Sun Unleashes Powerful X-Class Solar Flare

The Sun has been quiet recently but early today (04:13 UTC on March 5, 2012) it unleashed a powerful X1-class solar flare and coronal mass ejection. The latest estimates indicate the CME will probably miss Earth, but hit Mercury and Venus. Even so, the science team from the Solar Dynamics Observatory says that high-latitude skywatchers should still be alert for auroras in the nights ahead. There was also an M2-class eruption from the same big and active sunspot, Active Region 1429, on March 4th which produced another, wider CME that might yet intersect Earth. The cloud is expected to deliver a glancing blow to our planet’s magnetic field on March 6th at 04:30 UT (+/- 7 hrs).

Check the latest forecast of the CME’s arrival from the NASA Goddard Space Weather Lab, which includes a great animation.

So, what’s the difference in the classes of solar flares and how could they affect us on Earth?
Continue reading “Sun Unleashes Powerful X-Class Solar Flare”

Earth-Facing Sunspot Doubles in Size

Animation of AR1416's evolution over the past several days (SDO/HMI)

[/caption]

The latest sunspot region to traverse the face of the Sun has nearly doubled in size as it aims Earthward, as seen in the animation above from NASA’s Solar Dynamics Observatory. (Click image to play the animation.)

This is the second day in a row that the region has been seen expanding.

According to SpaceWeather.com, active region 1416 has the right sort of magnetic energy to potentially send M-class flares our way.

M-class flares are medium-sized solar flares. They can cause brief radio blackouts that affect Earth’s polar regions. Minor radiation storms sometimes follow an M-class flare event.

Sunspot region 1416 on Feb. 11, 2012. The large sunspot on the right is easily the size of Earth. (SDO/HMI Intensitygram)

If AR1416 produces a flare over the next 24 hours we would likely see increased auroral activity in upper latitudes early next week.

Stay tuned to Universe Today and SpaceWeather.com for any news on solar flares, and be sure to visit the SDO site for the latest images and videos of our home star.

Images courtesy NASA/SDO and the AIA and HMI science teams.

____________________

Also, check out Alan Boyle’s article on MSNBC’s Cosmic Log about this and a recent heart-shaped coronal mass ejection that occurred on Friday, sending a cloud of charged particles on a Valentine’s Day date with our magnetosphere.  It should be a Sun-kissed night in northern parts of the world!

 

Freaky Dancing Plasma on the Sun

Normally plasma from the Sun either shoots off into space or loops back on the Sun’s surface. But the Solar Dynamics Observatory captured some plasma that couldn’t make up its mind. Here, darker, cooler plasma slid and shifted back and forth above the Sun’s surface for 30 hours on February 7-8, 2012. The view is shown in extreme ultraviolet light. As a backdrop, an active region just rotating into view shows bright plasma gyrating into streams — normally how the plasma behaves. SDO scientists say the darker particles are being pulled back and forth by competing magnetic forces, tracking along strands of magnetic field lines.

And by the way, tomorrow is SDO’s 2nd anniversary! It launched two years ago on February 11, 2010. Happy anniversary, SDO and thanks for all the great videos and data so far! We wish you many more!

“Cool” Gas May Be At The Root Of Sunspots

During the initial stage of sunspot emergence and cooling, the formation of H2 may trigger a temporary "runaway" magnetic field intensification. The magnetic field prevents the flow of energy from inside the sun to the outside, and the sunspot cools as the energy shines into space. They form hydrogen molecules that take half the volume of the atoms, thus dropping pressure and concentrating the magnetic field, and so on. (adapted from Jaeggli, 2011; sunspot image by F. Woeger et al

[/caption]

Although well over 40 years old, the Dunn Solar Telescope at Sunspot, New Mexico isn’t going to be looking at an early retirement. On the contrary, it has been outfitted with the new Facility Infrared Spectropolarimeter (FIRS) and is already making news on its solar findings. FIRS provides simultaneous spectral coverage at visible and infrared wavelengths through the use of a unique dual-armed spectrograph. By utilizing adaptive optics to overcome atmospheric “seeing” conditions, the team took on seven active regions on the Sun – one in 2001 and six during December 2010 to December 2011 – as Sunspot Cycle 23 faded away. The full sunspot sample has 56 observations of 23 different active regions… and showed that hydrogen might act as a type of energy dissipation device which helps the Sun get a magnetic grip on its spots.

