How Many Planets are in the Solar System?

How Many Planets Are in the Solar System?
How Many Planets Are in the Solar System?

I’m just going to warn you, this is a controversial topic. Some people get pretty grumpy when you ask: how many planets are in the Solar System? Is it eight, ten, or more?

I promise you this, though, we’re never going back to nine planets… ever.

When many of us grew up, there were nine planets in the Solar System. It was like a fixed point in our brains.

As kids, memorizing this list was an early right of passage of nerd pride: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto.

But then in 2005, Mike Brown discovered Eris, an icy object thought to be about the same size as Pluto, out beyond its orbit.

That would bring the total number of planets to ten. Right? There’s no turning back, textbooks would need to be changed.
In order to settle the dispute, the International Astronomical Union met in 2006, and argued for, and against Pluto’s planethood. Some astronomers advocated widening the number of planets to twelve, including Pluto, its moon Charon, the Asteroid Ceres, and the newly discovered Eris.

In the end, they changed the definition of what makes a planet, and sadly, Pluto doesn’t make the cut:

Here are the new requirements of planethood status:

  1. A planet has to orbit the Sun. Okay fine, Pluto does that.
  2. A planet needs enough gravity to pull itself into a sphere. Okay, spherical. Pluto’s fine there too.
  3. A planet needs to have cleared out its orbit of other objects. Uh oh, Pluto hasn’t done that.

For example, planet Earth accounts for a million times the rest of the material in its orbit, while Pluto is just a fraction of the icy objects in its realm.

The final decision was to demote Pluto from planet to dwarf planet.

But don’t despair, Pluto is in good company.

Ceres. Image credit: NASA
Ceres. Image credit: NASA
There’s Ceres, the first asteroid ever discovered, and the smallest of the dwarf planets. The surface of Ceres is made of ice and rock, and it might even have a liquid ocean under its surface. NASA’s Dawn mission is flying there right now to give us close up pictures for the first time.

Haumea, named after the Hawaiian goddess of fertility, is about a third the mass of Pluto, and has just enough gravity to pull itself into an ellipsoid, or egg shape. Even though it’s smaller, it’s got moons of its own.

Makemake. Credit: NASA
Makemake. Credit: NASA
Makemake, a much larger Kuiper belt object, has a diameter about two-thirds the size of Pluto. It was discovered in 2005 by Mike Brown and his team. So far, Makemake doesn’t seem to have any moons.

Eris is the most massive known dwarf planet, and the one that helped turn our definition of a planet upside-down. It’s 27% more massive than Pluto and the ninth most massive body that orbits the Sun. It even has a moon: Dysnomia.

Pluto. Credit: ESO
Pluto. Credit: ESO
And of course, Pluto. The founding member of the dwarf family.

Want an easy way to remember the eight planets, in order? Just remember this mnemonic: my very excellent mother just served us noodles.

For all you currently writing angry tweets to Mike Brown, hold on a sec. Changing Pluto’s categorization is an important step that really needed to happen.

The more we discover about our Universe, the more we realize just how strange and wonderful it is. When Pluto was discovered 80 years ago, we never could have expected the variety of objects in the Solar System. Categorizing Pluto as a dwarf planet helps us better describe our celestial home.

So, our Solar System now has eight planets, and five dwarf planets.

Rare Spectacular Triple Planet Conjunction Wows World! – Astrophoto Gallery

Planets conjunction over Mont-Saint-Michel, Normandy, France on May 26. Credit: Thierry Legault - www.astrophoto.fr

Triple planets (Venus/Jupiter/Mercury) conjunction over Mont-Saint-Michel, Normandy, France on May 26. Credit: Thierry Legault –
www.astrophoto.fr
Update: See expanded Conjunction astrophoto gallery below[/caption]

The rare astronomical coincidence of a spectacular triangular triple conjunction of 3 bright planets happening right now is certainly wowing the entire World of Earthlings! That is if our gallery of astrophotos assembled here is any indication.

Right at sunset, our Solar System’s two brightest planets – Venus and Jupiter – as well as the sun’s closest planet Mercury are very closely aligned for about a week in late May 2013 – starting several days ago and continuing throughout this week.

And, for an extra special bonus – did you know that a pair of spacecraft from Earth are orbiting two of those planets?

Have you seen it yet ?

