Nobody Knows What These Mysterious Plumes are on Mars

In the Journal Nature, astronomers deliver an exhaustive study of limited albeit high quality ground-based observations of Mars and come up short. A Martian mystery remains. What caused the extremely high-altitude plumes on Mars? (Credit: Nature, Sánchez-Lavega, A. et al. Feb 16, 2015, Figures 1a, 2)

In March 2012, amateur astronomers began observing unusual clouds or plumes along the western limb of the red planet Mars. The plumes, in the southern hemisphere rose to over 200 kilometers altitude persisting for several days and then reappeared weeks later.

So a group of astronomers from Spain, the Netherlands, France, UK and USA have now reported their analysis of the phenomena. Their conclusions are inconclusive but they present two possible explanations.

Was dust lofted to extreme altitudes or ice crystals transported into space.? Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubbble)
Was dust lofted to extreme altitudes or ice crystals transported into space.? Hubble images show cloud formations (left) and the effects of a global dust storm on Mars (Credit: NASA/Hubbble)

Mars and mystery are synonymous. Among Martian mysteries, this one has persisted for three years. Our own planet, much more dynamic than Mars, continues to raise new questions and mysteries but Mars is a frozen desert. Frozen in time are features unchanged for billions of years.

An animated sequence of images taken by Wayne Jaeschke on March 20, 2012 showing the mystery plume over the western limb of the red planet (upper right). South is up in the photo. (Credit: W. Jaeschke)

In March 2012, the news of the observations caught the attention of Universe Today contributing writer Bob King. Reported on his March 22nd 2012 AstroBob blog page, the plumes or clouds were clear to see. The amateur observer, Wayne Jaeschke used his 14 inch telescope to capture still images which he stitched together into an animation to show the dynamics of the phenomena.

ModernDay_Astrophotographer2Now on February 16 of this year, a team of researchers led by Agustín Sánchez-Lavega of the University of the Basque Country in Bilbao, Spain, published their analysis in the journal Nature of the numerous observations, presenting two possible explanations. Their work is entitled: “An Extremely high-altitude plume seen at Mars morning terminator.”

Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL
Map from the Mars Global Surveyor of the current magnetic fields on Mars. Credit: NASA/JPL

The phenomena occurred over the Terra Cimmeria region centered at 45 degree south latitude. This area includes the tiger stripe array of magnetic fields emanating from concentrations of ferrous (iron) ore deposits on Mars; discovered by the Mars Global Surveyor magnetometer during low altitude aerobraking maneuvers at the beginning of the mission in 1998. Auroral events have been observed over this area from the interaction of the Martian magnetic field with streams of energetic particles streaming from the Sun. Sánchez-Lavega states that if these plumes are auroras, they would have to be over 1000 times brighter than those observed over the Earth.

Auroras photographed from The International Space Station. The distinct Manicouagan impact crater is seen in northern Canada. Terrestial aurora exist at altitudes of 100 km (60 miles) (Credit: NASA)
Auroras photographed from The International Space Station. The distinct Manicouagan impact crater is seen in northern Canada. Terrestial aurora exist at altitudes of 100 km (60 miles) (Credit: NASA)

The researchers also state that another problem with this scenario is the altitude. Auroras over Mars in this region have been observed up to 130 km, only half the height of the features. In the Earth’s field, aurora are confined to ionospheric altitudes – 100 km (60 miles). The Martian atmosphere at 200 km is exceedingly tenuous and the production of persistent and very bright aurora at such an altitude seems highly improbable.

The duration of the plumes – March 12th to 23rd, eleven days (after which observations of the area ended) and April 6th to 16th – is also a problem for this explanation. Auroral arcs on Earth are capable of persisting for hours. The Earth’s magnetic field functions like a capacitor storing charged particles from the Sun and some of these particles are discharged and produced the auroral oval and arcs. Over Mars, there is no equivalent capacitive storage of particles. Auroras over Mars are “WYSIWYG” – what you see is what you get – directly from the Sun. Concentrated solar high energy streams persisting for this long are unheard of.

The second explanation assessed by the astronomers is dust or ice crystals lofted to this high altitude. Again the altitude is the big issue. Martian dust storms will routinely lift dust to 60 km, still only one-third the height of the plumes. Martian dust devils will lift particles to 20 km. However, it is this second explanation involving ice crystals – Carbon Dioxide and Water – that the researchers give the most credence. In either instance, the particles must be concentrated and their reflectivity must account for the total brightness of the plumes. Ice crystals would be more easily transported to these heights, and also would be most highly reflective.

The paper also considered the shape of the plumes. The remarkable quality of modern amateur astrophotography cannot be overemphasized. Also the duration of the plumes was considered. By local noon and thereafter they were not observed. Again, the capabilities tendered by ground-based observations were unique and could not be duplicated by the present set of instruments orbiting Mars.

A Martian dust devil roughly 12 miles (20 kilometers) high was captured on Amazonis Planitia region of Mars, March 14, 2012 by the HiRISE camera on NASA's Mars Reconnaissance Orbiter. The plume is little more than three-quarters of a football field wide (70 yards, or 70 meters). (Image credit: NASA/JPL-Caltech/UA)
A Martian dust devil roughly 12 miles (20 kilometers) high was captured on Amazonis Planitia region of Mars, March 14, 2012 by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter. The plume is little more than three-quarters of a football field wide (70 yards, or 70 meters). (Image credit: NASA/JPL-Caltech/UA)

Still too many questions remain and the researchers state that “both explanations defy our present understanding of the Mars’ upper atmosphere.” By March 20th and 21st, the researchers summarized that at least 18 amateur astronomers observed the plume using from 20 to 40 cm telescopes (8 to 16 inch diameter) at wavelengths from blue to red. At Mars, the Mars Color Imager on MRO (MARCI) could not detect the event due to the 2 hour periodic scans that are compiled to make global images.