“We think that molecular hydrogen plays an important role in the formation and evolution of sunspots,” said Dr. Sarah Jaeggli, a recent University of Hawaii at Manoa graduate whose doctoral research formed a key element of the new findings. She conducted the research with Drs. Haosheng Lin, also from the University of Hawaii at Manoa, and Han Uitenbroek of the National Solar Observatory in Sunspot, NM. Jaeggli now is a postdoctoral researcher in the solar group at Montana State University. Their work is published in the February 1, 2012, issue of The Astrophysical Journal.

You don’t have to be a solar physicist to know about the Sun’s 11 year cycle, or to understand how sunspots are cooler areas of intense magnetism. Believe it or not, even the professionals aren’t quite sure of how all the mechanisms work… especially those which cause sunspot forming areas that retard normal convective motions. Of the things we’ve learned, the spot’s inner temperature has a correlation with its magnetic field strength – with a sharp rise as the temperature cools. “This result is puzzling,” Jaeggli and her colleagues wrote. It implies some undiscovered mechanism inside the spot.

NOAA 11131 sunspot region (Dec. 6, 2010) was the most intense spot measured in this study, but far from the largest the Sun can produce. The two bottom images show the strength of the magnetic field (C) and the contrast between the interior of the spot and the surrounding photosphere (D). The first graph (A) shows how OH starts to appear in the penumbra and continues to rise as the magnetic field strength rises. Because OH forms at a lower temperature than H2, its presence implies the quantity of hydrogen molecules that could be present (B). (adapted from Jaeggli et al, 2012)

One theory is that hydrogen atoms combining into hydrogen molecules may be responsible. As for our Sun, the majority of hydrogen is ionized atoms because the average surface temperature is assessed at 5780K (9944 deg. F). However, since Sol is considered a “cool star”, researchers have found indications of heavy-element molecules in the solar spectrum – including surprising water vapor. These type of findings might prove the umbral regions could allow hydrogen molecules to combine in the surface layers – a prediction of 5% made by the late Professor Per E. Maltby and colleagues at the University of Oslo. This type of shift could cause drastic dynamic changes where gas pressure is concerned.

“The formation of a large fraction of molecules may have important effects on the thermodynamic properties of the solar atmosphere and the physics of sunspots,” Jaeggli wrote.

With direct measurements being beyond our current capabilities, the team then measured a proxy – the hydroxyl radical made of one atom each of hydrogen and oxygen (OH). According to the National Solar Observatory, “OH dissociates (breaks into atoms) at a slightly lower temperature than H2, meaning H2 can also form in regions where OH is present. By coincidence, one of its infrared spectral lines is 1565.2nm, almost the same as the 1565nm line of iron, used for measuring magnetism in a spot and one of the lines FIRS is designed to observe.”

Spectral lines are the unique "fingerprints in light" that all atoms and molecules produce. In the presence of a magnetic field in a hot gas, some lines split, betraying the presence and strength of the magnetic fields. Each line corresponds to electrons giving up energy in discrete amounts, or quanta, as light. Imposing a magnetic field on the atom makes the electrons produce multiple lines instead of one. The spread of these lines is a direct measure of the strength of the magnetic field, and is greater in the red and in the infrared spectrum. This image depicts sunspot spectra taken by FIRS with lines centered at 630.2nm (left) and 1564.8nm (right). Note the broadened area in the color ellipses, indicating line splitting inside a spot, and how the broadening is greater at the longer wavelength. Contrast is adjusted to enhance visibility in the inset boxes.

By combining both old and new data, the team measured magnetic fields across sunspots, and the OH intensity inside spots, judging the H2 concentrations. “We found evidence that significant quantities of hydrogen molecules form in sunspots that are able to maintain magnetic fields stronger than 2,500 Gauss,” Jaeggli commented. She also said its presence leads to a temporary “runaway” intensification of the magnetic field.

