Found! Sun’s ‘Sibling’ Likely Formed From Same Gas Cloud, Astronomers Say

Location chart for HD 162826, considered a sibling to the sun. Credit: Ivan Ramirez/Tim Jones/McDonald Observatory

Peer about 110 light-years away from our solar system, and you might catch a glimpse of how our own neighborhood came together. The recent discovery that HD 162826 — a star bright enough to be seen in binoculars — could be a “sibling” of our sun could shed more light on the solar system’s formation, astronomers said.

“We want to know where we were born,” stated Ivan Ramirez, an astronomer at the University of Texas at Austin who led the research. “If we can figure out in what part of the galaxy the sun formed, we can constrain conditions on the early solar system. That could help us understand why we are here.”

The star is called a “sibling” because it could have formed from the same gas and dust cloud in which our own solar system was formed, some 4.5 billion years ago. Since life is in our own solar system, a natural next question is whether HD 162826 could also have life-bearing planets. There is a tiny reason for “yes”, the astronomers said.

Basically, the argument goes that when the stars were first born and close together, chunks of matter could have been knocked off protoplanets and travelled between the two solar systems. There’s a small chance that this could have brought primitive life to Earth, although of course there’s a long way to go before that could even be proved.

This artist's conception shows a newly formed star surrounded by a swirling protoplanetary disk of dust and gas. Credit: University of Copenhagen/Lars Buchhave
This artist’s conception shows a newly formed star surrounded by a swirling protoplanetary disk of dust and gas. Credit: University of Copenhagen/Lars Buchhave

That said, no planets have yet been found around HD 162826. (The star was known before, but just recently identified as a “sibling.”) Separate studies by the University of Texas and University of South Wales said there are likely no “hot Jupiters” (Jupiter-sized planets close to the star) nor Jupiter-sized planet in the solar system even further away. Smaller terrestrial planets, however, would have escaped the notice of this particular study.

The star is about 15 percent more massive than our sun and was selected from a list of 30 candidates based on its chemistry and orbit. There could also be more siblings out there to find, with one potential big help coming soon: the Gaia survey from the European Space Agency launched in December, which will chart the Milky Way in three dimensions.

Because Gaia will showcase the distance and motions of a billion stars, this will allow astronomers to look for these “solar siblings” as far in as the galaxy’s center, increasing the number of stars studied by a factor of 10,000. The exciting thing, the astronomers add, is with enough stars pinpointed as siblings to our sun, their orbits can then be traced back to the origin point — showing the location in the cosmos where the sun first came to be.

More information will be available in the June 1 issue of the Astrophysical Journal. A preprint version is available on Arxiv.

Source: University of Texas at Austin

Most Powerful Solar Telescope on Earth Rises Atop Hawaiian Volcano

Construction on the new observatory on the summit of the Haleakala Crater on Maui, Hawaii this February. Credit: National Solar Observatory

Rising 10,000 feet above the sunburned faces of 2.2 million tourists a year, the largest solar telescope on the planet is under construction atop Haleakala Crater in Maui, Hawaii. Never mind all those admonitions about never staring at the sun. Astronomers can’t wait for the chance. 

Named for the late Senator Daniel Inouye, the Daniel K. Inouye Solar Telescope or DKIST will be the world’s premier ground-based solar observatory in the world. With its 4-meter (157.5-inch) primary mirror, DKIST is capable of distinguishing features down to 0.03 arc seconds or just 20-70 km (12-44 miles) wide at the sun’s surface. To achieve such fantastic resolutions the telescope will employ the latest adaptive optics technology to cancel the blurring effects of the atmosphere using a computer-controlled deformable mirror. 

capture the evolution of sunspot fine structure and finally understand its physical origin. (Image from the NSO Dunn Solar Telescope, courtesy of Thomas Rimmele.)
Extreme closeup of a sunspot showing the dark, central umbra (top) feathery penumbra and individual granules or hot gas. DKIST will capture the evolution of sunspot fine structure and finally understand its physical origin. Credit: NSO Dunn Solar Telescope, courtesy of Thomas Rimmele

Consider that the smallest features visible in large amateur telescopes are solar granules, columns of hot gas rising up from the sun’s interior. Each spans about 930 miles (1,500 km) and together give the sun’s surface the texture of finely-etched glass. DKIST will resolve features more than 60 times smaller. The current largest sun-dedicated telescope is the McMath-Pierce Solar Telescope , which has kept a steady eye on the home star with its 63-inch (1.6-meter) mirror since 1962 from Kitt Peak, Arizona.

DKIST cutaway showing light entering the top of the dome and gathered by the primary mirror, which is then reflected to a secondary mirror, which reflects the light to a science gallery below. Inset shows the light path in greater detail including the deformable mirror that will cancel the blurring effects of bad atmospheric seeing. Credit: L. Phelps
Observatory cutaway showing light entering the top of the dome and gathered by the primary mirror, which is reflected to a secondary mirror and from there through a series of smaller mirrors to the science gallery below. Inset shows the light path in greater detail including the deformable mirror that will cancel the blurring effects of atmospheric turbulence. Notice that the secondary mirror is offset with no obstructions between it and the primary mirror that would otherwise lessen the telescope’s ability to resolve fine detail. Credit: L. Phelps with enhancements by the author

DKIST will focus on three key areas: What is the nature of solar magnetism; how does that magnetism control our star; and how can we model and predict its changing outputs that affect the Earth? Astronomers hope to clearly resolve  solar flux tubes – magnetic field concentrations near the sun’s surface – thought to be the building blocks of magnetic structures in the atmosphere.