Of the many ground observations, the researchers utilized two sets from the venerable astrophotographers Don Parker and Daiman Peach. While observations and measurements were limited, the researchers analysis was exhaustive and included modeling assuming CO2, Water and dust particles. The researchers did find a Hubble observation from 1997 that compared favorably with the 2012 events and likewise modeled that event for comparison. However, Hubble results provided a single observation and the height estimate could not be narrowly constrained.

Explanation of these events in 2012 are left open-ended by the research paper. Additional observations are clearly necessary. With increased interest from amateurs and continued quality improvements plus the addition of the Maven spacecraft suite of instruments plus India’s Mars Orbiter mission, observations will eventually be gained and a Martian mystery solved to make way for yet another.

References:

An Extremely High-Altitude Plume seen at Mars’ Morning Terminator, Journal Nature, February 16, 2015

Amateur astronomer photographs curious cloud on Mars, AstroBob, March 22, 2012

Catch a ‘Conjunction Triple Play’ on February 20th as the Moon Meets Venus & Mars

The Moon passes Mars and Venus last month... this week's pass is much closer! (Photo by Author).

Fear not, the chill of late February. This Friday gives lovers of the sky a reason to brave the cold and look westward for a spectacular close triple conjunction of the planets Mars, Venus and the waxing crescent Moon.

This week’s New Moon is auspicious for several reasons.  We discussed the vagaries of the Black Moon of February 2015 last week, and the lunacy surrounding the proliferation of the perigee supermoon. And Happy ‘Year of the Goat’ as reckoned on the Chinese luni-solar calendar, as this week’s New Moon marks the start of the Chinese New Year on February 19th. Or do you say Ram or Sheep? Technical timing for the New Moon is on Wednesday, February 18th at 23:47 UT/6:47 PM EST, marking the start of lunation 1140. The next New Moon on March 20th sees the start of the first of two eclipse seasons for 2015, with a total solar eclipse for the high Arctic. More on that next month!
Continue reading “Catch a ‘Conjunction Triple Play’ on February 20th as the Moon Meets Venus & Mars”

By Jove: Jupiter Reaches Opposition on February 6th

Jupiter +Great Red Spot as seen on January 22nd 2015. Credit:

Did you see the brilliant Full Snow Moon rising last night? Then you might’ve also noticed a bright nearby ‘star’. Alas, that was no star, but the largest planet in our solar system, Jupiter. And it was no coincidence that the king of the gas giants is near the Full Moon this February, as Jupiter reaches opposition this Friday on February 6th at 18:00 Universal Time or 1:00 PM EST.

As the term implies, opposition simply means that an outer planet sits opposite to the Sun. Mercury and Venus can never reach opposition. Orbiting the Sun once every 11.9 years, oppositions for Jupiter occur once every 399 days, or roughly every 13 months. This means that only one opposition for Jupiter can happen per year max, and these events precess forward on the Gregorian calendar by about a month and move one zodiacal constellation eastward per year.

Starry Night.
The apparent path of Jupiter through Spring 2015. Created using Starry Night Education Software.

Through a telescope, Jupiter exhibits an ochre disk 40” in diameter striped with two main cloud belts. The northern equatorial belt seems permanent, while the southern equatorial belt is prone to pulling a ‘disappearing act’ every decade of so, as last occurred in 2010. The Great Red Spot is another prominent feature gracing the Jovian cloud tops, though its appeared salmon to brick-colored in recent years and seems to be shrinking.

Jupiter rotates once every 9.9 hours, fast enough that you can watch one full rotation in a single night.

Photo by author
Jupiter near opposition in 2014. Photo by author.

It’s also fascinating to watch the nightly dance of Jupiter’s four large moons Io, Europa, Ganymede and Callisto as they alternatively cast shadows on the Jovian cloud tops and disappear into its shadow. Near opposition, this shadow casting activity is nearly straight back as seen from our perspective.  Here is the tiny ‘mini-solar system’ that fascinated Galileo and further convinced him that the Earth isn’t the center of the cosmos. Jupiter has 67 moons in all, though only 4 are within range of modest sized telescopes… Even 5th place runner up Himalia is a challenge near the dazzling disk of Jove at +14th magnitude.

Also watch for a phenomenon known as the Seeliger or Opposition Effect, a sudden surge in brightness like a highway retro-reflector in the night.

Opposition 2015 finds Jupiter just across the Leo-Cancer border in the realm of the Crab. Jupiter crossed from Leo into Cancer on February 4th, and will head back into the constellation of the Lion on June 10th. Jupiter then spends the rest of 2015 in Leo and heads for another opposition next year on March 8th.

Jupiter will also make a dramatic pass just 24’ — less than the diameter of the Full Moon — from Regulus on August 11th, though both are only 11.5 degrees east of the Sun in the dusk sky. Jupiter also forms a 1 degree circle with Regulus, Mercury and Jupiter 14.5 degrees east of the Sun on August 7th.

Jupiter reaches a maximum declination north for 2015 on April 7th at 18 degrees above the celestial equator. We’re still in a favorable cycle of oppositions for Jupiter for northern hemisphere viewers, as the gas giant doesn’t plunge south of the equator until September 2016.

Looking farther ahead, Jupiter reaches east quadrature on May 4th, and sits 90 degrees elongation from the Sun as the planet and its moons cast their shadows far off to the side from our Earthly perspective. We’re still also in the midst of a plane crossing: February 5th is actually equinox season on Jupiter! This also means that there’s still a cycle of mutual eclipses and occultations of the Jovian moons in progress. One such complex ballet includes (moons) on the night of February 26th.