As for the anatomy of a sunspot, magnetic flux boils up from the Sun’s interior and slows surface convection – which in turns stops cooler gas which has radiated its heat into space. From there, molecular hydrogen is created, reducing the volume. Because it is more transparent than its atomic counterpart, its energy is also radiated into space allowing the gas to cool even more. At this point the hot gas primed by the flux compresses the cooler region and intensifies the magnetic field. “Eventually it levels out, partly from energy radiating in from the surrounding gas. Otherwise, the spot would grow without bounds. As the magnetic field weakens, the H2 and OH molecules heat up and dissociate back to atoms, compressing the remaining cool regions and keeping the spot from collapsing.”

For now, the team admits that additional computer modeling is required to validate their observations and that most of the active regions so far have been mild ones. They’re hoping that Sunspot Cycle 24 will give them more fuel to be “cool”…

Original Story Source: National Solar Observatory News Release.

What Causes Aurora?

Will you be seeing an aurora tonight? Yesterday, January 23, 2012, an M8.7-class flare erupted from the Sun and sent a huge wave of high-energy protons towards Earth and Mars, moving at about 8 million kilometers per hour. According to Spaceweather.com, the CME hit Earth’s magnetic field at approximately 1500 UT (10 am EST) today, and geomagnetic storms are likely in the hours ahead, as scientists say this the largest solar storm Earth has encountered since 2005.

But what is an aurora and what causes them?
Continue reading “What Causes Aurora?”

Can Solar Flares Hurt Astronauts?

Expedition 29 astronaut Ron Garan looks down on the coast of Australia from the safety of the ISS. (NASA)

[/caption]

Solar flares, coronal mass ejections, high-energy photons, cosmic rays… space is full of various forms of radiation that a human wouldn’t want to be exposed to for very long. Energized particles traveling into and through the body can cause a host of nasty health problems, from low blood count to radiation sickness to cataracts and cancer… and potentially even death. Luckily Earth’s magnetic field and atmosphere protects us on the surface from much of this radiation, but what about the astronauts aboard the Space Station? How could events such as today’s powerful near-X-class solar flare and last week’s CME affect them, orbiting 240 miles above Earth’s surface?

Surprisingly, they are safer than you might think.

M8.7-class solar flare erupting on the Sun's northeastern hemisphere at 03:49 UT on Jan. 23, 2012. (Courtesy NASA/SDO and the AIA team. Edited by J. Major.)

The M8.7-class flare that erupted from the Sun early on Jan. 23 sent a huge wave of high-energy protons Earthward, creating the largest solar storm seen since 2005.  The cloud of energetic particles raced outwards through the Sun’s atmosphere at speeds well over a million miles per hour, blowing past our planet later the same day. (More slower-moving charged particles will impact the magnetosphere in the coming days.) We are safe on Earth but astronauts exposed to such radiation could have faced serious health risks. Fortunately, most solar protons cannot pass through the hull of the Space Station and so as long as the astronauts stay inside, they are safe.

Of course, this is not the case with more dangerous cosmic rays.

According to the NASA Science site:

Cosmic rays are super-charged subatomic particles coming mainly from outside our solar system. Sources include exploding stars, black holes and other characters that dwarf the sun in violence. Unlike solar protons, which are relatively easy to stop with materials such as aluminum or plastic, cosmic rays cannot be completely stopped by any known shielding technology.

Even inside their ships, astronauts are exposed to a slow drizzle of cosmic rays coming right through the hull. The particles penetrate flesh, damaging tissue at the microscopic level. One possible side-effect is broken DNA, which can, over the course of time, cause cancer, cataracts and other maladies.

In a nutshell, cosmic rays are bad. Especially in large, long-term doses.

Now the astronauts aboard the ISS are still well within Earth’s protective magnetic field and so are shielded from much of the cosmic radiation that passes through our solar system daily. And, strangely enough, when solar flares occur – such as today’s – the amount of cosmic radiation the ISS encounters actually decreases.

Why?

The solar particles push them away.

Decrease in cosmic radiation during a CME recorded in 2005.

In an effect known as the “Forbush decrease”,  magnetically-charged particles ejected from the Sun during flares and CMEs reduce the amount of cosmic radiation the ISS experiences, basically because they “sweep away” other charged particles of more cosmic origin.

Because cosmic rays can easily penetrate the Station’s hull, and solar protons are much less able to, the irony is that astronauts are actually a degree safer during solar storms than they would be otherwise.