We still lack a complete understanding of how energy in the sun’s turbulent, churning interior is transferred to magnetic fields. Earth’s magnetic field is about 0.5 gauss at the surface. Fields within sunspots can range from 1,500 to 3,000 gauss – about the strength of a bar magnet but across a region several times larger than Earth.

A test of the Visible Broadband Imager (VBI) interference filter that will be used with DKIST
A test of the DKIST Visible Broadband Imager interference filter in 2012 shows material flowing from a sunspot’s outer penumbra into the surrounding solar gases. Credit: NSO

A better understanding of small scale magnetic structures, too tiny to be resolved with current telescopes, will help make sense of broader phenomena like sunspot formation, the heating of the solar corona and why the sun’s energy output varies. The solar constant, the amount of radiation we receive from the sun, increases with an increase in solar activity like spots and flares. Since the smallest magnetic elements are the biggest contributors to this increase, DKIST will be the first telescope able to image and study these structures directly, helping astronomers understand how variations in the sun’s output can lead to climate changes.

Left - Solar photosphere showing bright structures between granules  associated with magnetic fields. RIght - Computer model of a magnetic flux tube rising from the convective  zone into the photosphere. These are believed to be an important  conduit for energy flowing from the solar interior to the hot outer  atmosphere. Flux tubes are below the limit of resolution  in current telescopes. Credit: Paxman, Seldin, Keller / O. Steiner
Left – Solar photosphere showing bright structures between granules associated with magnetic fields bubbling up from below. Right – Computer model of a magnetic flux tube rising from the convective
zone into the photosphere. Flux tubes are believed to be an important
conduit for energy flowing from the solar interior to the hot outer
atmosphere but are below the limit of resolution
in current telescopes. Credit: Paxman, Seldin, Keller / O. Steiner

DKIST will do its work on rapid times scales, taking images once every 3 seconds. For comparison, NASA’s orbiting Solar Dynamics Observatory takes pictures in 8 different wavelengths every 10 seconds, STEREO one image every 3 minutes and SOHO (Solar Heliospheric Observatory) once every 12 minutes. The speedy shooting ability will help DKIST resolve rapidly evolving structures on the sun’s surface and lower atmosphere in a multitude of wavelengths of light from near-ultraviolet to deep infrared thanks to the the extraordinarily clean and dry air afforded by its high altitude digs.

DKIST is under construction in the observatory complex on Haleakala Crater in Maui, Hawaii. The Maui Space Surveillance is the large structure near top center. Photo take Oct. 2013. Credit: Bob King
DKIST is under construction in the observatory complex on Haleakala Crater in Maui, Hawaii. The Maui Space Surveillance Complex is the large structure right of center. Photo take Oct. 2013. Credit: Bob King

The new solar telescope will be in excellent company not far from the current Mees Solar Observatory and a stone’s throw from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) telescope, the 79-inch (2-meter) Faulkes Telescope North and Maui Space Surveillance Complex which keeps an eye on man-made orbital debris. Tourists to Mt. Haleakala, a popular destination for tourists, can watch it take shape in the next few years while enjoying a hike in the cool air for which Haleakala is famous.

On August 31, 2012 a long filament of solar material that had been hovering in the sun's atmosphere, the corona, erupted out into space at 4:36 p.m. EDT. The coronal mass ejection, or CME, traveled at over 900 miles per second.
On August 31, 2012 a long filament of solar material erupted out into space as a coronal mass ejection, or CME, traveling at over 900 miles per second. By probing solar gases at high resolution and rapid time scales using DKIST’s high power optics and spectrographs, astronomers hope to better understand the first stirrings of these huge outbursts of solar energy. Credit: NASA

I first heard about the DKIST telescope from a burly stranger with fierce-looking tattoos. My wife and I vacationed in Maui last fall. One afternoon, while watching surfers ride the waves near the beach town of Paia, this big guy overheard us mention Duluth (Minn.), our hometown. He said he’d lived in Duluth for a time before moving to Hawaii and offered us a beer. We got to talking and learned he worked safety inspection at at the “biggest solar telescope in the world”, making the hour-long drive up the mountain 5 days a week.  I checked it out and he was absolutely right.

The Daniel K. Inouye Solar Telescope (formerly the Advanced Technology Solar Telescope) is being developed by a consortium led by the National Solar Observatory and comprising the University of Chicago, the New Jersey Institute of Technology, University of Hawaii, the High Altitude Observatory, NASA, the U.S. Air Force and others. For more details on the project, click HERE.

There’s poetry in building a large solar observatory on an island known for its sunny, warm climate. While vacationers flop out on Kaanapali Beach to vanquish the mid-winter chills, astronomers 50 miles away and 10,000 feet up will be at work coaxing secrets from the fiery ball of light that illuminates surf and scope alike.