February 26th. Starry Night
The close grouping of Io, Callisto and Ganymede on the night of February 26th. Created using Starry Night Education software.

And yes, it is possible to see the Earth transit the disk of the Sun from Jove’s vantage point. This last occurred in 2014, and will next occur in 2020.

But wait, there’s more. Jupiter also makes a thrilling pass near Venus on July 1st, when the two sit just 0.4 degrees apart. We fully expect a spike in “what are those two bright stars?” queries right around that date, though hopefully, the conjunction won’t spark any regional conflicts.

Stellarium
Jupiter, Regulus and the rising waning gibbous Moon on the evening of February 4th. Credit: Stellarium.

Solar conjunction for Jupiter then occurs on August 26th, with the planet visible in the Solar Heliospheric Observatory’s (SOHO) LASCO C3 camera from August 16th to September 6th.

Emerging into the dawn sky, Jupiter then passes 0.4 degrees from Mars on October 17th and has another 1.1 degree tryst with Venus on October 26th.

Looking for Jupiter in the daytime near the waxing gibbous Moon. Credit: Stellarium.
Looking for Jupiter in the daytime near the waxing gibbous Moon. Credit: Stellarium.

Let the Jovian observing season begin!

-Wonder what a gang of rogue space clowns is doing at Jupiter? Read Dave Dickinson’s original tale Helium Party and find out!

Jupiter and the Full Snow Moon Come Together In a Beautiful Conjunction Tonight

A halo rings the bright moon and planet Jupiter (left of moon) Credit: Bob King

The Full Moon celebrates Jupiter’s coming opposition by accompanying the bright planet in a beautiful conjunction tonight.

Even last night Jupiter and the Moon were close enough to attract attention. Tonight they’ll be even more striking. Two reasons for that. The Moon is full this evening and will have crept within 41/2° of the planet. They’ll rise together and roll together all night long.

The Full Snow Moon will share the sky with Jupiter in Cancer tonight not far from the Sickle or head of Leo the Lion.  The map shows the scene around 8 o'clock local time. Source: Stellarium
The Full Snow Moon will share the sky with Jupiter in Cancer tonight not far from the Sickle or head of Leo the Lion. The map shows the scene around 8 o’clock local time. Source: Stellarium

February’s full moon is aptly named the Full Snow Moon as snowfall can be heavy this month. Just ask the folks in Chicago. The Cherokee Indians called it the “Bone Moon”, named for the tough times experienced by many Native Americans in mid-winter when food supplies ran low. With little left to eat people made use of everything including bones and bone marrow for soup.

Not only is the Full Moon directly opposite the Sun in the sky, rising around sunset and setting around sunrise, but in mid-winter they’re nearly on opposite ends of the celestial seesaw.

Jupiter, like tonight's Full Moon, will be directly opposite the Sun this Friday and in "full moon" phase. Credit: Bob King
Jupiter, like tonight’s Full Moon, will be directly opposite the Sun this Friday and in “full moon” phase. Because both planets are lined up on the same side of the Sun, Jupiter will also be at its closest to us for the year. Credit: Bob King

In early February the Sun is still near its lowest point in the sky (bottom of the seesaw) for the northern half of  the globe. And while daylight is steadily increasing as the Sun moves northward, darkness still has the upper hand this month. Full Moons like tonight’s lie 180° opposite the Sun, placing the Moon near the top of the seesaw. Come early August, the Sun will occupy the Moon’s spot and the Full Moon will have slid down to the Sun’s current position. Yin and Yang folks.

Now here’s the interesting thing. Jupiter will also be in “full moon” phase when it reaches opposition this Friday Feb. 6.  Take a look at the diagram. From our perspective on Earth, Jupiter and the Sun lie on opposite sides of our planet 180° apart. As the Sun sets Friday, Jupiter will rise in the east and remain visible all night until setting around sunrise exactly like a Full Moon.

So in a funny way, we have two Full Moons this week only one’s a planet.

Like me, a lot of you enjoy a good moonrise. That golden-orange globe, the crazy squished appearance at rising and the transition to the bright, white, beaming disk that throws enough light on a winter night to ski in the forest without a headlamp. All good reasons to be alive.

If Jupiter were moved to the Moon's distance it would span about 20 of sky or 40x the apparent diameter of the Full Moon. Credit: Roscosmos with additions by the author
If Jupiter were moved to the Moon’s distance it would span about 20 degrees or 40 times the apparent diameter of the Full Moon. Credit: Roscosmos with additions by the author

To find when the moon rises for your town, click over to this moonrise calculator. As you step outside tonight to get your required Moon and Jupiter-shine, consider the scene if we took neighboring Jupiter and placed it at the same distance as the Moon. A recent series of such scenes was released by the Russian Federal Space Agency (Roscosmos). I included one here and added the Moon for you to compare. Is Jupiter enormous or what?

iPhone Astrophotography: How to Take Amazing Images of the Sky with Your Smartphone Tonight!

All photos credit and copyright: Andrew Symes.

Got a smartphone and a telescope?

It’s a sight now common at many star parties. Frequently, you see folks roaming through the darkness, illuminated smartphone aimed skyward. Certainly, the wealth of free planetarium apps has done lots to kindle a renewed interest in the night sky.

Inevitably, after peering through the eyepiece of a telescope, the question then arises:

“Can I get a picture of that with my phone?”

The short answer is yes, with a little skill and patience.

Now simply aiming a camera at the eyepiece of a telescope — known as afocal astrophotography — and shooting without removing the camera lens and physically coupling it to the telescope is a tricky balancing act. Back in the olden days, the Moon and perhaps the brighter planets were the only bright target within bounds of afocal film photographers, and only then after a lengthy set of estimations to hit the correct focal length. The advent of digital cameras and ‘live preview’ means that you can now simply aim, shoot, and throw away or delete anything off center or out of focus. Digital ‘film’ is cheap, and most folks simply use trial and error to get the ‘keepers’. The Moon is an especially bright and easy target for beginners to practice on.