And it’s not just in low-Earth orbit, either: Wherever CMEs go, cosmic rays are deflected. Forbush decreases have been observed on Earth and in Earth orbit onboard Mir and the ISS. The Pioneer 10 and 11 and Voyager 1 and 2 spacecraft have experienced them, too, beyond the orbit of Neptune. (via NASA Science.)

Due to this unexpected side effect of solar activity it’s quite possible that future manned missions to the Moon, Mars, an asteroid, etc. would be scheduled during a period of solar maximum, like the one we are in the middle of right now. The added protection from cosmic rays would be a big benefit for long-duration missions since we really don’t know all the effects that cosmic radiation may have on the human body. We simply haven’t been traveling in space long enough. But the less exposure to radiation, the better it is for astronauts.

Maybe solar storms aren’t so bad after all.

Read more about solar radiation and the Forbush decrease on NASA Science here.

NOAA: Largest Solar Radiation Storm Since 2005 Now in Progress

X-Ray image from a GOES satellite at 14:12 UTC on January 23, 2012. Credit: NOAA

[/caption]

Earth’s magnetic field is already full of activity from an Earth-directed Coronal Mass Ejection (CME) last week. But all indications are another blast is headed our way from the strongest solar radiation storm since September, 2005. NOAA says the storm is currently in progress and continues to get stronger, with a very fast CME headed towards Earth. Sunspot 1402 erupted, producing a long-duration M9-class solar flare. “Geomagnetic storming is a near certainty from this event,” reported NOAA. The associated solar flare peaked at about 0400 UTC on January 23 (11pm Jan 22 EST).”

A computer model just released by NOAA’s Space Weather Prediction Center forecasts the storm will arrive sometime on January 24, at about 14:18 UT (+/- 7 hours), as the CME is traveling at approx. 2,200 km per second. Click here to see the animated model.

We’ve already shown you a video of the auroral activity going on yesterday and will soon post a gallery of beautiful aurorae from around the world. And it looks like we’ll likely have more photos to share in the coming week! And NASA says skywatchers should be on the lookout for aurora in lower than normal latitudes. Scientists are also predicting that Mars will get hit too, several hours after Earth. At this point, there’s no way to predict the possible effect on Earth-orbiting satellites for communications, GPS, etc, or the effect on Mars spacecraft.

These kinds of events can cause problems for spacecrafts in geosynchronous, polar and other orbits passing could be affected by the cloud’s arrival. In addition, strong geomagnetic storms are possible, so high-latitude sky watchers should be alert for aurorae.

Below is a video from the Solar Dynamics Observatory of the event:

Aurora Alert! Sun Sends CME in Earth’s Direction

As seen here by the Solar Dynamics Observatory, a long duration M3-class flare began erupting on the Sun from sunspot region 1401 at 13:42 UTC (8:42 AM ET) today, Thursday, January 19, 2012, sending a coronal mass ejection (CME) directly towards Earth. Scientists predict the CME will arrive at around 16:00 UTC on January 21, 2012 GMT. Spaceweather.com says strong geomagnetic storms are possible and high-latitude (and possibly middle-latitude) skywatchers can be on the lookout for increased aurora.

Continue reading “Aurora Alert! Sun Sends CME in Earth’s Direction”

Our Picks of Best Space and Astronomy Images from 2011

First Ever Portrait of the International Space Station and docked Shuttle Endeavour from Soyuz capsule. This image of the International Space Station and the docked Space Shuttle Endeavour, flying at an altitude of 220 miles was taken by Expedition 27 crew member Paolo Nespoli from the Soyuz TMA-20 following its undocking on May 23, 2011. It is the first-ever image of a space shuttle docked to the International Space Station. Endeavour at left. European ATV cargo carrier at right. Credit: NASA/Paolo Nespoli

[/caption]

2011 was a picturesque year! The year brought us new discoveries, a new supernova, the end of an era in human spaceflight, and much more. Here’s a look back at some of the best images we’ve posted on Universe Today in 2011, listed in no particular order:

Above, is one of the first-ever images of a space shuttle docked to the International Space Station. The images were taken by ESA astronaut Paolo Nespoli on May 23, 2011 through a window inside the Soyuz TMA-20 vehicle as he and two crewmates were departing the ISS for their return trip to Earth. See the entire gallery of images of this event here.