Slip-Sliding Away: Solar Flare’s Magnetic Lines Go For A Loop In This Video

Our own Sun produces flares, but we are protected by our magnetosphere, and by the distance from the Sun to Earth. Credit: NASA/ Solar Dynamics Observatory,

When will the next big solar flare occur? How much damage could it cause to power lines and satellites? These are important questions for those looking to protect our infrastructure, but there’s still a lot we need to figure out concerning space weather.

The video above, however, shows magnetic lines weaving together from the surface of the Sun in 2012, eventually creating an eruption that was 35 times our planet’s size and sending out a surge of energy. It’s these energetic flares that can hit Earth’s atmosphere and cause auroras and power surges.

While models of this have been made before, this is the first time the phenomenon was caught in action. Scientists saw it using NASA’s Solar Dynamics Observatory.

Models of the flares show they typically occur amid distorted magnetic fields, the University of Cambridge noted, showing that the lines can “reconnect while slipping and flipping around each other.” Before the flare happens, the magnetic field lines line up in an arc across the sun’s surface (photosphere). That phenonemon is called field line footprints.

“In a smooth, non-entangled arc the magnetic energy levels are low, but entanglement will occur naturally as the footpoints move about each other,” the release added. “Their movement is caused as they are jostled from below by powerful convection currents rising and falling beneath the photosphere. As the movement continues, the entanglement of field lines causes magnetic energy to build up.”

When the energy gets to great, the lines let go of the energy, creating the solar flare and coronal mass ejection that can send material streaming away from the sun. A note, this observation was made of an X-class flare — the strongest kind of flare — and scientists say they are not sure if this phenomenon is true of all kinds of flares. That said, the phenomenon would be harder to spot in smaller flares.

You can read more about the research in the Astrophysical Journal or in preprint version on Arxiv. It was led by Jaroslav Dudik, a researcher at the University of Cambridge’s center for mathemetical sciences.

Source: University of Cambridge

BUDGET 2015: Flying SOFIA Telescope To Be Shelved For ‘Higher-Priority’ Programs Like Cassini

NASA's Stratospheric Observatory for Infrared Astronomy 747SP aircraft flies over Southern California's high desert during a test flight in 2010. Credit: NASA/Jim Ross

NASA is prepared to axe an airborne telescope to keep “higher-priority” programs such as the Saturn Cassini mission going, according to budget documents the agency released today (March 4). We have more information about the budget below the jump, including the rationale for why NASA is looking to shelve its Stratospheric Observatory for Infrared Astronomy (SOFIA).

NASA’s  has been flying the telescope for just over three years and recently took some nice snapsnots of the M82 supernova that astronomers have been eager to image. The agency’s administrator, however, said SOFIA has had its shot and it’s time to reallocate the money for other programs.

“SOFIA has earned its way, and it has done very well, but we had to make a choice,” said NASA administrator Charlie Bolden in a conference call with reporters regarding the fiscal 2015 $17.46 billion budget request. He added that NASA is in discussions with partner DLR (the German space agency) to look at alternatives, but pending an agreement, the agency will shelve the telescope in 2015.

In a short news conference focusing on the telescope only, NASA said the observatory had been slated to run for another 20 years, at a cost of about $85 million on NASA’s end per year. (That adds up to $1.7 billion in that timeframe by straight math, but bear in mind the detailed budget estimates are not up yet, making that figure a guess on Universe Today’s part.) DLR funds about 25% of the telescope’s operating budget, and NASA the rest.

NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) during a flight in 2010. Credit: NASA
NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) during a flight in 2010. Credit: NASA

“SOFIA does have a rather large operating cost compared to other missions, second only to Hubble [Space Telescope],” said NASA chief financial officer Beth Robinson in the second conference call. “There is a distinct trade in the operating mission universe about how many keep going and how much you free up (for new missions).”

The telescope isn’t the only such “trade” NASA made, Robinson added. Although not an exhaustive list, she said funding for the Orbiting Carbon Observatory 3 (OCO-3) is not in the base budget request, nor funding to accelerate development of the Pre-Aerosol, Clouds and ocean Ecosystem (PACE) mission.

SOFIA examines a “unique” part of the infrared spectrum, added NASA’s Paul Hertz, who heads the astrophysics division, but he noted infrared science is also performed by the Spitzer Space Telescope and the European Southern Observatory’s Atacama Large Millimeter Array. Coming up soon is the James Webb Space Telescope. Also, the budget allocates development money for a new infrared observatory called Wide-Field Infrared Survey Telescope (WFIRST).

Below are other notable parts of the 2015 budget. These are high-level statements missing some detail, as the rest of NASA’s documentation won’t be released publicly until late this week or early next.

The full mosaic from the Cassini imaging team of Saturn on July 19, 2013… the “Day the Earth Smiled”
The full mosaic from the Cassini imaging team of Saturn on July 19, 2013… the “Day the Earth Smiled”

– NASA’s budget falls overall to $17.46 billion, down one percent from $17.64 billion. Planetary science and human exploration each had nearly equal reductions of around three percent, with education taking the deepest cut (24%) in high-level categories as NASA moves to consolidate that directorate with other agencies.