Moon
A gibbous Moon, an easy first pic!

Of course, your typical smartphone, like a webcam, has an imaging chip much smaller than a DSLR. This is why astrophotographers are often tempted to take out a second mortgage (“we don’t really need that second car, do we?” is a common spousal refrain) in pursuit of excellence. Another drawback is that through a smartphone, a planet may look like an overexposed blob. A simple but effective way to get around this is to affix a light reducing filter to the eyepiece. In fact, I’ve used a variable polarizer during live broadcasts of the Virtual Star Party to great effect.  And as with webcam imaging, smartphone astrophotographers now often use automated stacking programs to clean up images and tease out detail. Being an old timer, my faves are still K3CCD Tools and Registax, though many young guns out there now use DeepSkyStacker as well.

Telescope
Andrew Symes’ imaging setup.

Now, I’ll admit, I’m an ‘Android guy,’ and I have put most of my efforts over the years into planetary imaging with a homemade webcam. We therefore sought out in-the-field expertise from someone on the forefront of iPhone astrophotography. Andrew Symes has been taking images of the solar system and beyond with his iPhone coupled to his Celestron NexStar 8” SE telescope for years. He also has one of the few handles on Twitter that we’re envious of, @FailedProtostar. He also ventures out into the chilly nights frequent to his native of Ottawa, Canada to practice his craft, as he observes in temperatures that would drop a Tauntaun.

We caught up with Andrew recently to ask him about some tips of the trade.

Sun
An ‘iPhone Sun’ shot in hydrogen alpha through a Coronado PST.

Universe Today: I know from doing webcam photography that acquiring, centering and focusing are often more than half the battle. Any tips for accomplishing these?

Andrew: Acquiring, centering, and focusing the objects I’m photographing is definitely the big challenge! To speed and simplify the process, I have a dedicated eyepiece that I use in association with my phone and adapter. Before even heading outside, I attach the adapter to this eyepiece, insert my phone, and hold the unit up to a light source to see if the camera lens is properly aligned with the eyepiece. It usually takes a bit of fiddling to get things set properly because if the adapter and eyepiece are not perfectly aligned, nothing will show up on the camera screen. It’s better to get that process out of the way in a lit environment than outside in the dark. I then set that unit aside, and use a separate “adapter-less” zoom eyepiece to locate and center the object in the telescope. Once I’ve acquired the object and am successfully tracking it, I remove my zoom eyepiece and drop in the eyepiece/adapter/phone combo. At that point, the object is usually visible on screen but out of focus since the focus required for the iPhone is different from what works for my eyes! To ensure proper focus, I display the object on my phone’s screen using a live video app called FiLMiC Pro and adjust the focus until it is sharp. I use that app because it has a digital zoom function that lets me get a closer look at the object than the standard iPhone video camera view. Only once I’m confident that I’ve achieved good focus and am tracking the object properly, will I start to record video or shoot individual frames.

A comparison
A comparison of the first image of the Orion Nebula (M42) shot in 1880 (left) with a modern iPhone image.

Universe Today: A question I always like to ask everyone… what was your biggest mistake? Are there any pitfalls to avoid?

Andrew: There are a few pitfalls to avoid when doing iPhone astrophotography. In the past, I would attach the adapter outside while the eyepiece was in the telescope but this caused a number of problems. Often, I would accidentally bump the object out of view while attaching and adjusting the adapter and have to align everything all over again. The weather is also often cold here, and it’s VERY difficult to attach the adapter properly with gloves on, so I would either get really cold hands or spend a lot of unnecessary time fumbling with the adapter with gloved hands. For those reasons, I now prepare the eyepiece/adapter/phone unit indoors in advance as described above. I also now make sure that my iPhone is fully charged before heading outdoors as I’ve found that the iPhone battery drains very quickly when the camera is running constantly — especially in cold weather. Even with an almost-full battery, there are times here in winter when the phone will simply shut down due to the low temperature so I make sure to only start capturing photos/videos once I’m completely confident in my setup.

Lovejoy
Yes, that’s Comet C/2014 Q2 Lovejoy shot with an iPhone!

Universe Today: You’re really pushing the envelope by doing deep sky astro-pics with an iPhone … anything else that you’re experimenting with or working on?

Andrew: My main focus is definitely still on iPhone astrophotography because I like the quick and “light” setup. I don’t need to bring a laptop outside and don’t need equipment that I wouldn’t normally have on me anyway (other than the adapter itself.) So, I want to keep pushing the envelope with what I can capture using the phone and my goal is now is to see how far I can go with deep-sky objects. I’d really like to add the Ring and Dumbbell Nebulae to my portfolio, for example, and see if it’s possible to grab even fainter ones. There are also some non-deep sky targets I’d like to try. I haven’t been successful at capturing a telescopic photo of the ISS, and would love to see if I can catch it transiting the Sun or Moon with my phone. I also still need to capture Uranus and Neptune to round out a solar system collage I put together in 2014!

Lastly, I’m continually experimenting with photo apps to see which are best at capturing and/or processing telescopic images, and have just started using both an iPhone 4S and iPhone 6 to take photos and video. Surprisingly, I still prefer the 4S for planetary imaging as I haven’t been able to properly capture the true colors of planets with the iPhone 6 yet. The 6 has better camera resolution but seems to be adjusting the exposure of small, faint objects like planets differently than the 4S, so I need to change my routine and techniques to compensate. The methods I’ve become accustomed to using with the 4S don’t seem to translate directly to the 6 so I have some learning yet to do!

