00 UT/7:00 AM EDT. Sure, this one is for the most part purely academic and unobservable, as it occurs over central Africa in the daytime and is only 15 degrees east of the Sun. Still, if you can pick up the Moon on the evenings of March 20th or March 21st, you might just be able to spy nearby Uranus shining at +6th magnitude nearby before it heads towards solar conjunction on April 6th.

Credit:
The visibility footprint of the March 21st occultation of Mars by the Moon. Credit: Occult 4.1.

Next, the Moon occults Mars on March 21st at 22:00 UT/6:00 PM EDT for the southern Pacific coast of South America. North America will see an extremely close photogenic pairing of Luna and the Red Planet. This is one of seven occultations of a naked eye planet by the Moon for 2015, and the first of two for Mars for the year, the next falling on December 6th.

Credit
The Moon pairs with Venus on the evening of March 22nd. Credit: Stellarium.

Next up, the Moon has a tryst with brilliant Venus, passing 2.8 degrees from the Cytherean world on March 22nd. Can you spy -4th magnitude Venus near the two day old Moon before sunset? This is the stuff that has inspired astronomically-themed flags and skewed emoticon ‘smiley face conjunctions’ of yore, including the close pairing of Mars, Venus and the Moon seen worldwide last month.

Credit:
The occultation of Aldebaran by the Moon on March 25th. Credit: Occult 4.1.

Next up, the 30% illuminated Moon occults the bright star Aldebaran for Alaskan viewers at dusk on March 25th. This is the third occultation of the star by the Moon in the ongoing cycle, and to date, no one has, to our knowledge, successfully caught an occultation of Aldebaran in 2015… could this streak be broken next week?

Credit:
The daytime Moon paired with Jupiter on March 30th. Credit: Starry Night Education software.

And speaking of daytime planet-spotting, Jupiter will sit only five degrees south of the waxing gibbous Moon on the evening of March 30th. Can you spy the giant planet near the daytime Moon in the afternoon sky using binocs? And finally, watch that Moon, as it heads for the third total lunar eclipse of the last 12 months visible from the Americas and the Pacific region on the morning of April 4th

More to come!

New Binocular Nova Discovered in Sagittarius

This view shows the sky facing south-southeast just before the start of dawn in mid-March from the central U.S. The nova's located squarely in the Teapot constellation. Source: Stellarium

Looks like the Sagittarius Teapot’s got a new whistle. On March 15, John Seach of Chatsworth Island, NSW, Australia discovered a probable nova in the heart of the constellation using a DSLR camera and fast 50mm lens. Checks revealed no bright asteroid or variable star at the location. At the time, the new object glowed at the naked eye limit of magnitude +6, but a more recent observation by Japanese amateur Koichi Itagaki puts the star at magnitude +5.3, indicating it’s still on the rise. 

A 5th magnitude nova’s not too difficult to spot with the naked eye from a dark sky, and binoculars will show it with ease. Make a morning of it by setting up your telescope for a look at Saturn and the nearby double star Graffias (Beta Scorpii), one of the prettiest, low-power doubles in the summer sky.

Close-in map of Sagittarius showing the nova's location (R.A. 18h36m57s Decl. -28°55'42") and neighboring stars with their magnitudes. For clarity, the decimal points are omitted from the magnitudes, which are from the Tycho catalog. Source: Stellarium
Close-in map of Sagittarius showing the nova’s location (R.A. 18h36m57s Decl. -28°55’42”) and neighboring stars with their magnitudes. For clarity, the decimal points are omitted from the magnitudes, which are from the Tycho catalog. Source: Stellarium

Nova means “new”, but novae aren’t fresh stars coming to life but an explosion occurring on the surface of an otherwise faint star no one’s taken notice of – until the blast causes it to brighten 50,000 to 100,000 times. A nova occurs in a close binary star system, where a small but extremely dense and massive (for its size) white dwarf siphons hydrogen gas from its closely orbiting companion. After swirling about in a disk around the dwarf, it’s funneled down to the star’s 150,000 F° surface where gravity compacts and heats the gas until detonates in a titanic thermonuclear explosion. Suddenly, a faint star that wasn’t on anyone’s radar vaults a dozen magnitudes to become a standout “new star”.

Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA
Novae occur in close binary systems where one star is a tiny but extremely compact white dwarf star. The dwarf pulls material into a disk around itself, some of which is funneled to the surface and ignites in a nova explosion. Credit: NASA

Regular nova observers may wonder why so many novae are discovered in the Sagittarius-Scorpius Milky Way region. There are so many more stars in the dense star clouds of the Milky Way, compared to say the Big Dipper or Canis Minor, that the odds go up of seeing a relatively rare event like a stellar explosion is likely to happen there than where the stars are scattered thinly. Given this galactic facts of life, that means most of will have to set our alarms to spot this nova. Sagittarius doesn’t rise high enough for a good view until the start of morning twilight. For the central U.S., that’s around 5:45-6 a.m.

A now-you-see-it-now-you-don't animation showing the nova field before and after discovery. Credit: Ernesto Guido and Nick Howes
A now-you-see-it-now-you-don’t animation showing the nova field before and after discovery. Credit: Ernesto Guido and Nick Howes

Find a location with a clear view to the southeast and get oriented at the start of morning twilight or about 100 minutes before sunrise. Using the maps, locate Sagittarius below and to the east (left) of Scorpius. Once you’ve arrived, point your binoculars into the Teapot and star-hop to the nova’s location. I’ve included visual magnitudes of neighboring stars to help you estimate the nova’s brightness and track its changes in the coming days and weeks.

Whether it continues to brighten or soon begins to fade is anyone’s guess at this point. That only makes going out and seeing it yourself that much more enticing.