Well you’re are in for a celestial treat. The conjunction is visible to the naked eye – look West to Northwest shortly after sunset. No telescopes or binoculars needed.

Triple conjunction shot on May 26 from a mile high in Payson,Az.  4 second exposure, ISO200, Canon 10D, 80mm f/5 lens. Credit: Chris Schur- http://www.schursastrophotography.com
Triple conjunction shot on May 26 from a mile high in Payson,Az. 4 second exposure, ISO200, Canon 10D, 80mm f/5 lens. Credit: Chris Schur- http://www.schursastrophotography.com

Just check out our Universe Today collection of newly snapped astrophoto’s and videos sent to Nancy and Ken by stargazing enthusiasts from across the globe. See an earlier gallery – here.

Throughout May, the trio of wandering planets have been gradually gathering closer and closer.

On May 26 and 27, Venus, Jupiter and Mercury appear just 3 degrees apart as a spectacular triangularly shaped object in the sunset skies – which
adds a palatial pallet of splendid hues not possible at higher elevations.

And don’t dawdle if you want to see this celestial feast. The best times are 30 to 60 minutes after sunset – because thereafter they’ll disappear below the horizon.

The sky show will continue into late May as the planets alignment changes every day.

On May 28, Venus and Jupiter close in to within just 1 degree.

And on May 30 & 31, Venus, Jupiter and Mercury will form an imaginary line in the sky.

Triple planetary conjunctions are a rather rare occurrence. The last one took place in May 2011. And we won’t see another one until October 2015.

Indeed the wandering trio are also currently the three brightest planets visible. Venus is about magnitude minus 4, Jupiter is about minus 2.

While you’re enjoying the fantastic view, ponder this: The three planets are also joined by two orbiting spacecraft from humanity. NASA’s MESSENGER is orbiting Mercury. ESA’s Venus Express is orbiting Venus. And NASA’s Juno spacecraft is on a long looping trajectory to Jupiter.

Send Ken you conjunction photos to post here.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:

June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM

June 11: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

May 25 conjunction over Malta. Canon 450D with a 55mm. lens and an exposure of 1/2 second at ISO 200 on a tripod.  Credit: Leonard Ellul-Mercer
May 25 conjunction over Malta. Canon 450D with a 55mm. lens and an exposure of 1/2 second at ISO 200 on a tripod. Credit: Leonard Ellul-Mercer
May 26 triple conjunction from Warwick, NY snapped from Canon Rebel, 100mm – 300mm lens.  Credit: Pietro Carboni
May 26 triple conjunction from Warwick, NY snapped from Canon Rebel, 100mm – 300mm lens. Credit: Pietro Carboni
Triple conjunction from  Hondo, Texas taken with a Nikon D800 @ ISO 400 and a 2 second exposure with a Nikon 300mm Lens at F/4.  Credit: Adrian New
Triple conjunction from Hondo, Texas taken with a Nikon D800 @ ISO 400 and a 2 second exposure with a Nikon 300mm Lens at F/4. Credit: Adrian New
Sunset conjunction with fast moving clouds on May 26 through 10 x 50 binoculars from a seashore town -Marina di Pisa, Tuscany, Italy. Credit: Giuseppe Petricca
Sunset conjunction with fast moving clouds on May 26 through 10 x 50 binoculars from a seashore town -Marina di Pisa, Tuscany, Italy. Credit: Giuseppe Petricca


Caption: Taken on 2013-05-23 from Salem, Missouri. Canon T1i, Nikkor 105mm lens. 297 1/4s at 1s interval. Images assembled by QuickTime Pro. Credit: Joseph Shuster

