A Massive Solar Storm was Detected on Earth, Mars, and the Moon

Giant solar eruption felt on Earth, Moon and Mars. Credit: ESA

A coronal mass ejection erupted from the Sun on October 28th, 2021, spreading solar energetic particles (SEPs) across a volume of space measuring more than 250 million km (155.34 million mi) wide. This means that the event was felt on Earth, Mars, and the Moon, which was on the opposite side of the Sun at the time. It was also the first time that a solar event was measured simultaneously by robotic probes on Earth, Mars, and the Moon, which included ESA’s ExoMars Trace Gas Orbiter (TGO) and Eu:CROPIS orbiter, NASA’s Curiosity rover and Lunar Reconnaissance Orbiter (LRO), and China’s Chang’e-4 lander.

The ESA’s Solar Orbiter, Solar and Heliospheric Observatory (SOHO), and BepiColombo missions were also caught by the outburst and provided additional measurements of this solar event. The study of Solar Particle Events (SPE) – aka. solar flares – and “space weather” phenomena are vital to missions operating in Low Earth Orbit (LEO) – for example, crews living and working on the International Space Station (ISS). But it is especially vital for missions destined for locations beyond LEO and cislunar space, including Project Artemis and the many proposals for sending astronauts to the Moon and Mars in the coming years.

Continue reading “A Massive Solar Storm was Detected on Earth, Mars, and the Moon”

Parker Solar Probe Flies Close Enough to the Sun to See the Source of the Fast Solar Wind

NASA's Parker Solar Probe studies the fast solar wind and its origins on the Sun. Credit: NASA
NASA's Parker Solar Probe studies the fast solar wind and its origins on the Sun. Credit: NASA

Where does the solar wind come from? That’s a question solar physicists have wanted an answer to for decades. Now, the Parker Solar Probe is showing them exactly where this stream of particles exits our star on a journey out through interplanetary space.

Continue reading “Parker Solar Probe Flies Close Enough to the Sun to See the Source of the Fast Solar Wind”

New Detailed Images of the Sun from the World’s Most Powerful Ground-Based Solar Telescope

A collage of new solar images captured by the Inouye Solar Telescope, which is a small amount of solar data obtained during the Inouye’s first year of operations throughout its commissioning phase. Images include sunspots and quiet regions of the Sun, known as convection cells. (Credit: NSF/AURA/NSO)

Our Sun continues to demonstrate its awesome power in a breathtaking collection of recent images taken by the U.S. National Science Foundation’s (NSF’s) Daniel Inouye Solar Telescope, aka Inouye Solar Telescope, which is the world’s largest and most powerful ground-based solar telescope. These images, taken by one of Inouye’s first-generation instruments, the Visible-Broadband Imager (VBI), show our Sun in incredible, up-close detail.

Continue reading “New Detailed Images of the Sun from the World’s Most Powerful Ground-Based Solar Telescope”

China’s New Solar Observatory is Almost Ready for its Trials

The infrared system for the accurate measurement of solar magnetic field (AIMS) at Lenghu Astronomical Observation Base in the city of Mangya, Northwest China’s Qinghai Province Photo: IC
The infrared system for the accurate measurement of solar magnetic field (AIMS) at Lenghu Astronomical Observation Base in the city of Mangya, Northwest China’s Qinghai Province Photo: IC

There’s a new solar observing facility taking shape in China. It lies far up on a mountain near Mangya City in the Mongol and Tibetan autonomous prefecture of Qinghai. The telescope is reputed to be the world’s first mid-infrared telescope built for accurate measurements of the solar magnetic field.

Continue reading “China’s New Solar Observatory is Almost Ready for its Trials”

Solar Orbiter Continues to Get Closer to the Sun, Revealing More and More With Each Pass

An artists concept of the Solar Orbiter spacecraft studying the Sun. Credit: ESA.

On April 10th, ESA’s Solar Orbiter made its closest flyby of the Sun, coming to within just 29% of the distance from the Earth to the Sun. From this vantage point, the spacecraft is performing close-up studies of our Sun and inner heliosphere. This is basically uncharted territory, as we’ve never had a spacecraft this close to the Sun.

One of the goals of the mission is to figure out why the Sun’s corona — its outer atmosphere — is so hot. The corona can reach temperatures of 2 million degrees C, vastly hotter than its 5,500 C surface. A new paper based on Solar Orbiter data, may offer some clues.