New photo of Nova Sagittarii. Note the pink color from hydrogen alpha emission. Credit: Erneso Guido and Nick Howes
New photo of Nova Sagittarii. Note the “warm” color from hydrogen alpha emission. Credit: Erneso Guido and Nick Howes

UPDATE: A spectrum of the object was obtained with the Liverpool Telescope March 16 confirming that the “new star” is indeed a nova. Gas has been clocked moving away from the system at more than 6.2 million mph (10 million kph)!

Will the March 20th Total Solar Eclipse Impact Europe’s Solar Energy Grid?

The first eclipse of 2015 is coming right up on Friday, March 20th, and may provide a unique challenge for solar energy production across Europe.

Sure, we’ve been skeptical about many of the websites touting a ‘blackout’ and Y2K-like doom pertaining to the March 20th total solar eclipse as of late. And while it’s true that comets and eclipses really do bring out the ‘End of the World of the Week’ -types across ye ole web, there’s actually a fascinating story of science at the core of next week’s eclipse and the challenge it poses to energy production.

But first, a brief recap of the eclipse itself. Dubbed the “Equinox Eclipse,” totality only occurs over a swath of the North Atlantic and passes over distant Faroe and Svalbard Islands. Germany and central Europe can expect an approximately 80% partially obscured Sun at the eclipse’s maximum.

Credit
The magnitude of the March 20th solar eclipse across Europe. Credit: Michael Zeiler/GreatAmericanEclipse.com

We wrote a full guide with the specifics for observing this eclipse yesterday. But is there a cause for concern when it comes to energy production?

A power grid is a huge balancing act.  As power production decreases from one source, other sources must be brought online to compensate. This is a major challenge — especially in terms of solar energy production.

Residential solar panels in Germany. Credit: Wikimedia Commons/ Sideka Solartechnik.
Residential solar panels in Germany. Credit: Wikimedia Commons/ Sideka Solartechnik.

Germany currently stands at the forefront of solar energy technology, representing a whopping quarter of all solar energy capacity installed worldwide. Germany now relies of solar power for almost 7% of its annual electricity production, and during the sunniest hours, has used solar panels to satisfy up to 50% of the country’s power demand.

We recently caught up with Barry Fischer to discuss the issue. Fischer is the Head Writer at Opower, a software company that uses data to help electric and gas utilities improve their customer experience. Based on Opower’s partnerships with nearly 100 utilities worldwide, the company has amassed  the world’s largest energy dataset of its kind which documents energy consumption patterns across more than 55 million households around the globe.

A study published last week by Opower highlights data from the partial solar eclipse last October over the western United States. There’s little historical precedent for the impact that an eclipse could have on the solar energy grid. For example, during the August 11th, 1999 total solar eclipse which crossed directly over Europe, less than 0.1% of utility electricity was generated using solar power.

Credit:
Looking at the drop in power production during the October 2014 solar eclipse. Credit: Opower.

What they found was intriguing. Although the 2014 partial solar eclipse only obscured 30 to 50% of the Sun, solar electric production dropped over an afternoon span of nearly three hours before returning to a normal pattern.

Examining data from 5,000 solar-powered homes in the western United States, Opower found that during the eclipse those homes sent 41% less electricity back to the grid than normal. Along with a nearly 1,000 megawatt decline in utility-scale solar power production, these drop-offs were compensated for by grid operators ramping up traditional thermal power plants that were most likely fueled by natural gas.

No serious problems were experienced during the October 23rd, 2014 partial solar eclipse in terms of solar electricity production in the southwestern United States, though it is interesting to note that the impact of the eclipse on solar energy production could be readily detected and measured.

Credit
The projected effect of the March 20th eclipse on solar power production. Credit: Opower.

How does the drop and surge in solar power output anticipated for the March 20th eclipse differ from, say, the kind presented by the onset of night, or a cloudy day? “The impact of an eclipse can register broadly – and unusually rapidly – across an entire region,” Fischer told Universe Today. On a small scale, one area many be cloudy, while on a larger regional scale, other areas of clear or partly sunny skies can compensate. An eclipse — even a partial one — is fundamentally different, because the sudden onset and the conclusion are relatively uniform over a large region.

The March 20th event offers an unprecedented chance to study the effects of an eclipse on large-scale solar production up close. A study (in German) by the University of Applied Sciences in Berlin suggests that solar power production will fall at a rate 2.7 times faster than usual as the eclipse progresses over a span of 75 minutes. This is the equivalent of switching off one medium-sized power plant per minute.

The anticipated slingshot might be just as challenging, as  18 gigawatts of power comes back online at the conclusion of the eclipse in just over an hour. And as opposed to the 2014 eclipse over the U.S. which ended towards sunset, the key rebound period for the March 20th eclipse will be around local noon and during a peak production time.

Fischer also noted that “the second half of the partial solar eclipse will also pose a notable challenge” for the grid, as it is flooded with solar power production 3.5 times faster than normal. This phenomenon could also serve as a great model for what could occur daily on a grid that’s increasingly solar power reliant in the future, as energy production ramps up daily at sunrise. Such a reality may be only 15 years away, as Germany projects installed solar capacity to top 66 gigawatts by 2030.

Credit:
The Crescent Dunes Solar Energy Project outside of Tonopah, Nevada. Credit:  Wikimedia Commons/Amble. Licensed under a CC BY-SA 4.0 license.

What’s the anticipated impact projected for a future eclipse such as, say, the 2017 and 2024 total solar eclipses over the U.S.?

This eclipse may serve as a great dry run for modeling what could occur as reliance on solar energy production grows.

Such is the modern technical society we live in. It’s fascinating to think that eclipses aren’t only a marvelous celestial spectacle, but their effects on power production may actually serve as a model for the smart grids of tomorrow.

 

 

 

A Complete Guide to the March 20th Total Solar Eclipse

Credit

The first of two eclipse seasons for the year is upon us this month, and kicks off with the only total solar eclipse for 2015 on Friday, March 20th.