May 26 sunset conjunction from Princeton, NJ. Credit: Ken Kremer -kenkremer.com
May 26 sunset conjunction from Princeton, NJ. Credit: Ken Kremer -kenkremer.com
Triple Planetary conjunction over Onset MA. Shot with a Nikon d7000 1/200 f 4 iso 100 at 110mm. Credit: Phillip Damiano
Triple Planetary conjunction over Onset MA. Shot with a Nikon d7000 1/200 f 4 iso 100 at 110mm. Credit: Phillip Damiano
Panoramic view over Almada City and Lisbon at the Nautical Twilight, with the Full moon rising above the Eastern horizon (right side of the image), while at the same time but in the opposite direction, the planets Venus, Mercury and Jupiter, are aligned in a triangle formation, setting in the Western horizon (left side of the image).In this panoramic picture is also visible the smooth light transition in the sky, with the end of Nautical Twilight and the beginning of Astronomical Twilight (almost night), at right. Facing to North, is visible the great lighted Monument Christ the King and at the left side of it, part of the 25 April Bridge that connects Almada to Lisbon.  Canon 50D - ISO200; f/4; Exp. 1,6 Sec; 35mm. Panoramic of 10 images with about 200º, taken at 21h42 in 25/05/2013.  Credit: Miguel Claro - www.miguelclaro.com
Panoramic view over Almada City and Lisbon at the Nautical Twilight, with the Full moon rising above the Eastern horizon (right side of the image), while at the same time but in the opposite direction, the planets Venus, Mercury and Jupiter, are aligned in a triangle formation, setting in the Western horizon (left side of the image).In this panoramic picture is also visible the smooth light transition in the sky, with the end of Nautical Twilight and the beginning of Astronomical Twilight (almost night), at right. Facing to North, is visible the great lighted Monument Christ the King and at the left side of it, part of the 25 April Bridge that connects Almada to Lisbon. Canon 50D – ISO200; f/4; Exp. 1,6 Sec; 35mm. Panoramic of 10 images with about 200º, taken at 21h42 in 25/05/2013. Credit: Miguel Claro – www.miguelclaro.com
The triple conjunction of Venus, Mercury and Jupiter as seen over an Arizona desert landscape. Credit and copyright: Robert Sparks.
The triple conjunction of Venus, Mercury and Jupiter as seen over an Arizona desert landscape. Credit and copyright: Robert Sparks.
Jupiter, Venus and Mercury triple conjunction May 26 seen here reflecting off Chatsworth Lake in Chatsworth, NJ. Jupiter (on the left) was 2.4° from Mercury (upper-right in the sky) and 2.0° from Venus (bottom right in the sky), while Venus and Mercury were 1.9° apart. Venus was at 2.6° altitude. Canon EOS 6D, 105 mm focal length, 1.3 seconds, f/6.3, ISO 800. Credit: Joe Stieber - sjastro.org/
Jupiter, Venus and Mercury triple conjunction seen here reflecting off Chatsworth Lake in Chatsworth, NJ. Jupiter (on the left) was 2.4° from Mercury (upper-right in the sky) and 2.0° from Venus (bottom right in the sky), while Venus and Mercury were 1.9° apart. Venus was at 2.6° altitude. Canon EOS 6D, 105 mm focal length, 1.3 seconds, f/6.3, ISO 800. Credit: Joe Stieber – sjastro.org/
Triple conjunction on May 27 with WBZ radio towers south east of Boston.  Hampton Hill, Hull, MA.  Nikon D3x -iso200- 1.3 sec.at f2.8. Credit: Richard W. Green
Triple conjunction on May 27 with WBZ radio towers south east of Boston. Hampton Hill, Hull, MA. Nikon D3x -iso200- 1.3 sec.at f2.8. Credit: Richard W. Green

Opportunity Discovers Clays Favorable to Martian Biology and Sets Sail for Motherlode of New Clues

Opportunity established a new American driving record for a vehicle on another world on May 15, 2013 (Sol 3309) and made history by driving ahead from this point at Cape York. This navcam mosaic shows the view forward to her next destinations of Solander Point and Cape Tribulation along the lengthy rim of huge Endeavour crater spanning 14 miles (22 km) in diameter. Opportunity discovered clay minerals at Cape York and stands as the most favorable location for Martian biology discovered during her entire nearly 10 year long mission to Mars. Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo

NASA’s Opportunity Mars rover discovered clay minerals at Cape York ridge along the rim of Endeavour crater – seen in this photo mosaic – which stands as the most favorable location for Martian biology discovered during her entire nearly 10 year long mission to Mars. Opportunity also established a new American driving record for a vehicle on another world on May 15, 2013 (Sol 3309) and made history by driving ahead from this point at Cape York. This navcam photo mosaic shows the view forward to her next destinations of Solander Point and Cape Tribulation along the lengthy rim of huge Endeavour crater spanning 14 miles (22 km) in diameter.
Credit: NASA/JPL/Cornell/Ken Kremer (kenkremer.com)/Marco Di Lorenzo
Updated: Illustrated below with a collection of imagery, mosaics and route maps[/caption]

Now nearly a decade into her planned 3 month only expedition to Mars, NASA’s longest living rover Opportunity, struck gold and has just discovered the strongest evidence to date for an environment favorable to ancient Martian biology – and she has set sail hunting for a motherlode of new clues amongst fabulous looking terrain!!