M13
An iPhone capture of Messier 13.

Amazing stuff, for sure. And to think, we were all gas-hypering film and using absurdly long focal lengths to get blurry planetary images just a few decades ago!

-Check out more of Andrew’s images, as well as read more about how he does it.

-Got a pic, shot with a smartphone or otherwise? Send ‘em in to Universe Today!

Luna vs. the Hyades! The 1st of 13 Occultations of Aldebaran Set For January 29th

Credit:

The cosmos is continually in motion.

Be it atoms, stars or snowflakes from the latest nor’easter pounding the New England seaboard, anything worth studying involves movement. And as skies and snowbound roads clear, this Wednesday and Thursday evening will give us a reason to brave the January cold, as the waxing gibbous Moon pierces the Hyades star cluster to graze past the bright star Aldebaran.

During Thursday night’s passage, the Moon will be 78% illuminated. In a sort ‘cosmos mimics controversy’ irony, the gibbous Moon is doing its best to mimic a sky bound ‘deflategate’ football just in time for Superbowl XLIX this weekend.

Stellarium
The motion of the Moon this week across the Hyades. Credit: Stellarium.

But the January 29th event also marks the first occultation of Aldebaran for 2015.

Fun fact: At magnitude +0.8, Aldebaran is the only star brighter than +1st magnitude north of the celestial equator that the Moon can currently occult. Regulus, the runner up, shines at magnitude +1.4.  Two other second magnitude stars — Antares and Spica — lie along the Moon’s path on occasion, and up until the 2nd century BC, it was possible for the Moon to occult Pollux in the constellation Gemini as well.

There are 13 occultations of Aldebaran in 2015, and the Moon occults the star 49 times overall until the last event in the current cycle on September 3rd, 2018. Aldebaran is also occulted by the Moon more often in the current 2010-2020 decade than any other bright star. You can even spy Aldebaran near the daytime Moon with binoculars, as we did back in 1996 from North Pole, Alaska.

Credit: Occult
Maps for the 13 occultations of Aldebaran  by the Moon in 2015, click to enlarge. solid lines denote regions were the occultation occurs under dark skies. Credit: Occult 4.0.

Of course, the January 29th event is an occultation only for the high Arctic, with only a scattering of villages and distant early warning stations along the northern Nunavut coast welcoming the sequence of 2015 occultations of the bright star.

The rest of us will see a close photogenic pass, as the Moon makes an end run through the Hyades star cluster every 27.3 day sidereal lunar month in 2015. The Moon will thus occult several members of the Hyades on each pass. Our best bet for North America is the occultation of Aldebaran on November 26th, though the Moon will be just 13 hours past Full.

68 Tauri. Credit: Occult 4.0
The occultation of 68 Tauri (a member of the Hyades) for January 29th. Credit: Occult 4.0.

Why doesn’t the path of the Moon just stay put with respect to the sky? Because the orbit of our Moon is fixed at an inclination of 5.1 degrees not with respect to our equator, but to the plane of the ecliptic. This means that the Moon’s orbit is in motion as well, and can wander anywhere from declination 28.6 degrees north to south as it cycles from a shallow to steep path every 18.6 years. We’re actually in a shallow year in 2015 (known as a minor lunar standstill) after which the apparent path of the Moon through the sky begins to widen again until April 2025.

An occultation is celestial motion that you can see in real time as a star or planet is photobomb’d by the onrushing Moon like a January snowplow… but those background stars are in motion as well.

The Hyades themselves — along with our own solar system — are moving around the galactic center. The nearest open cluster to us at 153 light years distant, the Hyades provided a unique object of study for 19th century astronomers. Astronomer Lewis Boss of the Dudley observatory spent several decades studying the proper motion — the apparent motion that a star seems to be moving across the sky from our solar system-bound perspective, measured in arc seconds — of the Hyades, and found the entire group was converging on a point in the constellation Orion near 6 hours 7’ right ascension and +7 degrees declination.

Starry Night
The imaginary convergent point of the Hyades in the night sky. Credit: Starry Night Education software.

Of course, this motion is relative and demonstrates a changing perspective, as the Hyades recedes from our solar system like a defensive line rushing to sack a quarterback.

OK, enough with the sports similes. The Hyades are so close that the actual Hyades Stream — often referred to as the Hyades Moving Group — is actually strewn across the constellations Orion, Taurus and Aries and more.

Some stars, such as 20 Arietis in the adjacent constellation Aries and Iota Horologii in the southern hemisphere may actually members as well. There’s always a bit of ongoing controversy when it comes to actual moving group membership, which is usually pegged by determining proper motion, coupled with the age and metallicity of prospective stars. Growing up in the Milky Way galaxy, our Sun was once a member of some unnamed ancient open cluster that has since long dispersed, like the Hyades are in the process of doing now.

Photo by author
The asterism of the Hyades and the ‘eye of the Bull.’ Photo by author.

The Hyades contains hundreds of stars and ironically, Aldebaran is not a member of the cluster, but is merely 65 light years away from us in the foreground. The V-shaped asterism of the Hyades gives the Head of Taurus the Bull its distinctive shape. The Hyades are named after the rain nymph daughters of Atlas from Greek mythology, whose half daughters the Pleiades also adorn the nearby sky.

And as an added bonus, don’t miss comet C/2014 Q2 Lovejoy crossing the constellation Triangulum, also nearby. Q2 Lovejoy reaches perihelion this week on January 30th, and although it’s completing with the evening Moon, it’s still holding out at a respectable magnitude +4.5.

Credit:
Comet Q2 Lovejoy skirts by  the Hyades and the Pleiades. Credit and Copyright: John Chumack.

All reasons to get out these chilly January evenings and ponder a hurried universe continually in motion, both fast and slow.