And what a bizarre eclipse it is. Not only does this eclipse begin just 15 hours prior to the March equinox marking the beginning of astronomical spring in the northern hemisphere, but the shadow of totality also beats path through the high Arctic and ends over the North Pole.

Credit:
An animation of the March 20th eclipse. Credit: NASA/GSFC/AT Sinclair.

Already, umbraphiles — those who chase eclipses — are converging on the two small tracts of terra firma where the umbra of the Moon makes landfall: the Faroe and Svalbard islands. All of Europe, the northern swath of the African continent, north-central Asia and the Middle East will see a partial solar eclipse, and the eclipse will be deeper percentage-wise the farther north you are .

2015 features four eclipses in all: two total lunars and two solars, with one total solar and one partial solar eclipse. Four is the minimum number of eclipses that can occur in a calendar year, and although North America misses out on the solar eclipse action this time ’round, most of the continent gets a front row seat to the two final total lunar eclipses of the ongoing tetrad on April 4th and September 28th.

How rare is a total solar eclipse on the vernal equinox? Well, the last total solar eclipse on the March equinox occurred back in 1662 on March 20th. There was also a hybrid eclipse — an eclipse which was annular along a portion of the track, and total along another — on March 20th, 1681. But you won’t have to wait that long for the next, as another eclipse falls on the northward equinox on March 20th, 2034.

Credit
The path of the March 20th eclipse across Europe, including start times for the partial phases, and the path of totality, click to enlarge. For more maps showing the percentage of occlusion, elevation, and more, click here. Credit: Michael Zeiler/GreatAmercianEclipse.com.

Note that in the 21st century, the March equinox falls on March 20th, and will start occasionally falling on March 19th in 2044. We’re also in that wacky time of year where North America has shifted back to ye ‘ole Daylight Saving (or Summer) Time, while Europe makes the change after the eclipse on March 29th. It really can wreak havoc with those cross-time zone plans, we know…

The March 20th eclipse also occurs only a day after lunar perigee, which falls on March 19th at 19:39 UT. This is also one of the closer lunar perigees for 2015 at 357,583 kilometres distant, though the maximum duration of totality for this eclipse is only 2 minutes and 47 seconds just northeast of the Faroe Islands.

Credit:
Views from selected locales in Europe and Africa. Credit: Stellarium.

This eclipse is number 61 of 71 in solar saros series 120, which runs from 933 to 2754 AD. It’s also the second to last total in the series, with the final total solar eclipse for the saros cycle occurring one saros later on March 30th, 2033.

And speaking of obscure eclipse terminology, check out this neat compendium we came across in research. What’s an Exeligmos? How many Heptons are in a Gregoriana?

The 462 kilometre wide path of the eclipse touches down south of Greenland at 9:13 UT at sunrise, before racing across the North Atlantic towards the pole and departing the Earth at 10:21 UT. The sedate partial phases for the eclipse worldwide start at 7:40 UT, and run out to 11:51 UT.

What would it look like to sit at the North Pole and watch a total solar eclipse on the first day of Spring? It would be a remarkable sight, as the disk of the Sun skims just above the horizon for the first time since the September 2014 equinox. Does this eclipse occur at sunrise or sunset as seen from the pole? It would be a rare spectacle indeed!

Credit
An equinoctal eclipse as simulated from the North Pole. Credit: Stellarium.

Alas, this unique view from the pole will more than likely go undocumented. A similar eclipse was caught in 2003 from the Antarctic, and a few intrepid eclipse chasers, including author David Levy did manage to make the journey down under to witness totality from the polar continent.

Credit
Practicing eclipse safety in Africa. Credit: Michael Zeiler/GreatAmericanEclipse.com

Safety is paramount when observing the Sun and a solar eclipse. Eye protection is mandatory during all partial phases across Europe, northern Asia, North Africa and the Middle East. A proper solar filter mask constructed of Baader safety film is easy to construct, and should fit snugly over the front aperture of a telescope. No. 14 welder’s goggles are also dense enough to look at the Sun, as are safety glasses specifically designed for eclipse viewing. Observing the Sun via projection or by using a pinhole projector is safe and easy to do.

Credit
A solar filtered scope ready to go in Tucson, Arizona. Credit: photo by author.

Weather is always the big variable in the days leading up to any eclipse. Unfortunately, March in the North Atlantic typically hosts stormy skies, and the low elevation of the eclipse in the sky may hamper observations as well. From the Faroe Islands, the Sun sits 18 degrees above the horizon during totality, while from the Svalbard Islands it’s even lower at 12 degrees in elevation. Much of Svalbard is also mountainous, making for sunless pockets of terrain that will be masked in shadow on eclipse day. Mean cloud amounts for both locales run in the 70% range, and the Eclipser website hosts a great in-depth climatology discussion for this and every eclipse.

Credit
The view of totality and the planets as seen from the Faroe Islands. Credit: Starry Night.

But don’t despair: you only need a clear view of the Sun to witness an eclipse!

Solar activity is also another big variable. Witnesses to the October 23rd, 2014 partial solar eclipse over the U.S. southwest will recall that we had a massive and very photogenic sunspot turned Earthward at the time. The Sun has been remarkably calm as of late, though active sunspot region 2297 is developing nicely. It will have rotated to the solar limb come eclipse day, and we should have a good grasp on what solar activity during the eclipse will look like come early next week.

And speaking of which: could an auroral display be in the cards for those brief few minutes of totality? It’s not out of the question, assuming the Sun cooperates.  Of course, the pearly white corona of the Sun still gives off a considerable amount of light during totality, equal to about half the brightness of a Full Moon. Still, witnessing two of nature’s grandest spectacles — a total solar eclipse and the aurora borealis — simultaneously would be an unforgettable sight, and to our knowledge, has never been documented!

We also put together some simulations of the eclipse as seen from Earth and space:

Note that an area of southern Spain may witness a transit of the International Space Station during the partial phase of the eclipse. This projection is tentative, as the orbit of the ISS evolves over time. Be sure to check CALSky for accurate predictions in the days leading up to the eclipse.