Astrophoto: Supernova PTF11kly in M101 by Rick Johnson
Supernova PTF11kly in M101. Credit: Rick Johnson

A new supernova showed up in 2011 in the Pinwheel galaxy, and skywatchers around the world tried to capture it. Amateur astronomer Rick Johnson submitted this image for our new “Astrophoto” feature this year on Universe Today. Called the SN PTF11kly, the new Type Ia supernova was spotted by Caltech’s Palomar Transient Factory (PTF) survey in the M101, and is located 21 million light years away. You can see the supernova marked in the southern part of the galaxy.

Atlantis launches one last time on July 8, 2011. Credit: Alan Walters (awaltersphoto.com) for Universe Today.

2011 saw the end of an era: the space shuttle program is now history. Universe Today photographer Alan Walters captured this stunning view of the last shuttle launch ever. Read our articles about the final launch and landing of the space shuttle era.

A portion of the Lagoon nebula imaged by the Gemini South telescope with the Gemini Multi-Object Spectrograph. Credit: Julia I. Arias and Rodolfo H. Barbá Departamento de Física, Universidad de La Serena (Chile), and ICATE-CONICET (Argentina).

A gorgeous new look at the “Southern Cliff” in the Lagoon Nebula from the Gemini South Observatory.

Saturns moons and rings, in color. Credit: NASA / JPL / SSI. Edited by Jason Major. Click for larger version.

The Cassini spacecraft continues to crank out spectacular images, and this stunning image of a “flash mob” of moons strung along Saturn’s rings is just an example.

ATV2 (Johannes Kepler) as it departs the ISS against the backdrop of Earth. Credit: NASA/Ron Garan

Real image or from a movie? The ATV-2 Johannes Kepler looks like an X-Wing fighter from Star Wars as it departed from the International Space Station.

A new image from the HiRISE camera on the Mars Reconnaissance Orbiter shows an ethereal landscape near Mars north pole. Credit: NASA/HiRISE team

Incredible landscapes are specialties of the HiRISE camera on the Mars Reconnaissance Orbiter, and this observation shows dune gullies laced with beautiful swirls of tracks left by dust devils. Just like on Earth, dust devils move across the Martian surface and expose the underlying darker material, creating a striking view.

A new image from ESO of the reflection nebula Messier 78. Credit: ESO and Igor Chekalin

Here’s a “Hidden Treasure” from the European Southern Observatory, from the astrophotography competition where amateurs create images from unused ESO data. In this new image of Messier 78, brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light and creating what is called a reflection nebula.

Series of transits taken on May 20, 22 and 23, 2011 from different areas of France, showing variations of orientation of the ISS with Endeavour docked. On May 23, the ISS passes besides a sunspot which is larger than the Earth. Credit: Thierry Legault

This series of images is just an example of the great work by award-winning French astrophotographer Thierry Legault. During shuttle Endeavour’s final mission, Legault traveled through Germany, France and Spain to find clear skies and good seeing to capture the shuttle’s voyage to the International Space Station. See more incredible images here.

The 'Rock Garden' at the rim of Endeavour Crater on Mars as seen by the Opportunity rover. Credit: NASA/JPL/Caltech, color by Stu Atkinson

The Opportunity rover is now exploring Endeavour Crater and this color view of shows a stunning landscape on Mars. This view of a Red Planet “rock garden” is the colorized handiwork of Stu Atkinson, a member of Unmanned Spaceflight and author of the Road to Endeavour blog. This is actually an ejecta field of rocks thrown about after the impact that created this huge crater, and has been an exciting region for the MER scientists to explore.

Dense filaments of gas in the IC5146 interstellar cloud. This image was taken by ESA’s Herschel space observatory at infrared wavelengths 70, 250 and 500 microns. Stars are forming along these filaments. Credits: ESA/Herschel/SPIRE/PACS/D. Arzoumanian (CEA Saclay) for the “Gould Belt survey” Key Programme Consortium.

Its true there is no sound in empty interstellar space, but the Herschel space observatory has observed the cosmic equivalent of sonic booms. Filaments like this have been sighted before by other infrared satellites, but they have never been seen clearly enough to have their widths measure.