-Check out Q2 Lovejoy on January 30th courtesy of the Virtual Telescope project.

 

See a Rare Comet-Moon Conjunction Tonight

Tonight (Friday, Jan. 23rd) the moon will pass only about 1° (two moon diameters) south of Comet 15P/Finlay as seen from the Americas. This map shows the view from the upper Midwest at 7 p.m. Two 6th magnitude stars in Pisces are labelled. Created with Chris Marriott's SkyMap software

I want to alert you to a rather unusual event occurring this evening.

Many of you already know about the triple shadow transit of Jupiter’s moons Io, Europa and Callisto. That’s scheduled for late tonight.

Earlier, around nightfall, the crescent moon will lie 1° or less to the south-southwest of comet 15P/Finlay. No doubt lunar glare will hamper the view some, but what a fun opportunity to use the moon to find a comet.

Finlay underwent a flare in brightness last week when it became easily visible in binoculars.

The farther south you live, the closer the moon will approach the comet tonight. This diagram shows the view from Tucson, Ariz. at nightfall when less than 1/2° will separate the two. At about the same time (~7 p.m. local time) the moon will occult or cover up a 6th magnitude star (seen poking out from its left side). Source: SkyMap
The farther south you live, the closer the moon will approach the comet tonight. This diagram shows the view from Tucson, Ariz. at nightfall when less than 1/2° will separate the two. At about the same time (~7 p.m. local time) the moon will occult or cover up a 6th magnitude star (seen poking out from its left side). Source: SkyMap

Though a crescent moon isn’t what you’d call a glare bomb, I can’t predict for certain whether you’ll still see the comet in binoculars tonight or need a small telescope instead. Most likely a scope. Finlay has faded some since its outburst and now glows around magnitude +8.5.

You can try with a 10×50 or larger glass, and if you don’t succeed, whip out your telescope; a 4.5-inch or larger instrument should handle the job.

Just point it at the moon at star-hop a little to the north-northeast using the map until you see a fuzzy spot with a brighter center. That’s your comet. The tail won’t be visible unless you’re using more firepower, something closer to 10-inches.

Comet Finlay in outburst on January 20, 2015 shows a beautiful parabolic-shaped head. Credit: Joseph Brimacombe
Comet Finlay in outburst on January 20, 2015 showing a beautiful parabolic-shaped head. Credit: Joseph Brimacombe

By the way, the father south you live, the closer the moon approaches Finlay. From the far southern U.S. they’ll be just 1/2° apart. Keep going south and parts of Central and South America will actually see the earth-lit edge of moon approach and then occult the comet from view!

UPDATE: Although light clouds marred the view I had difficulty finding the comet this evening in my 10-inch scope. It’s possible it’s further faded or my conditions weren’t optimal or both. No luck BTW in binoculars.

Rare Triple Transit! There’ll be 3 Moon Shadows on Jupiter on January 24th, 2015

Credit:

Play the skywatching game long enough, and anything can happen.

Well, nearly anything. One of the more unique clockwork events in our solar system occurs this weekend, when shadows cast by three of Jupiter’s moons can be seen transiting its lofty cloud tops… simultaneously.

How rare is such an event? Well, Jean Meeus calculates 31 triple events involving moons or their shadows occurring over the 60 year span from 1981 to 2040.

But not all are as favorably placed as this weekend’s event. First, Jupiter heads towards opposition just next month. And of the aforementioned 31 events, only 9 are triple shadow transits. Miss this weekend’s event, and you’ll have to wait until March 20th, 2032 for the next triple shadow transit to occur.

Hubble spies a triple shadow transit  on March 28th, 2004 . Credit: NASA/JPL/Arizona.
Hubble spies a triple shadow transit on March 28th, 2004 . Credit: NASA/JPL/Arizona.

Of course, double shadow transits are much more common throughout the year, and we included some of the best for North America and Europe in 2015 in our 2015 roundup.

The key times when all three shadows can be seen crossing Jupiter’s 45” wide disk are on the morning of Saturday, January 24th starting at 6:26 Universal Time (UT) as Europa’s shadow ingresses into view, until 6:54 UT when Io’s shadow egresses out of sight. This converts to 1:26 AM EST to 1:54 AM EST. The span of ‘triplicate shadows’ only covers a period of slightly less than 30 minutes, but the action always unfolds fast in the Jovian system with the planet’s 10 hour rotation period.

The view at 6:41 UT/1:41 AM EST. Credit: Created using Starry Night Education software.
The view on January 24th at 6:41 UT/1:41 AM EST. Credit: Created using Starry Night Education software.

Unfortunately, the Great Red Spot is predicted to be just out of view when the triple transit occurs, as it crosses Jupiter’s central meridian over three hours later at 10:28 UT.

The moons involved in this weekend’s event are Io, Callisto and Europa. Now, I know what you’re thinking. Seeing three shadows at once is pretty neat, but can you ever see four?

The short answer is no, and the reason has to do with orbital resonance.

The orbital resonance of the three innermost Galilean moons. (Credit: Wikimedia Commons).
The orbital resonance of the three innermost Galilean moons. (Credit: Wikimedia Commons).

The three innermost Galilean moons of Jupiter (Io, Europa and Ganymede) are locked in a 4:2:1 resonance. Unfortunately, this resonance assures that you’ll always see two of the innermost three crossing the disk of Jupiter, but never all three at once. Either Europa or Ganymede is nearly always the “odd moon out.”

To complete a ‘triple play,’ outermost Callisto must enter the picture. Trouble is, Callisto is the only Galilean moon that can ‘miss’ Jupiter’s disk from our line of sight. We’re lucky to be in an ongoing season of Callisto transits in 2015, a period that ends in July 2016.