Credit
The ISS transits the Sun during the eclipse around 9:05 UT as seen from southern Spain. Credit: Starry Night.

Can’t make it to the eclipse? Live in the wrong hemisphere? There are already a few planned webcasts for the March 20th eclipse:

Astronomia Practica plans to post photos in near real time of the eclipse from northern Scotland.

-Slooh has plans to broadcast the eclipse from the Faroe Islands.

-And here’s another webcast from the Faroe Islands and the path of totality courtesy of Kringvarp Føroya:

-Here’s another broadcast planned of the partial stages of the eclipse as seen from the UK.

-And our friends over at the Virtual Telescope Project also plans on webcasting the solar eclipse:

… and speaking of which, there’s also an exciting new Kickstarter project entitled Chasing Shadows which is headed to the Arctic to follow veteran eclipse chaser Geoff Sims (@beyond_beneath of Twitter):

And stay tuned, as North America and the Pacific region will witness another total lunar eclipse on April 4th 2015. And we’ve only got one more total solar eclipse across Southeast Asia in 2016 before the total solar eclipse of August 21st 2017 spanning the U.S.

Let the first eclipse season of 2015 begin!

Next… how will the solar eclipse affect the European solar grid? Expect an article on just that soon!

The Mini-Moon Cometh: Catch the Smallest Full Moon of 2015 This Thursday

Credit and copyright:

Supermoons. Blood Moons. Moons both Black and Blue… by now, you’d think that there was nothing new under the Sun (or Moon, as it were) when it comes to new unofficial lunar terminology.

Sure, the Moon now seems more colorful than controversial viral dress shades. Love it or loathe it, the Internet can sure set a meme in motion. And this week’s Full Moon on Thursday evening offers up one of our faves, as the most distant Full Moon of 2015 occurs on March 5th. Yup, the Mini-Moon is indeed once again upon us, a time when the Full Moon appears slightly smaller than usual as seen from the Earth. But can you really tell the difference?

The third Full Moon of the year occurs this week on Thursday, March 5th. Also known as the Worm or Sap Moon by the Algonquin tribes of New England, the moment of Full phase occurs at 18:07 Universal Time (UT) or 1:07 PM Eastern Standard Time (EST). This is also just over 10 hours after apogee, which occurs at 7:36 UT/2:36 AM EST. This month’s apogee is also an exceptionally distant one, measuring 406,385 kilometres from the center of the Earth to the center of the Moon. This is just 80 kilometres shy of the most distant apogee of 2015 on September 14th, which occurs when the Moon is near New phase.

Stellarium
Can you spy Jupiter next to the waxing gibbous Moon before sunset tonite? Credit: Stellarium.

Apogee for the Moon ranges from 404,000 to 406,700 kilometres distant, and the Full Moon appears 29.3 arc minutes across near apogee versus 34.1’ across near perigee as seen from the Earth.

This is also the closest apogee near a Full Moon time-wise until January 27th, 2032.

What is a Mini-Moon? As with a Supermoon, we prefer simply defining a Mini-Moon as a Full Moon which occurs within 24 hours of apogee. That’s much more definitive in our book rather than the cryptic and often cited ‘within 90% of its orbit’ refrain for Supermoons.

And speaking of which, we’ve got three ‘Super’ Full Moons in 2015, with the very closest Super (Duper?) Full Moon occurring within an hour of perigee on September 28th during the final total lunar eclipse of the ongoing tetrad… what will the spin doctors of the Internet make of this? A ‘Super Duper Blood Moon,’ anyone?

The path of the Moon this week also takes it towards the Fall equinoctial point in the astronomical constellation of Virgo, as it crosses Leo and nicks the corner of the non-zodiacal constellation Sextans. The Moon reaches Full two weeks prior to the Vernal Equinox, which falls this year on March 20th. Keep an eye on the Moon, as the first eclipse of 2015 and this year’s only total solar eclipse also occurs just 13 hours prior to the equinox for observers in the high Arctic. (More on that next week).

Can’t wait til Thursday? Tonight, observers across Canada, northern Maine, and Europe will see a fine occultation of the star Acubens (a.k.a. Alpha Cancri) by the 94% illuminated waxing gibbous Moon:

Credit:
The ‘shadow footprint’ for tonight’s occultation of Acubens by the Moon. Credit: Occult 4.0.1.

Alpha Cancri is 175 light years distant, and folks living along the U.S./Canadian border will be treated to a fine grazing occultation as the double star plays hide and seek along the limb of the Moon. This is number 17 in an ongoing series of 21 occultations of the star by the Moon stretching out until June 20th, 2015. There’s a wide separation of 11” between the star’s A and B components, and there are suspicions from previous lunar occultations that Alpha Cancri A may itself be a double star as well.

We caught a similar occultation of the star Lambda Geminorum by the Moon this past Friday:

Ever feel sorry for moonless Venus? This Wednesday night also offers a chance to spy Venus with a brief ‘pseudo-moon,’ as +6th magnitude Uranus passes just 15’ — less than half the apparent diameter of a Full Moon — from brilliant -4th magnitude Venus. Neith, the spurious 18th century moon of Venus lives! From the vantage point of Venus on March 4th, the Earth and Moon would shine at magnitudes -2.3 and +1.5, respectively, and sit about 4 arc minutes apart.

Starry Night Education Software.
The rising Full ‘Mini-Moon’ of March 5th. Credit: Starry Night Education Software.

Does the rising Full Moon look smaller to you than usual this week? While the apparent change in diameter from apogee to perigee is slight, it is indeed noticeable to the naked eye observers. Remember, the Moon is actually about one Earth radius (6,400 kilometres) more distant on the local horizon than when it’s directly overhead at the zenith. The Moon is also moving away from us at a current rate of 1-2 centimetres a year, meaning that Mini-Moons will get ever more distant in epochs hence.