– Funding continues for 14 operating planetary missions, which are presumably the same 14 missions that are contained here. (That list includes Cassini, Dawn, Epoxi, GRAIL, Juno, Lunar Reconnaissance Orbiter, Mars Exploration Rover/Opportunity, Mars Express, Mars Odyssey, Mars Reconnaissance Orbiter, Mars Science Laboratory/Curiosity, MESSENGER, New Horizons and Rosetta.) Separately, James Webb Space Telescope funding stays about the same as fiscal 2014, keeping it on track for a 2018 launch.

– NASA plans a mission to Europa. This was identified as the “second highest priority Flagship mission for the decade” in the National Research Council planetary science decadal survey, which called for a mission for “characterization of Europa’s ocean and interior, ice shell, chemistry and composition, and the geology of prospective landing sites.” NASA has allocated $15 million in fiscal 2015 for this mission, but it’s unclear if it’s going to be a big mission or a small one as the agency is still talking with the science community (and presumably checking its budget, although officials didn’t say that). If this goes through, it would fly in the 2020s.

Reprocessed Galileo image of Europa's frozen surface by Ted Stryk (NASA/JPL/Ted Stryk)
Reprocessed Galileo image of Europa’s frozen surface by Ted Stryk (NASA/JPL/Ted Stryk)

– NASA’s humans-to-asteroid mission gets some more money. The agency requests $133 million for goals including “advancing solar electric propulsion and capture systems, and conduct of the Mission Concept Review in which the mission architecture will be established.” During the conference call with reporters, Bolden said the asteroid capture mission is a key step for NASA’s aim to have a manned Mars mission in the 2030s.

– Funding continues for NASA’s commercial crew program and Orion/Space Launch System program. It remains to be seen if the amounts allocated will be enough for what industry insiders hope for, but on a numbers basis, the Orion/SLS infrastructure funding falls to $2.78 billion (down 12% from $3.115 billion in FY 2014) and commercial crew funding increases to $848.3 million (up 20% from $696 million in FY 2014). Note the 2014 numbers are not finalized yet. NASA says the commercial funding will allow the program to maintain “competition”, although details are under wraps as the agency is evaluating proposals.

The International Space Station is extended to 2024. That news was made public in early January, but technically speaking that is a part of the fiscal 2015 budget.

There’s far more to the budget that could be covered in a single news article, and it should be noted there was an entire aviation component as well. We encourage you to check out the budget documents below for the full story so far.

2015 budget presentation

– 2015 budget overview

2015 budget overall fact sheet

2015 budget category fact sheets (science, aeronautics research, space technology, etc.)

Yesterday’s Mammoth Solar Flare Is The Biggest Of 2014 So Far

NASA's Solar Dynamics Observatory captured these images of a large flare erupting from the sun Feb. 21, 2014. Credit: NASA/SDO

She’s a rainbow! You can see the first moments of a huge flare belching off the sun in the picture above. The so-called X-class flare erupted a few hours ago (at 7:25 p.m. EST Feb. 24, or 12:25 a.m. UTC Feb. 25) and was captured by several spacecraft. If you have a pictures of the sun yourself to share, feel free to post them in the Universe Today Flickr pool.

NASA’s Solar Dynamics Observatory saw the flare growing in at least six different wavelengths of light, which are visible in the image above. This is classified this as an X4.9-class flare, which shows that it is pretty strong. X-flares are the most powerful kind that the sun emits, and each X number is supposed to be twice as intense as the previous one (so an X-2 flare is twice as powerful as X-1, for example).

SpaceWeather.com says this is the most powerful flare of the year so far, emitted from sunspot AR1967 (or more properly speaking, AR1990; sunspots are renamed if they survive a full rotation of the sun, as this one has done twice already!) While solar flares can lead to auroras, in this case it appears the blast was pointed in the wrong direction, the site added.

“Although this flare is impressive, its effects are mitigated by the location of the blast site–near the sun’s southeastern limb, and not facing Earth,” SpaceWeather stated. “Indeed, a bright coronal mass ejection (CME) which raced away from the sun shortly after the flare appears set to miss our planet.”

This image from the Solar and Heliospheric Observatory illustrates increased solar activity between Feb. 18-20, 2014. Credit: ESA/NASA/SOHO/GSFC
This image from the Solar and Heliospheric Observatory illustrates increased solar activity between Feb. 18-20, 2014. Credit: ESA/NASA/SOHO/GSFC

The sun goes through an 11-year cycle of sunspot and solar activity, which is supposed to be at its peak right now. This particular peak has been very muted, but lately things have been picking up. The European Space Agency noted that between Feb. 18 and 20, the sun sent out six CMEs in three days, with most of them moving in different directions.

“This level of activity is consistent with what we might expect as the Sun is near its maximum period of activity in the 11-year solar cycle,” ESA stated.

You can see the sun changing on this SDO page, showing the latest views of the sun in different wavelengths. And for more information on sunspots, check out this NASA page explaining a little more about how they work.

