A Sunspot, Revealed in Incredible Detail by Europe’s Newly Upgraded GREGOR Telescope

Sunspot image from the newly upgraded GREGOR Telescope

I wear glasses for astigmatism. But, as a stargazer with a visual impediment, turns out I’m in good company. The GREGOR telescope, a solar telescope located at the Teide Observatory in the Canary Islands also suffered from an astigmatism that was recently corrected…to very stellar results.

Opened in 2012, GREGOR is part of a new generation of solar (Sun observing) telescopes. Before 2002, solar scopes were quite small in diameter; under one metre. The Sun is close, and VERY bright, so your telescope doesn’t need to be as wide as those used for deep-space imaging. GREGOR itself is 1.5m (compare that to some of the largest telescopes imaging distant faint objects like the Keck Observatory at 10m. But without the special filters/optics used by a solar scope, a regular telescope staring at the Sun would be destroyed by the Sun’s light). A telescope’s power is often related to its ability to magnify. But just like enlarging a low-resolution photo, the more you magnify, the fuzzier the image becomes (that’s why those scenes in crime shows where they yell ‘enhance!’ and a photo grows to reveal a criminal are not realistic). Ultimately, a telescope’s diameter provides the higher resolution photo. GREGOR is designed to take those high-resolution images of our local Star. How high resolution? Imagine being able to distinguish a 50km wide feature on the Sun from 140 million km away – basically the same as being able to read the text on a coin from a kilometre away.

GREGOR Telescope and redesign components – KIS
Continue reading “A Sunspot, Revealed in Incredible Detail by Europe’s Newly Upgraded GREGOR Telescope”

New Solar Model Successfully Predicted Seven of the Sun’s Last Nine Big Flares

X9.3 Flare blasts off the Sun. Image credit: NASA/GSFC/SDO
X9.3 Flare blasts off the Sun. Image credit: NASA/GSFC/SDO

Since it launched in 2010, the Solar Dynamics Observatory has helped scientists understand how the Sun’s magnetic field is generated and structured, and what causes solar flares. One of the main goals of the mission was to be able to create forecasts for predicting activity on the Sun.   

Using mission data from the past 10 years, SDO scientists have now developed a new model that successfully predicted seven of the Sun’s biggest flares from the last solar cycle, out of a set of nine.

Continue reading “New Solar Model Successfully Predicted Seven of the Sun’s Last Nine Big Flares”

Solar Storms Might Confuse Whale Navigation, and Make Them More Likely to Strand Themselves

California gray whales like these mothers and calves are 4.3 times more likely to strand themselves during a burst of cosmic radio static from a solar flare, further evidence that they navigate by Earth's magnetic field. Image Credit: Nicholas Metheny NOAA

The Gray Whale is the 10th largest creature alive today, and the 9 creatures larger than it are all whales, too. Gray Whales are known for their epic migration routes, sometimes covering more than 16,000 km (10,000 miles) on their two-way trips between their feeding grounds and their breeding grounds. Researchers don’t have a complete understanding of how whales navigate these great distances, but some evidence suggests that Earth’s magnetism has something to do with it.

Continue reading “Solar Storms Might Confuse Whale Navigation, and Make Them More Likely to Strand Themselves”