Already, annular solar eclipses are currently more common than total ones by a ratio of about 11 to 9. The first annular eclipse as seen from the Earth went unheralded some time about 900 million to a billion years ago, and 1.4 billion years hence, the last total solar eclipse will occur.

Photo by author.
The rising waxing gibbous Moon against the daytime sky. Photo by author.

Be sure to get out and enjoy the rising Mini-Moon later this week!

-Send those Mini-Moon pics in to Universe Today.

-Looking for eclipse sci-fi? Check out Dave Dickinson’s eclipse-fueled tales Exeligmos and Shadowfall.

Kamikaze Comet Loses its Head

Headless comet D1 SOHO photographed in evening twilight on Feb. 28. Credit: Michael Jaeger

Like coins, most comet have both heads and tails. Occasionally, during a close passage of the Sun, a comet’s head will be greatly diminished yet still retain a classic cometary outline. Rarely are we left with nothing but a tail. How eerie it looks. Like a feather plucked from some cosmic deity floating down from the sky. Welcome to C/2015 D1 SOHO, the comet that almost didn’t make it. 

It was discovered on Feb. 18 by Thai amateur astronomer and writer Worachate Boonplod from the comfort of his office while examining photographs taken with the coronagraph on the orbiting Solar and Heliospheric Observatory (SOHO). A coronagraph blocks the fantastically bright Sun with an opaque disk, allowing researchers to study the solar corona as well as the space near the Sun. Boonplod regularly examines real-time SOHO images for comets and has a knack for spotting them; in 2014 alone he discovered or co-discovered 35 comets without so much as putting on a coat.


Learn why there are so many sungrazing comets

Most of them belong to a group called Kreutz sungrazers, the remains of a much larger comet that broke to pieces in the distant past. The vast majority of the sungrazers fritter away to nothing as they’re pounded by the Sun’s gravity and vaporize in its heat. D1 SOHO turned out to be something different – a non-group comet belonging to neither the Kreutz family nor any other known family.

After a perilously close journey only 2.6 million miles from the Sun’s 10,000° surface, D1 SOHO somehow emerged with two thumbs up en route to the evening sky. After an orbit was determined, we published a sky map here at Universe Today encouraging observers to see if and when the comet might first become visible. Although it was last seen at around magnitude +4.5 on Feb. 21 by SOHO, hopes were high the comet might remain bright enough to see with amateur telescopes.

On Wednesday evening Feb. 25, Justin Cowart, a geologist and amateur astronomer from Alto Pass, Illinois figured he’d have a crack at it. Cowart didn’t have much hope after hearing the news that the comet may very well have crumbled apart after the manner of that most famous of disintegrators, Comet ISON . ISON fragmented even before perihelion in late 2013, leaving behind an expanding cloud of exceedingly faint dust.

Animation showing the possible D1 SOHO comet and its position marked on an atlas based on its orbit. Credit: Justin Cowart / Jose Chambo
Animation showing the D1 SOHO comet and its position marked on an atlas based on its orbit. Credit: Justin Cowart / José Chambo

Cowart set up a camera and tracking mount anyway and waited for clearing in the west after sunset. Comet D1 SOHO was located some 10° above the horizon near the star Theta Piscium in a bright sky. Justin aimed and shot:

“I was able to see stars down to about 6th magnitude in the raw frames, but no comet,” wrote Cowart.  “I decided to stack my frames and see if I could do some heavy processing to bring out a faint fuzzy. To my surprise, when DeepSkyStacker spit out the final image I could see a faint cloud near Theta Picsium, right about where the comet expected to be!”

Cowart sent the picture off to astronomer Karl Battams, who maintains the Sungrazer Project website, for his opinion. Battams was optimistic but felt additional confirmation was necessary. Meanwhile, comet observer José Chambo got involved in the discussion and plotted D1’s position on a star atlas (in the blinking photo above) based on a recent orbit calculation. Bingo! The fuzzy streak in Justin’s photo matched the predicted position, making it the first ground-based observation of the new visitor.

Comet D1 SOHO's orbit is steeply inclined to the ecliptic. It's now headed into the northern sky, sliding up the eastern side of Pegasus into Andromeda. Credit: JPL
Comet D1 SOHO’s orbit is steeply inclined to the ecliptic. It’s now headed into the northern sky, sliding up the eastern side of Pegasus into Andromeda as it recedes from both Earth and Sun. Credit: JPL Horizons

Comet D1 SOHO’s orbit is steeply inclined (70°) to the Earth’s orbit. After rounding the Sun, it turned sharply north and now rises higher in the western sky with each passing night for northern hemisphere skywatchers. Pity that the Moon has been a harsh mistress, washing out the sky just as the comet is beginning to gain altitude. These less-than-ideal circumstances haven’t prevented other astrophotographers from capturing the rare sight of a tailless comet. On Feb. 2, Jost Jahn of Amrum, Germany took an even clearer image, confirming Cowart’s results.

This photo, which confirms Cowart's observation, was taken on Feb. 27 from Germany. Jost Jahn stacked 59 15-second exposures (ISO 1600, f/2.4) taken with an 85mm telescope. Credit: Jost Jahn
This photo, which confirmed Justin Cowart’s observation, was taken on Feb. 27 from Germany. Jost Jahn stacked 59 15-second exposures (ISO 1600, f/2.4) taken with an 85mm telescope to capture D1’s faint tail. Credit: Jost Jahn

To date, there have been no visual observations of D1 SOHO made with binoculars or telescopes, so it’s difficult to say exactly how bright it is. Perhaps magnitude +10? Low altitude, twilight and moonlight as well as the comet’s diffuse appearance have conspired to make it a lofty challenge. That will change soon.