A Secret Solar Eclipse from Outer Space

The sun seen in six different colors of wavelengths of light as the moon passed across from the perspective of NASA's Solar Dynamics Observatory this morning between about 7:30 and 10 a.m. CST. Credit: NASA

Call it the eclipse nobody saw. NASA’s Solar Dynamics Observatory (SDO) got its own private solar eclipse showing from its geosynchronous orbital perch today. Twice a year during new phase, the moon glides in front of the sun from the observatory’s perspective. Although we can’t be there in person to see it, the remote view isn’t too shabby. The events are called lunar transits rather than eclipses since they’re seen from outer space. Transits typically last about a half hour, but at 2.5 hours, today’s was one of the longest ever recorded. The next one occurs on July 26, 2014.


Today’s lunar transit of the sun followed by a strong solar flare

When an eclipse ends, the fun is usually over, but not this time. Just as the moon slid off the sun’s fiery disk, a strong M6.6 solar flare exploded from within a new, very active sunspot group rounding the eastern limb and blasted a CME (coronal mass ejection) into space. What a show!

Approximate view of the moon transiting the sun from SDO's viewpoint. Credit: NASA
Approximate view of the moon transiting the sun from SDO’s viewpoint. To make sure SDO didn’t run down its batteries when the sun was blocked, mission control juiced them up beforehand. Credit: NASA

SDO circles Earth in a geosynchronous orbit about 22,000 miles high and photographs the sun continuously day and night from a vantage point high above Mexico and the Pacific Ocean. About 1.5 terabytes of solar data or the equivalent of half a million songs from iTunes are downloaded to antennas in White Sands, New Mexico every day.

For comparison, the space station, which orbits much closer to Earth, would make a poor solar observatory, since Earth blocks the sun for half of every 90 minute orbit.

When you look at the still pictures and video, notice how distinct the edge of the moon appears. With virtually no atmosphere, the moon takes a “sharp” bite out of the sun.

SDO orbits about 22,000 miles above Earth, tracing out a figure-8 (called an analemma) above the Pacific and Mexico every 24 hours. Credit: NASA Read more: http://www.universetoday.com/#ixzz2ruidvZJ5
SDO orbits about 22,000 miles above Earth, tracing out a figure-8 (called an analemma) above the Pacific and Mexico every 24 hours. Credit: NASA
Read more: http://www.universetoday.com/#ixzz2ruidvZJ5

SDO amazes with its spectacular pictures of the sun taken in 10 different wavelengths of light every 10 seconds; additional instruments study vibrations on the sun’s surface, magnetic fields and how much UV radiation the sun pours into space.

Compared to all the hard science, the twice a year transits are a sweet side benefit much like the cherries topping a sundae.

You can make your own movie of today’s partial eclipse by visiting the SDO website  and following these easy steps:

* Click on the Data tab and select AIA/HMI Browse Data
* Click on the Enter Start Date window, select a start date and time and click Done
* Click on Enter End Date and click Done
* Under Telescopes, pick the color (wavelength) sun you want
* Select View in the display box
* Click Submit at the bottom and watch a video of your selected pictures

Watch: An Amazing, Mesmerizing Full Rotation of Jupiter

Jupiter as imaged by Michael Phillips on July 25th, 2009... note the impact scar discovered by Anthony Wesley to the lower left.
Jupiter as imaged by Michael Phillips on July 25th, 2009.

Jupiter is a happening place in the solar system. While bashful Mars only puts on a good show once every two year opposition period, and inner worlds such as Mercury and Venus yield no surface details to backyard observers at all, the cloud tops of Jupiter display a wealth of changing detail in even modest backyard telescopes.

And this month is a great time to start observing Jupiter, as the largest planet in our solar system just passed opposition on January 5th. Recently, veteran astrophotographer Michael Phillips amazed us here at Universe Today once again with a stunning time-lapse sequence of Jupiter and its moons Ganymede and Io. Now, he’s outdone himself with a new full rotation compilation of the gas giant planet.

The capture is simply mesmerizing to sit and watch. At 9.9 hours, Jupiter has the fastest rotational period of any planet in our solar system. In fact, with Jupiter currently visible low to the east at sunset, it’s possible to follow it through one rotation in the span of a single long January winter night.

We caught up with Michael recently and asked him about this amazing capture. The sequence was actually accomplished over the span of five successive evenings. This made it challenging to stitch together using a sophisticated program known as WINJupos.

“While this is possible on a long winter night when it is darker longer, I typically find it easier to do over multiple nights than one long sleepless night,” Michael told Universe Today. “If you wait too many days between observations, the features will change significantly, and then two nights will not match up clearly. The seams that result from using multiple nights are tricky to stick together. I created multiple non-overlapping seams and tried to blend them out against one another as layers in my image editing software. The result is smoother, but not quite the same as a single observation.”

A 14” f/4.5 Newtonian reflecting telescope was used for the captures. “Similar weather conditions and camera settings help quite a bit to make the multiple nights’ segments match up better,” Michael noted. “Keeping the same settings, using the same location away from my house  in the corner of the yard (to reduce local atmospheric turbulence) night after night gives consistent results after removing the variability of the weather.”