A huge and spectacular prominence eruption on the Sun, June 7, 2011. Credit: NASA/Solar Dynamics Observatory

On June 7, 2011 an amazingly massive and spectacular event took place on the Sun: a huge prominence eruption, marked by a solar flare and release of energetic particles. It was an event that was heretofore unseen on the Sun, but the Solar Dynamics Observatory saw it all.

A view of a recent aurora from the ISS. Credit: NASA

With the Sun’s activities ramping up, we saw more aurorae. What better place to see them than from the International Space Station? This view taken by astroanut Mike Fossum shows a stunning aurora, with two Russian vehicles docked to the station in the foreground.

The star cluster NGC 2100 in the Large Magellanic Cloud. Credit: ESO

A brilliant cluster of stars in the Large Magellanic Cloud, open cluster NGC 2100 shines brightly, competing with the nearby Tarantula Nebula for bragging rights in this image from ESO’s New Technology Telescope (NTT).

Martian Vista from Opportunity nearing Endeavour Crater on Sol 2678 - August 2011 Large ejecta blocks from the nearby, small Odyssey crater are visible in the middle, foreground and are Opportunity’s next science target in this photo mosaic taken 2 martian days ago on Sol 2678 (Aug. 6). Opportunity is now less than 400 feet from the foothills of Endeavour Crater and will soon make first landfall at Spirit Point - off to the left. At Endeavour, Opportunity will investigate the oldest minerals deposits she has ever visited from billions of years ago and which may hold clues to environments that were potentially habitable for microbial life. This photo mosaic shows portions of the discontinuous crater rim – Cape Tribulation at right. Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

Universe Today’s Ken Kremer helped bring this stunning image of the hills around Endeavour Crater to light, as the Opportunity Rover headed towards the crater in August.

Astrophoto: Moon Covers Venus by Kevin Jung
Moon Covers Venus. Credit: Kevin Jung

Another amateur astrophoto shows an occultation of Venus by the Moon, taken by Kevin Jung.

X-ray Image of Tycho's Supernova Remnant. (NASA/CXC/Rutgers/K.Eriksen et al.)

The Chandra X-Ray Observatory took a brand new, deep look inside the Tycho Supernova Remnant, providing a nearly three-dimensional view of the iconic space object.

Comet Lovejoy by Barry Armstead
Comet Lovejoy. Image Credit: Barry Armstead

And just the past several days southern skywatchers have been treated to the beautiful sights of Comet Lovejoy — which was also seen from the International Space Station. Go take a look!

These are just a sampling of the great images we’ve seen in 2011. Here’s to more great views in 2012!

Top Astronomy Events Coming Up in 2012

Stargazing Credit: http://twitter.com/VirtualAstro

[/caption]

As 2011 is drawing to a close, the festive season is here and many of us are winding down and looking forward to the holidays. But this is a great time to look ahead to 2012 and pencil into our calendar and diaries the top astronomical events we don’t want to miss next year.

2012 is going to be a great year for astronomy observing, with some rare and exciting things taking place and a good outlook with some of the regular annual events.

So what top wonders should we expect to see and what will 2012 bring?

Conjunction of Venus and Jupiter

Venus & Jupiter Conjunction Credit: Anthony Arrigo UtahSkies.org

On March 15th the Planets Venus and Jupiter will be within 3 degrees and very close to each other in the early evening sky. This will be quite a spectacle as both planets are very bright (Venus being the brightest) and the pair will burn brightly together like a pair of alien eyes watching us after the Sun sets.

This conjunction (where planets group close together as seen from Earth) will be a fantastic visual and photographic opportunity, as it’s not often you get the brightest Planets in our Solar System so close together.

Transit of Venus

Transit of Venus Credit: Australian Space Alliance

For many, the transit of Venus is the year’s most anticipated astronomical event and it takes place on June 5th – 6th. The Planet Venus will pass between the Earth and the Sun and you will see Venus (a small black circle) slowly move across, or “transit” the disc of the Sun.

Transits of Venus are very rare and only a few have been witnessed since the dawn of the telescope. Be sure not to miss this very rare event as the next one isn’t visible for over another 100 years from now in 2117 and the next after that is in 2125.