Comet D1 SOHO's dim remnant on Feb. 28, 2015. Credit: Francois Kugel
Comet D1 SOHO’s dim remnant on Feb. 28, 2015 looks like it was applied with spray paint. Credit: Francois Kugel / fkometes.pagesperso-orange.fr/index.html

Once the Moon begins its departure from the evening sky on March 6-7, a window of darkness will open. Fortuitously, D1 SOHO will be even higher up and set well after twilight ends. I’m as eager as many of you are to train my scope in its direction and bid both hello and farewell to a comet we’ll never see again.

Map to help you find Comet C/2015 D1 SOHO March 2-8 around 7 p.m. (CST) and 8 p.m. CDT on March 8. Stars are shown to magnitude 6.5. Source: Chris Marriott's SkyMap
Map to help you find Comet C/2015 D1 SOHO March 2-7 around 7 p.m. (CST) and 8 p.m. CDT on March 8. Stars are shown to magnitude 8. See also below. Source: Chris Marriott’s SkyMap

Here are fresh maps based on the most recent orbit published by the Minor Planet Center. Assuming you wait until after Full Moon, start looking for the comet in big binoculars or a moderate to large telescope right at the end of evening twilight when it’s highest in a dark sky. The comet sets two hours after the end of twilight on March 7th from the central U.S.

Broader view with north up and west to the right showing nightly comet positions at 7 p.m. CST through March 7 and then 8 p.m. CDT thereafter. Click to enlarge. Source: Chris Marriott's Stellarium
Broader view with north up and west to the right showing nightly comet positions at 7 p.m. CST through March 7 and then 8 p.m. CDT thereafter. Stars to magnitude +9. Click to enlarge. Source: Chris Marriott’s Stellarium

Peer Into the Distant Universe: How to See Quasars With Backyard Telescopes

Seen at the James and Barbara Moore Observatory in Punta Gorda, Florida: a scope worthy of a quasar hunt. Photo by author.

“How far can you see with that thing?”

It’s a common question overhead at many public star parties in reference to telescopes.

In the coming weeks as the Moon passes Full and moves out of the evening sky, we’d like to challenge you to hunt down a bright example of one of the most distant and exotic objects known: a quasar.

To carry out this feat, you’ll need a ‘scope with at least an aperture of 20 centimetres or greater, dark skies, and patience.

Although more than 200,000 of quasars are currently known and they’re some of the most luminous objects in the universe, they’re also tremendously distant. A very few are brighter than magnitude +14, about the brightness of Pluto. Most quasars have an absolute magnitude rivaling our Sun, though if you plopped one down 33 light years away, we’d definitely have other things to worry about.
Continue reading “Peer Into the Distant Universe: How to See Quasars With Backyard Telescopes”

How to Photograph Tonight’s Spectacular Triple-Play Conjunction

Last night's one-day-old Moon photographed a half-hour after sunset. Details: handheld camera ISO 400, f/2.8, 1/15". Credit: Bob King

Tonight the thin, 2-day-old crescent Moon will join Venus and Mars in the western sky at dusk for one of the most striking conjunctions of the year. The otherworldly trio will fit neatly with a circle about 1.5° wide or just three times the diameter of the full moon. No question, this will catch a lot of eyes around the world. Why not take a picture and share it with your friends? Here are a few tips to do just that.

Moon, Mars and Venus around 6:45 p.m. (CST) on Feb. 20 in the western sky. Be sure to look for the darkly-lit part of the moon illuminated by sunlight reflecting off Earth called earthshine. It’s a beautiful sight in binoculars. Source: Stellarium
Moon, Mars and Venus around 6:45 p.m. (CST) on Feb. 20 in the western sky. Be sure to look for the darkly-lit part of the moon illuminated by sunlight reflecting off Earth called earthshine. Source: Stellarium, author

You won’t need much for an easy snapshot. In bright twilight, point your mobile phone toward the Moon and tap off a few shots, taking care not to touch the screen too hard lest you shake the phone and blur the image. The phone’s autoexposure and autofocus settings should be adequate to capture both the Moon and Venus. Mars is fainter and may only show if you can steady your phone against something to allow for a longer exposure without blurring. Assuming you use your phone in its default wide view, the Moon, Venus and Mars will form a tight, small group in a larger scene.

Last night, Feb. 19, Venus and Mars were 1 degree apart. Tonight they'll be even closer at just over 1/2° with the Moon a degree or so to their right. Credit: Bob King
Last night, Feb. 19, Venus and Mars were 1°apart. Tonight they’ll be even closer at just over 1/2° with the Moon about 1° to their right. Details: 65 minutes after sunset (mid-twilight), camera on tripod, 35mm lens at f/2.8, ISO 400 and 6 second exposure. Credit: Bob King

Phones provide the highest resolution in their wide setting. If you zoom in, the Moon will be bigger but resolution or sharpness will suffer. Someday phones will be as good as digital single lens reflex cameras (DSLRs) but until then, you’ll need one of these or their cousins, the point-and-shoot cameras, to get the best images of astronomical objects.

You’ll also need a tripod to keep the camera still and stable during the longer exposures you’ll need during the optimum time for photography which begins about 30 minutes after sunset. That’s when your photos will capture all three objects without overexposing the Moon and making it look washed-out. Ideally, you want to see the bright crescent contrasting with the dim glow of the earthshine.

Venus and Mars photographed in mid-twilight with a 100mm telephoto lens at f/2.8. To prevent trailing of the planets, I cut the exposure in half to 4 seconds and increased the camera's ISO to 800. Credit: Bob King
Venus and Mars photographed in mid-twilight with a 100mm telephoto lens at f/2.8. To prevent trailing of the planets, I cut the exposure in half to 4 seconds and increased the camera’s ISO to 800. Credit: Bob King

Lucky for us, the Moon’s sharp form makes an ideal target for the camera’s autofocus. Frame an attractive landscape or ask a friend to stand in the foreground. Set your lens to its widest open setting (usually f/2.8-3.5) and the ISO (your camera’s sensitivity to light) to 800. The higher the ISO, the shorter the exposure you can use to capture an image, but high ISOs introduce unwanted noise and graininess. 800’s a good compromise. If you can manually set your exposure, start at 4 seconds.