Planetary photography also requires special considerations prior to imaging, such as getting Jupiter high enough in the sky and at specific longitudes to get full coverage in the rotation sequence.

“I try to consider the local weather patterns and atmospheric stability (seeing), but in reality, I pushed myself to get out as much and often as I could,” Michael told Universe Today. “Typically, I try to wait until Jupiter is at the highest in the sky, as the result is looking through less atmosphere and thus more stable conditions. Sometimes, the planets jiggle around and you just want to scream ‘SIT STILL!’ Basically around the time of opposition I go out as often as it’s clear, as those are opportunities that you don’t get back again until next year.”

Jupiter reaches opposition just over once every 13 months, moving roughly one constellation eastward each time. 2013 was an “oppositionless” year for Jupiter, which won’t occur again until 2025. Michael also notes that from his observing location at 35 degrees north latitude, Jupiter currently peaks at an altitude of 77 degrees above the horizon when it transits the local meridian. “I wasn’t going to squander it waiting for perfect conditions!”

In fact, Jupiter is currently in a region in the astronomical constellation of Gemini that will be occupied by the Sun in just over five months time during the June Solstice. Currently at a declination of around 22 degrees 45’ north, Jupiter won’t appear this high in the northern sky near opposition again until 2026.

It’s also amazing to consider the kind of results that backyard observers like Michael Phillips are now routinely accomplishing. It’s an interesting exercise to compare Michael’s capture side-by-side with a sequence captured  by NASA’s New Horizons spacecraft during its 2006 flyby of Jupiter:

Both sequences capture a wealth of detail, including the enormous Great Red Spot, the Northern and Southern Equatorial Belts, and numerous white spots and smaller swirls and eddies in the Jovian atmosphere.

To date, six spacecraft (Pioneer 10 and 11, Voyagers 1 and 2, New Horizons and Cassini) have made flybys of Jupiter, and one, Galileo, orbited the planet until its demise in 2003. Juno is the next in this legacy, and will be inserted into orbit around Jupiter in July 2016.

Now is the time to get out and observe and image Jupiter and its moons, as it moves higher into the sky on successive evenings towards eastern quadrature on April 1st, 2014.

Congrats to Michael Phillips on an amazing sequence!

An Incredible Time-lapse of Venus Passing Through Inferior Conjunction

Image credit: Shahrin

Some of the most amazing celestial sights are hidden from our view in the daytime sky. Or are they? We recently challenged readers to try and follow the planet Venus through inferior conjunction as it passed between the Earth and the Sun on January 11th. Unlike the previous pass on June 6th, 2012 when Venus made its last transit of the Sun for the 21st century, the 2014 solar conjunction offered an outstanding chance to trace Venus’s path just five degrees from the Sun from the dusk and into the dawn sky.

Expert astrophotographers Shahrin Ahmad based in Sri Damansara, Malaysia and Paul Stewart observing from New Zealand took up that daily challenge as Venus neared the limb of the Sun, with amazing results. Now, Shahrin has also produced an amazing time-lapse sequence of Venus passing through inferior conjunction.

You can actually see the illuminated “horns” of Venus as they thin, extend, and rotate around the limb as the planet passes the Sun.

And it’s what’s more incredible is that the capture was completed in the daytime. But such a feat isn’t for the unskilled. Shahrin told Universe Today of the special safety precautions he had to take to acquire Venus so close to the Sun:

“Since Venus was getting closer each day towards conjunction, I found it far too dangerous to find visually, either using the main telescope or the finderscope.”

Instead, Shahrin relies on computerized software named Cartes du Ciel to drive his Skywatcher EQ6 mount and pinpoint Venus in the daytime sky.

“The sky in Kuala Lumpur is never clear from here, thus it rarely appears dark blue, making it almost impossible to spot Venus visually, especially when it is less than 10 degrees from the Sun.”

Shahrin elaborated further on his special solar safety precautions:

“I always start with all covers in place and the solar filter on the main telescope. I will slew the telescope to the Sun, make some slight repositioning adjustments, and then synchronize the telescope to the new position. After ensuring the Sun is visible and centered on the computer screen, I slew to Venus. Once the mount has stopped in position, I remove the solar filter and replace it with a makeshift cardboard extender mounted on the existing dew-shield. This ensures that any direct sunlight is totally blocked from entering the optics.”

Shahrin notes that 90% of the time, Venus with appear on the computer screen after aligning. Otherwise, a brief spiral search of the field will slide it into view.

Shahrin observes from his ShahGazer Observatory, a roll-off-roof observatory just outside of Kuala Lumpur. He used the Skywatcher 120ED refractor pictured for the captures, with a 2x Barlow lens to achieve a focal length of 1800mm. Shahrin’s main camera is a QHY CCD IMG132e, and the rig is mounted on a Skywatcher EQ6.

Credit: Shahrin Ahmad.
A closeup of Sharin’s barlow and camera rig. Credit: Shahrin Ahmad.

“The experience of being able to track Venus approaching inferior conjunction over the Sun afterwards is exhilarating,” Shahrin told Universe Today. “It felt like watching and waiting for a total eclipse of the Sun, but in slow motion!”