The full transit of Venus in 2012 will be visible in North America, the northwest part of South America, Western Pacific, North East Asia, Japan, Australia and New Zealand. Other parts of the world will see a partial transit such as observers in the UK, who will only be able to see the last part of the transit as the Sun rises.

First contact will be at 22:09 UT and final contact will be at 04:49 UT

Take note! You have to use the right equipment for viewing the Sun, such as eclipse glasses, solar filters, or projection through a telescope. Never ever look directly at the Sun and never look at it through a normal telescope or binoculars – You will be permanently blinded! The transit of Venus will be a very popular event, so contact your local astronomy group and see if they are holding an event to celebrate this rare occasion.

Meteor Showers

Don't Miss the Major 2012 Meteor Showers Credit: Shooting Star Wallpapers

2011 was a poor year for meteor showers due to the presence of a largely illuminated Moon on all of the major showers; this prevented all but the brightest meteors being seen.

In contrast 2012 brings a welcome respite from the glare of the Moon as it gives little or no interference with this year’s major showers. The only other issue left to contend with is the weather, but if you have clear skies on the evenings of these celestial fireworks, you are in for a treat.

  • The Quadrantid Meteor Shower peak is narrow and just before dawn on January 4th this shower is expected to have a peak rate (ZHR) of around 80 meteors per hour.
  • The Perseid Meteor Shower peak is fairly broad with activity increasing on the evenings of the August 9th and 10th with the showers peak on the morning of the 12th. Perseids are the most popular meteor shower of the year as it tends to be warm and the shower has very bright meteors and fireballs, with rates of 100+ an hour at its peak.
  • The Geminid Meteor Shower is probably the best meteor shower of the year with high rates of slow bright meteors. The peak is very broad and rates of 100+ meteors per hour can be seen. The best time to look out for Geminids is on the evenings of the 12th to 14th December, but they can be seen much earlier or later than the peak.

If you want to find out more and enjoy the meteor showers of 2012, why not join in with a meteorwatch and visit meteorwatch.org

Jupiter and the Moon

Occultation of Jupiter by the Moon on July 15th as seen from Southern England Credit: Adrian West

European observers are in for a very rare treat as the Moon briefly hides the planet Jupiter on the morning of July 15th. This “lunar occultation” can be seen from southern England and parts of Europe at approximately 1:50am UT (dependant on location) and the planet re-emerges from the dark lunar limb at approximately 3:10am UT.

This is a great chance to watch this rare and bright event, and it will also be a fantastic imaging opportunity.

Annular Eclipse

Annular Eclipse Credit: Kitt Peak Observatory

American observers will have treat on May 20th with an annular eclipse of the Sun. The eclipse will be visible from many western US states and a partial eclipse visible from most of North America.

Because the Moon’s orbit is not a perfect circle and is slightly elliptical, it moves closer and further away from us slightly in its orbit by 13% and on July 15th it is at its furthest point away from the Earth as it passes in front of the Sun.

Normally the Moon covers the entire disc of the Sun and creates a total solar eclipse, but because the Moon is at its furthest point in its orbit on the 15th, we get an annular eclipse, where we can still see a ring of bright light around the Sun, but we don’t get totality.

The eclipse starts roughly at 6:20pm local time for the Western US states and lasts for four and a half minutes.

As mentioned earlier; never, ever look at the Sun without proper protection such as eclipse glasses or filters for equipment! This can damage your eyes and permanently blind you. This is the same for cameras; the sensitive chips inside can be damaged.

The World Not Ending

End Of The World

Finally we get to December 21st, in which astronomy-minded folks will celebrate the solstice. But in case you haven’t heard, some have prophesied the end of the world, saying the Mayan calendar ends. This has been the subject of much discussion, comedy and media coverage, and it has even been made into films.

Will the Antichrist press the red button and will there be the Rapture? Will the Earth reverse its magnetic poles, or will we get wiped out by a solar flare, rogue comet or asteroid?

Nope, probably not. You can read our entire series which explains why this whole 2012 end-of-the-world craze is complete hokum.

All I know is 2012 is going to be a great year for astronomy with some very interesting, rare events taking place, with many more regular events to see, as well.

I’m sure it’s not going to end.