Compose your photo and then focus on the Moon and gently press the shutter button. Check the image on the back screen. Are you on target or is it too dark? If so, double the time. If too bright, half it. As the sky gets darker, you’ll need to gradually increase your exposure. That’s when the Moon will start to wash out and the beautiful deep blue sky turn black or the color of your local light pollution. Around here, that’s pinkish-orange. I’ve got lots of orange sky photos to prove it!

The key to good photos in twilight is balancing the different types of lighting - dusk, the sunlit crescent, the earth-lit portion and the planets. Shoot pictures at a variety of exposures between about 30-60 minutes after sunset when the western sky is still aglow but the Moon is bright and obvious. Credit: Bob King
Mercury and the Moon on Jan. 31, 2014. Besides finding a scene you like, the key to good photos in twilight is balancing the different types of lighting – dusk, the sunlit crescent, the earth-lit outline and the planets. Shoot pictures at a variety of exposures starting about 35 minutes after sunset when the western sky is still aglow but the Moon is bright and obvious. Credit: Bob King

All told, you can use a mobile phone to shoot from about 25-40 minutes after sunset and a DSLR from 25 minutes to 75 minutes after. If you’re shooting with a standard 24-35mm lens, keep your exposures under 20 seconds or the Moon and planets will start to streak or trail. The Rule of 500 is a great way to remember how long a time exposure you can make with any lens before celestial objects start trailing. So, 500/24mm = 20.8 seconds and 500/200mm (telephoto) = 2.5 seconds. That means if you plan to shoot the conjunction with a longer lens, you’ll need to up your ISO to 1600 or even 3200 in late twilight to get a tack-sharp, motionless photo.

I screwed this photo up of the Moon, Jupiter and Mars by overexposing the sunlit crescent. Credit: Bob King
I screwed this photo up of the Moon, Jupiter and Mars by overexposing the sunlit crescent. It’s all part of learning the ropes, a task made much easier nowadays by simply checking the view screen of your camera and trying a different exposure. Credit: Bob King

Telephoto images are a bit more challenging, but they increase the size of the pretty trio within the scene. When shooting telephoto images (even wide ones if you’re fussy), shoot them on self-timer. That’s the setting everyone used before the selfie took the world by storm. Most timers are pre-set to 10 seconds. You press it and the camera counts down 10 seconds before automatically tripping the shutter, allowing you time to put yourself in a group photo.

In astrophotography, using the self-timer assures you’re going to get a vibration-free photo. If it’s cold out and you’re shooting with a telephoto, vibration from your finger pressing the shutter button can jiggle the image.

Good luck tonight and clear skies! If you have any questions, please ask.

Black Moon: Why the New Moon on February 18th is Special

Credit and copyright: Frank Miller.

Did you hear the one about last month’s ‘supermoon?’

Yeah, we know. The hype was actually for an event that was less than spectacular, as it revolved around the first New Moon of 2015 on January 20th. Said suspect Moon was touted as ‘super’ (we prefer the quixotic term proxigean) as it occurred 18 hours prior to perigee.

Not that the first lunar perigee of 2015 was an especially close one in time or space at 359,642 kilometres distant. Is every New and Full Moon now destined to become branded ‘super’ in the never ending SEO quest to get eyeballs on web pages?

But wait, there’s more. We’ve noticed as of late that another popular term is creeping into the popular astronomical vernacular: that of a ‘Black Moon’.

Black Moons for the next decade. Created by the author.
Black Moons for the next decade. Created by the author.

We’ve written lots about Moons both of the Black and Blue variety before. We’ll also let you in on a small secret: astronomers rarely sit around observatories discussing these Moons, be they Blue, Black or Super. At most, astronomers note the weeks surrounding New as the ‘Dark of the Moon,’ a prime time to go deep for faint objects while the light polluting Moon is safely out of the sky. And yes, terms such as ‘Super’ or ‘Black Moon’ have dubious roots in astrology, while the term Blue Moon comes down to us via a curious mix-up from Sky and Telescope and the Maine Farmer’s Almanac.

Simply put, a Black Moon is the New Moon version of a Blue Moon, and is either:

  1. A month missing a Full or New Moon… this can only occur in February, as the lunar synodic period from like phase to phase is 29.5 days long. This last occurred in 2014 and will next occur in 2018.
  2. The second New Moon in a month with two. This can happen in any calendar month except February.
  3. And now for the most convoluted definition: the third New Moon in an astronomical season with four.

We bring this up because the February 18th New Moon is ‘Black’ in the sense that it meets the requirements expressed in rule 3. The fourth New Moon of the season falls on March 20th, just 13 hours before the northward equinox on the same date.

Credit: David Blanchflower.
An extremely thin crescent Moon against a low contrast twilight sky. Credit and copyright: David Blanchflower.

Such are the curious vagaries of the juxtaposition of the lunar cycle on our modern day Gregorian calendar. Unfortunately, this doesn’t mean you’ll win the lottery or be lucky in love: any Earthly woes are strictly your own affairs to deal with, Black Moon or no. Continue reading “Black Moon: Why the New Moon on February 18th is Special”

Nobody Knows What These Mysterious Plumes are on Mars

In the Journal Nature, astronomers deliver an exhaustive study of limited albeit high quality ground-based observations of Mars and come up short. A Martian mystery remains. What caused the extremely high-altitude plumes on Mars? (Credit: Nature, Sánchez-Lavega, A. et al. Feb 16, 2015, Figures 1a, 2)

In March 2012, amateur astronomers began observing unusual clouds or plumes along the western limb of the red planet Mars. The plumes, in the southern hemisphere rose to over 200 kilometers altitude persisting for several days and then reappeared weeks later.

So a group of astronomers from Spain, the Netherlands, France, UK and USA have now reported their analysis of the phenomena. Their conclusions are inconclusive but they present two possible explanations.