Perhaps, on some far off day, a space tourism agency will offer tours to that imaginary vantage point on the surface of one of Jupiter’s moons such as Callisto to watch a triple transit occur from close up. Sign me up!

Jupiter currently rises in late January around 5:30 PM local, and sets after sunrise. It is also well placed for northern hemisphere observers in Leo at a declination 16 degrees north . This weekend’s event favors Europe towards local sunrise and ‘Jupiter-set,’ and finds the gas giant world well-placed high in the sky for all of North America in the early morning hours of the 24th.

2AM local Credit: Stellarium.
Jupiter rides high to the south at 1:45 AM EST for the US East Coast. Credit: Stellarium.

Look closely. Do the shadows of the individual moons appear different to you at the eyepiece? It’s interesting to note during a multiple transit that not all Jovian moon shadows are ‘created equal’. Distant Callisto casts a shadow that’s broad, with a ragged gray and diffuse rim, while the shadow of innermost Io appears as an inky black punch-hole dot. If you didn’t know better, you’d think those alien monoliths were busy consuming Jupiter in a scene straight out of the movie 2010.  Try sketching multiple shadow transits and you’ll soon find that you can actually identify which moon is casting a shadow just from its appearance alone.

The orientation of Earth's nighttime shadow at mid-triple transit. Credit: Created using Orbitron.
The orientation of Earth’s nighttime shadow at mid-triple transit. Credit: Created using Orbitron.

Other mysteries of the Galilean moons persist as well. Why did late 19th century observers describe them as egg-shaped? Can visual observers tease out such elusive phenomena as eruptions on Io by measuring its anomalous brightening? I still think it’s amazing that webcam imagers can now actually pry out surface detail from the Galilean moons!

Photo by author.
The 2004 triple shadow transit. Photo by author.

Observing and imaging a shadow transit is easy using a homemade planetary webcam. We’d love to see someone produce a high quality animation of the upcoming triple shadow transit. I know that such high tech processing abilities — to include field de-rotation and convolution mapping of the Jovian sphere — are indeed out there… its breathtaking to imagine just how quickly the fledgling field of ad hoc planetary webcam imaging has changed in just 10 years.

The moons and Jupiter itself also cast shadows off to one side of the planet or the other depending on our current vantage point. We call the point when Jupiter sits 90 degrees east or west of the Sun quadrature, and the point when it rises and sets opposite to the Sun is known as opposition.  Opposition for Jupiter is coming right up for 2015 on February 6th. During opposition, Jupiter and its moons cast their respective shadows nearly straight back.

Did you know: the speed of light was first deduced by Danish astronomer Ole Rømer in 1671 using the discrepancy he noted while predicting phenomena of the Galilean moons at quadrature versus opposition. There were also early ideas to use the positions of the Galilean moons to tell time at sea, but it turned out to be hard enough to see the moons and their shadows with a small telescope based on land, let alone from the pitching deck of a ship in the middle of the ocean.

And speaking of mutual events, we’re still in the midst of a season where it’s possible to see the moons of Jupiter eclipse and occult one another. Check out the USNO’s table for a complete list of events, coming to a sky near you.

And let’s not forget that NASA’s Juno spacecraft is headed towards Jupiter as well., Juno is set to enter a wide swooping orbit around the largest planet in the solar system in July 2016.

Now is a great time to get out and explore Jove… don’t miss this weekend’s triple shadow transit!

Read Dave Dickinson’s sci-fi tale of astronomical eclipse tourism through time and space titled Exeligmos.

Where to Look for Comet Lovejoy Until it Fades from Sight

Viewing Comet Lovejoy from dark skies in Portugal. Credit: Miguel Claro

I hate to admit it, but our dear comet is fading. Only a little though. As Comet Q2 Lovejoy wends its way from Earth toward perihelion and beyond, it will slowly dim and diminish. With an orbital period of approximately 8,000 years it has a long journey ahead. Down here on Earth, we continue to look up every clear night hoping for yet another look at what’s been a wonderful comet. 

Comet Lovejoy and the Pleiades on January 19, 2015. Credit: Joseph Brimacombe
Comet Lovejoy and the Pleiades on January 19, 2015. Credit: Joseph Brimacombe

Despite its inevitable departure I encourage you to continue following Comet Lovejoy. It’s not often a comet vaults to naked eye brightness, and this one should remain visible without optical aid through mid-February.

Like a human celebrity, Lovejoy’s been the focus of attention from beginners and professionals alike using everything from cheap cellphone cameras to high-end telescopes to capture its magic. Who can get enough of that wildly fluctuating ion tail and greeny-blue coma?

Comet Q2 Lovejoy continues tracking north-northwest now through March. This chart shows the comet's position at 7 p.m. (CST) every 5 nights through March 5. Stars shown to magnitude +6. Created with Chris Marriott's SkyMap software
Comet Q2 Lovejoy continues tracking north-northwest now through March. This chart shows the comet’s position at 7 p.m. (CST) every 5 nights through March 5. Stars shown to magnitude +6. Click to enlarge. Created with Chris Marriott’s SkyMap software

The comet continues moving northward all winter long, sliding through  the diminutive constellations Aries and Triangulum, across Andromeda and into Cassiopeia, fading as she goes. You can use the map above and binoculars to help you follow it. I like to create lines and triangles using bright stars and deep sky objects to direct me to the comet.