Shahrin also counts himself lucky to have had a string of clear days leading up to and after inferior conjunction.

Shahrin’s capture of Venus 5 degrees from the Sun just 8 hours before inferior conjunction may also be a record. That’s a closer apparent separation than our visual sighting of Venus 7 hours and 45 minutes after inferior conjunction on January 16th 1998 as seen from North Pole Alaska, when the planet passed 5.5 degrees from the limb of the Sun.

“I’ve also noticed that in some of the photos, we can see a slight ‘glint’ of sunshine on part of Venus’ atmosphere,” Shahrin noted to Universe Today. “(This sighting) was actually confirmed by the RASC Edmonton Centre in Canada via their Twitter feed.”

An amazing capture, indeed. Venus is now back in the realm of visibility for us mere mortal backyard observers low in the dawn sky, shining at a brilliant magnitude -4.3. Expect it to vault up in a hurry for northern hemisphere observers as the favorable angle of the ecliptic will give it a boost in the dawn. Venus is also headed towards a spectacular 0.2 degree conjunction with Jupiter this summer on August 18th: expect UFO sightings to rise correspondingly.  The Indian Army even briefly mistook the pair for Chinese spy drones early last year.

The waning crescent Moon approaches Venus on the morning of January 28th, 2014. Created using Stellarium.
The waning crescent Moon approaches Venus on the morning of January 28th, 2014. Created using Stellarium.

Venus will spend most of 2014 in the dawn sky and is headed for superior conjunction on October 25th, 2014. Venus spent a similar span in the dawn for the majority 2006, and will do so again in 2022. It’s all part of the 8-year cycle of Venus, a span over which apparitions of the planet roughly repeat. And the next shot we’ll have at inferior conjunction?  That’ll be on August 15th, 2015 for favoring the southern hemisphere and March 25th, 2017 once again favoring the northern, when the planet very nearly passes as far from the Sun as it can appear at inferior conjunction at 8 degrees.

Congrats to Shahrin on his amazing capture!

-Follow the stargazing adventures of Sharin Ahmad on Google+ and as @shahgazer on Twitter

-Got pictures of Venus? Send ‘em in to Universe Today.

 

Monster Sunspot Erupts with an X-Class Flare

Image of the X1.2 class solar flare from the Sun on January 7, 2014, as seen from the Solar Dynamics Observatory.

Solar astronomers have been keeping an eye on giant sunspot AR1944, and as it turned towards Earth today, the sunspot erupted with a powerful X1.2-class flare. NOAA’s Space Weather Prediction Center said the flare sparked a “strong radio blackout” today, and they have issued a 24 hour “moderate” magnetic storm watch indicating a coronal mass ejection (CME) associated with the flare may be heading towards Earth. A CME is a fast moving cloud of charged particles which can interact with Earth’s atmosphere to cause aurora, so observers in northern and southern latitudes should be on the lookout for aurora, possibly through January 10.

Here’s a video of the flare from the Solar Dynamics Observatory:

The SWPC forecasters said they are anticipating G2 (Moderate) Geomagnetic Storm conditions to occur on January 9, followed by G1 (Minor) levels January 10. NOAA estimates the CME headed towards Earth might produce a Kp number of 6.

The Earth-directed CME launched from AR1944 at 1832 UTC (1:32 p.m. EST) on January 7. Here’s an animation of the CME. Astronomers have said that this sunspot region remains “well-placed and energetic” so there could be subsequent activity.

A closeup look at sunspot AR1944 on January 6, 2013, comparing its size to Earth. Credit and copyright:  Ron Cottrell.
A closeup look at sunspot AR1944 on January 6, 2013, comparing its size to Earth. Credit and copyright: Ron Cottrell.

According to SpaceWeather.com, AR1944 has “an unstable ‘beta-gamma-delta’ magnetic field,” making it ripe for activity. Here’s a quick video of today’s X-class flare showing the coronal wave:

AR144 as seen on January 7, 2014. At the bottom are size comparisons to Earth and Jupiter. Credit and copyright: Giuseppe Petricca.
AR144 as seen on January 7, 2014. At the bottom are size comparisons to Earth and Jupiter. Credit and copyright: Giuseppe Petricca.

The Solar Dynamics Observatory has a “self-updating” webpage showing the latest views of the Sun in various wavelengths.

IRIS Glimpses an Elusive Region of the Sun

An innovative solar observatory is adding a key piece to the puzzle of the enigma that is our Sun.

Its two of key questions in heliophysics: why does our Sun have a corona? And why is the temperature of the corona actually higher than the surface of the Sun?

This week, researchers released results from the preliminary first six months of data from NASA’s Interface Region Imaging Spectrograph, known as IRIS. The findings were presented at the Fall American Geophysical Union Meeting this past Monday.

IRIS was launched on June 27th of this year on a Pegasus-XL rocket deployed from the belly of a Lockheed L-1011 aircraft flying out of Vandenberg Air Force Base. IRIS can focus in on a very specific interface region of the Sun sandwiched between the dazzling solar photosphere and the transition to the corona. To accomplish this, IRIS employs an ultraviolet slit spectrograph looking at ionized gas spectra.