Was dust lofted to extreme altitudes or ice crystals transported into space.? Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubbble)
Was dust lofted to extreme altitudes or ice crystals transported into space.? Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubbble)

Mars and mystery are synonymous. Among Martian mysteries, this one has persisted for three years. Our own planet, much more dynamic than Mars, continues to raise new questions and mysteries but Mars is a frozen desert. Frozen in time are features unchanged for billions of years.

An animated sequence of images taken by Wayne Jaeschke on March 20, 2012 showing the mystery plume over the western limb of the red planet (upper right). South is up in the photo. (Credit: W. Jaeschke)

In March 2012, the news of the observations caught the attention of Universe Today contributing writer Bob King. Reported on his March 22nd 2012 AstroBob blog page, the plumes or clouds were clear to see. The amateur observer, Wayne Jaeschke used his 14 inch telescope to capture still images which he stitched together into an animation to show the dynamics of the phenomena.

ModernDay_Astrophotographer2Now on February 16 of this year, a team of researchers led by Agustín Sánchez-Lavega of the University of the Basque Country in Bilbao, Spain, published their analysis in the journal Nature of the numerous observations, presenting two possible explanations. Their work is entitled: “An Extremely high-altitude plume seen at Mars morning terminator.”

Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL
Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL

The phenomena occurred over the Terra Cimmeria region centered at 45 degree south latitude. This area includes the tiger stripe array of magnetic fields emanating from concentrations of ferrous (iron) ore deposits on Mars; discovered by the Mars Global Surveyor magnetometer during low altitude aerobraking maneuvers at the beginning of the mission in 1998. Auroral events have been observed over this area from the interaction of the Martian magnetic field with streams of energetic particles streaming from the Sun. Sánchez-Lavega states that if these plumes are auroras, they would have to be over 1000 times brighter than those observed over the Earth.

Auroras photographed from The International Space Station. The distinct Manicouagan impact crater is seen in northern Canada. Terrestial aurora exist at altitudes of 100 km (60 miles) (Credit: NASA)
Auroras photographed from The International Space Station. The distinct Manicouagan impact crater is seen in northern Canada. Terrestial aurora exist at altitudes of 100 km (60 miles) (Credit: NASA)

The researchers also state that another problem with this scenario is the altitude. Auroras over Mars in this region have been observed up to 130 km, only half the height of the features. In the Earth’s field, aurora are confined to ionospheric altitudes – 100 km (60 miles). The Martian atmosphere at 200 km is exceedingly tenuous and the production of persistent and very bright aurora at such an altitude seems highly improbable.

The duration of the plumes – March 12th to 23rd, eleven days (after which observations of the area ended) and April 6th to 16th – is also a problem for this explanation. Auroral arcs on Earth are capable of persisting for hours. The Earth’s magnetic field functions like a capacitor storing charged particles from the Sun and some of these particles are discharged and produced the auroral oval and arcs. Over Mars, there is no equivalent capacitive storage of particles. Auroras over Mars are “WYSIWYG” – what you see is what you get – directly from the Sun. Concentrated solar high energy streams persisting for this long are unheard of.

The second explanation assessed by the astronomers is dust or ice crystals lofted to this high altitude. Again the altitude is the big issue. Martian dust storms will routinely lift dust to 60 km, still only one-third the height of the plumes. Martian dust devils will lift particles to 20 km. However, it is this second explanation involving ice crystals – Carbon Dioxide and Water – that the researchers give the most credence. In either instance, the particles must be concentrated and their reflectivity must account for the total brightness of the plumes. Ice crystals would be more easily transported to these heights, and also would be most highly reflective.

The paper also considered the shape of the plumes. The remarkable quality of modern amateur astrophotography cannot be overemphasized. Also the duration of the plumes was considered. By local noon and thereafter they were not observed. Again, the capabilities tendered by ground-based observations were unique and could not be duplicated by the present set of instruments orbiting Mars.

A Martian dust devil roughly 12 miles (20 kilometers) high was captured on Amazonis Planitia region of Mars, March 14, 2012 by the HiRISE camera on NASA's Mars Reconnaissance Orbiter. The plume is little more than three-quarters of a football field wide (70 yards, or 70 meters). (Image credit: NASA/JPL-Caltech/UA)
A Martian dust devil roughly 12 miles (20 kilometers) high was captured on Amazonis Planitia region of Mars, March 14, 2012 by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter. The plume is little more than three-quarters of a football field wide (70 yards, or 70 meters). (Image credit: NASA/JPL-Caltech/UA)

Still too many questions remain and the researchers state that “both explanations defy our present understanding of the Mars’ upper atmosphere.” By March 20th and 21st, the researchers summarized that at least 18 amateur astronomers observed the plume using from 20 to 40 cm telescopes (8 to 16 inch diameter) at wavelengths from blue to red. At Mars, the Mars Color Imager on MRO (MARCI) could not detect the event due to the 2 hour periodic scans that are compiled to make global images.

Of the many ground observations, the researchers utilized two sets from the venerable astrophotographers Don Parker and Daiman Peach. While observations and measurements were limited, the researchers analysis was exhaustive and included modeling assuming CO2, Water and dust particles. The researchers did find a Hubble observation from 1997 that compared favorably with the 2012 events and likewise modeled that event for comparison. However, Hubble results provided a single observation and the height estimate could not be narrowly constrained.

Explanation of these events in 2012 are left open-ended by the research paper. Additional observations are clearly necessary. With increased interest from amateurs and continued quality improvements plus the addition of the Maven spacecraft suite of instruments plus India’s Mars Orbiter mission, observations will eventually be gained and a Martian mystery solved to make way for yet another.

References:

An Extremely High-Altitude Plume seen at Mars’ Morning Terminator, Journal Nature, February 16, 2015

Amateur astronomer photographs curious cloud on Mars, AstroBob, March 22, 2012