Deep image of Comet Lovejoy taken with a Canon 6D with 50mm f/1.4 lens at f/2. 10  exposure of 30 secs at ISO3200 stacked. The tail, though faint, extends for possibly 18 degrees in this amazing image. Credit: Ian Sharp
Deep image of Comet Lovejoy taken with a Canon 6D with 50mm f/1.4 lens at f/2. Ten exposures of 30 secs at ISO3200 were stacked to create the final photo. The tail extends for possibly 18 degrees in this amazing image. The Pleiades are at top right; Hyades at bottom center. Credit: Ian Sharp

Tonight for instance, Lovejoy one fist held at arm’s length due west of the Pleiades. On the 29th, it’s on a line from Beta Persei (Algol) to Beta Trianguli. On February 3rd, it pulls right up alongside the colorful double star Gamma Andromedae, also called Almach, and on the 8th forms one of the apexes of an equilateral triangle with the two Betas. You get the idea.

The tail rays that show so clearly in photographs as in this image made on January 16th require dark skies and 8-inch or larger telescope to see visually. They're very low contrast. Credit: Greg Redfern
The tail rays that show so clearly in photographs as in this image made on January 16th require dark skies and an 8-inch or larger telescope to see visually. They’re very low contrast. Credit: Greg Redfern

The waxing moon will interfere with viewing beginning next weekend and render the comet nil with the naked eye, you’ll still be able to track it in binoculars during that time. Dark skies return around Feb. 7.

Comet Lovejoy captured from the Dark Sky Alqueva Reserve, Portugal on Jan. 11th by Miguel Claro

Delicate streamers show in Comet Lovejoy's ion tail in this photo from January 13th. Credit: Bernhard Hubl
Delicate streamers show in Comet Lovejoy’s ion tail in this photo from January 13th. Credit: Bernhard Hubl

Comet Finlay Surprise Outburst, Visible in Binoculars … again!

Comet Finlay in outburst on the evening (CST) of January 16th. Credit: Michael Mattiazzo

Lost sleep at night, fingers tapping on the keyboard by day. Darn comets are keeping me busy! But of course that’s a good problem. Comet 15P/Finlay, which had been languishing in the western sky at dusk at magnitude +10, has suddenly come to life … for a second time.

Two nights ago, Australian comet observer Michael Mattiazzo took a routine picture of Finlay and discovered it at magnitude +8. Today it’s a magnitude brighter and now joins Comet Lovejoy as the second binocular comet of 2015. Comet-wise, we’ve gone from zero to 60 and the new year’s fewer than 3 weeks old!

Comet 15P/Finlay tonight through Feb. 1. Positions shown for 7 p.m (CST) and stars depicted to magnitude +8. Tonight the comet will be right next to a 6th mag. star in Aquarius.
Comet 15P/Finlay tonight through Feb. 1. Positions shown for 7 p.m (CST) and stars depicted to magnitude +8. Tonight the comet will be right next to a 6th mag. star in Aquarius low in the southwestern sky at nightfall. Mars and Neptune’s position are for Jan. 17th. Click to enlarge. Source: Chris Marriott’s SkyMap software

Comet Finlay’s threw its first tantrum last December when it reached binocular visibility (faintly) shortly before Christmas.  Discovered by William Henry Finlay from South Africa on September 26, 1886, the comet circles the Sun every 6.5 years. This time around it reached perihelion on December 27th and spent many nights near the planet Mars low in the western sky. Until the new outburst, the comet had returned to its predicted brightness (~10 magnitude) and departed company with the Red Planet.

Even though photographed under poor conditions on Jan. 17th, Alfons Diepvens' image of Comet Finlay's coma and nuclear region reveals interesting details. Credit: Alfons Diepvens
Even though photographed under poor conditions on Jan. 17th, Belgian amateur astronomer Alfons Diepvens’ image of Comet Finlay’s coma and nuclear region reveals interesting details. Credit: Alfons Diepvens

It’s still low in the west, though not quite so much as in December, in the constellation Aquarius. With an orbit inclined only 6.8° to the ecliptic or plane of the Solar System, you’ll find it chugging eastward across the zodiac at the rate of 1° per night. The best time to view the comet is at the end of evening twilight at nightfall when it’s highest —  20° to 25° above the southwestern horizon.

Comet Lovejoy southwest of the beautiful Pleaides star cluster on January 15th. Credit: Bob King
Comet Lovejoy seen in tandem with the beautiful Pleaides star cluster on January 15th. Click for a finder chart. Credit: Bob King

Right now it’s not far from Lambda Aquarii and will soon glide just south of the well-known asterism called the “Circlet” in Pisces. Currently between 7th and 8th magnitude and showing a bright, condensed center, Comet Finlay is easily visible in 10×50 binoculars. Catch it while you can. These outbursts often fade fairly quickly. While we don’t know its exact cause, what likely happened is that a new fissure opened up on the comet’s surface, exposing fresh ice to sunlight. Rapid vaporization of the new material may be behind the eruption.

While Comet Q2 Lovejoy’s been getting all the attention, Finlay’s back in the game and making mid-January nights all that more enjoyable for sky gazing. Lovejoy is presently passing near the Pleiades star cluster in Taurus. This coming week will be the last dark one before the Moon starts to spoil the view. I hope you’re able to spot both at the next opportunity.

5-degree binocular view of Mars as it approaches Neptune in the next few nights. They'll be in close conjunction on the 19th. Mars shines at about 1st magnitude, Neptune at 8. Stars shown to mag. 9. Source: Chris Marriott's SkyMap software
5-degree binocular view of Mars as it approaches Neptune in the next few nights. They’ll be in close conjunction on the 19th. Mars shines at about 1st magnitude, Neptune at 8. Stars shown to mag. 9. Source: Chris Marriott’s SkyMap software

While we’re on the topic, take another look at the finder chart and you’ll see that Mars lies very near Neptune. The two are presently about 2° apart but on Monday Jan. 19th at dusk they’ll be separated by just 12 arc minutes or 1/5 of a degree and easily fit into the same medium-power view of a telescope. Pretty cool – and well worth seeing along with those comets!