Continue reading “Solar Orbiter Continues to Get Closer to the Sun, Revealing More and More With Each Pass”

NASA Restores a Spacecraft by Turning it Off and Then On Again

The Interstellar Boundary Explorer. Credit: NASA

When faced with a potentially mission-ending problem with NASA’s 15-year-old Interstellar Boundary Explorer (IBEX) spacecraft, engineers performed a time-honored procedure to fix it: they turned it off and then turned it back on again.

Success! IBEX is now fully operational again.

Actually, they told the spacecraft to turn itself off and IBEX – which unlike the famous HAL in “2001: A Space Odyssey,”– obeyed the command and then turned itself back on again.

Continue reading “NASA Restores a Spacecraft by Turning it Off and Then On Again”

Birds use Dynamic Soaring to Pick Up Velocity. We Could Use a Similar Trick to Go Interstellar

The Solar Sail demonstration mission. Credit: NASA

To stand on a coastal shore and watch how eagles, ravens, seagulls, and crows take flight in high winds. it’s an inspiring sight, to be sure. Additionally, it illustrates an important concept in aerial mechanics, like how the proper angling of wings can allow birds to exploit differences in wind speed to hover in mid-air. Similarly, birds can use these same differences in wind speed to gain bursts of velocity to soar and dive. These same lessons can be applied to space, where spacecraft could perform special maneuvers to pick up bursts of speed from “space weather” (solar wind).

This was the subject of a recent study led by researchers from McGill University in Montreal, Quebec. By circling between regions of the heliosphere with different wind speeds, they state, a spacecraft would be capable of “dynamic soaring” the same way avian species are. Such a spacecraft would not require propellant (which makes up the biggest mass fraction of conventional missions) and would need only a minimal power supply. Their proposal is one of many concepts for low-mass, low-cost missions that could become interplanetary (or interstellar) explorers.

Continue reading “Birds use Dynamic Soaring to Pick Up Velocity. We Could Use a Similar Trick to Go Interstellar”

NASA Tests a Solar Sail Segment of its Enormous Solar Cruiser Mission

Artist's concept of the Solar Cruiser mission. Credit: NASA

A team led by NASA’s Marshall Space Flight Center (MSFC) was recently selected to develop a solar sail spacecraft that would launch sometime in 2025. Known as the Solar Cruiser, this mission of opportunity measures 1653 m2 (~17790 ft2) in area and is about the same thickness as a human hair. Sponsored by the Science Mission Directorate’s (SMD) Heliophysics Division, this technology demonstrator will integrate several new solar sail technologies developed by various organizations to mature solar sail technology for future missions.

In a recent video released by NASA, we see engineers and industry partners at the MSFC in Huntsville, Alabama, unfurling a segment of the prototype solar sail. The video, taken on October 13th, shows how the teams used two 30.5 m (100-foot) lightweight composite booms to unfurl a 400 m2 (4,300 ft2) quadrant of the solar sail prototype for the first time. Once realized, the Solar Cruiser demonstrator will validate technologies that enable future missions to study the Sun, its interaction with Earth, and its extended atmosphere (aka. heliosphere).

Continue reading “NASA Tests a Solar Sail Segment of its Enormous Solar Cruiser Mission”

Solar Orbiter Records a Stunning Timelapse of Solar Activity as it Completes its Latest Flyby

The darker area on this image of the Sun's surface is the southern extension of the northern hemisphere polar corona. The coronal hole is a source of fast-moving streams of particles from the Sun, which can cause auroras here on Earth. Image: NASA/SDO

The sun is currently sleeping. Its surface and corona are relatively quiet as it prepares to ramp up for an expected phase of high activity in 2025. This past October, the ESA’s Solar Orbiter was able to sneak in a close-up peak at the Sun as it slumbers.

Continue reading “Solar Orbiter Records a Stunning Timelapse of Solar Activity as it Completes its Latest Flyby”

Solar Orbiter Captures the First Ever Image of a Magnetic Solar Switchback on the Sun

A Solar Dynamics Observatory view of solar magnetic loops. A Solar Orbiter captured an image of a solar magnetic switchback in loops similar to these. Courtesy NASA/SDO

On March 25, 2022, the ESA/NASA Solar Orbiter spacecraft closed in on the Sun, getting ready to study it during a flyby. Its Metis coronagraph instrument, which blocks out the Sun so the spacecraft can study its outer atmosphere, recorded an image of something strange: a distorted, S-shaped “kink” in a small area of plasma flowing from the Sun. It was a magnetic solar switchback.

Continue reading “Solar Orbiter Captures the First Ever Image of a Magnetic Solar Switchback on the Sun”