IRIS in the clean room. The spacecraft is only about 2 metres in length, about the height of a person. (Credit: Lockheed Martin).
IRIS in the clean room. The spacecraft is only about 2 metres in length, about the height of a person. (Credit: Lockheed Martin).

“The quality of images and spectra we are receiving is amazing,” IRIS Principal Investigator Alan Title said in a recent press release from the NASA Goddard Space Flight Center. While other missions may take over a decade to go from the drawing board to the launch pad, IRIS was developed and deployed into Low Earth Orbit in just 44 months.

IRIS offers scientists a new tool to probe the Sun and a complimentary instrument to platforms such as Hinode, the Solar Heliospheric Observatory (SOHO) and NASA’s Solar Dynamics Observatory. In fact, IRIS has a better resolution than SDO’s AIA imagers or Hinode when it comes to this key solar interface region. IRIS has a 20x greater resolution in time, and 25x the spatial resolution of any former space-based UV spectrometer deployed.

“We are seeing rich and unprecedented images of violent events in which gases are accelerated to very high velocities while being rapidly heated to hundreds of thousands of degrees,” said Lockheed Martin science lead on the IRIS mission Bart De Pontieu. These observations are key to backing up theoretical models of solar dynamics as well as testing and formulating new ones of how our Sun works.

IRIS bridges this crucial gap between the photosphere and the lower chromosphere of the Sun. While the solar surface roils at relatively placid  6,000 degrees Celsius, temperatures rise into the range of 2-3 million degrees Celsius as you move up through the transition region and into the corona.

Two key solar phenomena that are of concern to solar researchers can be examined by IRIS in detail. One is the formation of prominences, which show up as long looping swirls of solar material rising up from the surface of the Sun. Prominences can be seen from backyard telescopes at hydrogen alpha wavelengths. IRIS can catch and track their early modeling with unprecedented resolution. Images released from IRIS show the fine structure of targeted prominences as they evolve and rise off the surface of the Sun. When a prominence and accompanying coronal mass ejection is launched in our direction, disruption of our local space environment caused by massive solar storm can result.

Slit jaw spectra images (the two strips to the left) and imaging a spicules 9to the right as seen by IRIS. (Credit: NASA/IRIS).
Slit jaw spectra images (the two strips to the left) and imaging of spicules (to the right) as seen by IRIS. (Credit: NASA/IRIS).

The second phenomenon targeted by IRIS is the formation of spicules, which are giant columns of gas rising from the photosphere. Although the spicules look like hair-fine structures through Earth-based solar telescopes, they can be several hundred kilometres wide and as long as the Earth. Short-lived, spicules race up from the surface of the Sun at up to 240,000 kilometres per hour and seem to play a key role in energy and heat transfer from the solar surface up through the atmosphere. IRIS is giving us a view of the evolution of spicules for the first time, and they’re proving to be even more complex than theory previously suggested.

“We see discrepancies between these observations and the models, and that is great news for advancing knowledge. By seeing something we don’t understand, we have a chance of learning something new,” Said University of Oslo astrophysicist Mats Carlsson.

Like SDO and SOHO, data and images from IRIS are free for the public to access online. Though the field of view for IRIS is a narrow 2’ to 4’ arc minutes on a side – the solar disk spans about 30’ as seen from the Earth – IRIS gives us a refined view of “where the action is.”

Where is IRIS looking? This snapshot gives some context of the IRIS field of view (green and red boxes) and black and white insets versus SDO's AIA full disk view of the Sun. (Credit: NASA/SDO/IRIS).
Where is IRIS looking? This snapshot gives some context of the IRIS field of view (green and red boxes) and black and white insets versus SDO’s AIA full disk view of the Sun. (Credit: NASA/SDO/IRIS).

And this all comes at an interesting time, as our nearest star crosses the sputtering solar maximum for Cycle #24.

The equivalent of 50 million CPU hours were utilized in constructing and modeling what IRIS sees. The reconstruction was an international effort, spanning the Partnership for Advanced Computing in Europe, the Norwegian supercomputing collaboration, and NASA’s Ames Research Center.

IRIS also faced the additional challenge of weathering a 2.5 week period of inactivity due to the U.S. government shutdown this fall. Potential impacts due to sequestration remain an issue, though small explorer missions such as IRIS demonstrate how we can do more with less.

“We’ve made a giant step forward in characterizing the heat transfer properties of this region between the visible surface and the corona, which is key to understanding how the outer atmosphere of the Sun exists, and is key to understanding the outer atmosphere that the Earth lies in,” said Alan Title, referring to the tenuous heliosphere of the Sun extending out through the solar system.

Understanding the inner working of our Sun is vital: no other astronomical body has as big an impact on life here on Earth.

IRIS is slated for a two-year mission, though as is the case with most space-based platforms, researchers will work to get every bit of usefulness out of the spacecraft that they can. And it’s already returning some first-rate science at a relatively low production cost. This is all knowledge that will help us as a civilization live with and understand our often tempestuous star.