Barely two weeks ago in mid-May 2013, Opportunity’s analysis of a new rock target named “Esperance” confirmed that it is composed of a “clay that had been intensely altered by relatively neutral pH water – representing the most favorable conditions for biology that Opportunity has yet seen in the rock histories it has encountered,” NASA said in a statement.

The finding of a fractured rock loaded with clay minerals and ravaged by flowing liquid water in which life could have thrived amounts to a scientific home run for the golf cart sized rover!

“Water that moved through fractures during this rock’s history would have provided more favorable conditions for biology than any other wet environment recorded in rocks Opportunity has seen,” said the mission’s principal investigator Prof. Steve Squyres of Cornell University, Ithaca, N.Y.

Opportunity accomplished the ground breaking new discovery by exposing the interior of Esperance with her still functioning Rock Abrasion Tool (RAT) and examining a pristine patch using the microscopic camera and X-Ray spectrometer on the end of her 3 foot long robotic arm.

The pale rock in the upper center of this image, about the size of a human forearm, includes a target called "Esperance," which was inspected by NASA's Mars Exploration Rover Opportunity. Data from the rover's alpha particle X-ray spectrometer (APXS) indicate that Esperance's composition is higher in aluminum and silica, and lower in calcium and iron, than other rocks Opportunity has examined in more than nine years on Mars. Preliminary interpretation points to clay mineral content due to intensive alteration by water. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ
The pale rock in the upper center of this image, about the size of a human forearm, includes a target called “Esperance,” which was inspected by NASA’s Mars Exploration Rover Opportunity. Data from the rover’s alpha particle X-ray spectrometer (APXS) indicate that Esperance’s composition is higher in aluminum and silica, and lower in calcium and iron, than other rocks Opportunity has examined in more than nine years on Mars. Preliminary interpretation points to clay mineral content due to intensive alteration by water. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ

The robot made the discovery at the conclusion of a 20 month long science expedition circling around a low ridge called “Cape York” – which she has just departed on a southerly heading trekking around the eroded rim of the huge crater named “Endeavour.”

“Esperance was so important, we committed several weeks to getting this one measurement of it, even though we knew the clock was ticking.”

Esperance stems from a time when the Red Planet was far warmer and wetter billions of years ago.

“What’s so special about Esperance is that there was enough water not only for reactions that produced clay minerals, but also enough to flush out ions set loose by those reactions, so that Opportunity can clearly see the alteration,” said Scott McLennan of the State University of New York, Stony Brook, a long-term planner for Opportunity’s science team.

Close-Up of 'Esperance' After Abrasion by Opportunity This mosaic of four frames shot by the microscopic imager on the robotic arm of NASA's Mars Exploration Rover Opportunity shows a rock target called "Esperance" after some of the rock's surface had been removed by Opportunity's rock abrasion tool, or RAT. The component images were taken on Sol 3305 on Mars (May 11, 2013). The area shown is about 2.4 inches (6 centimeters) across. Credit: NASA/JPL-Caltech/Cornell/USGS
Close-Up of ‘Esperance’ After Abrasion by Opportunity
This mosaic of four frames shot by the microscopic imager on the robotic arm of NASA’s Mars Exploration Rover Opportunity shows a rock target called “Esperance” after some of the rock’s surface had been removed by Opportunity’s rock abrasion tool, or RAT. The component images were taken on Sol 3305 on Mars (May 11, 2013). The area shown is about 2.4 inches (6 centimeters) across. Credit: NASA/JPL-Caltech/Cornell/USGS

Esperance is unlike any rock previously investigated by Opportunity; containing far more aluminum and silica which is indicative of clay minerals and lower levels of calcium and iron.

Most, but not all of the rocks inspected to date by Opportunity were formed in an environment of highly acidic water that is extremely harsh to most life forms.

Clay minerals typically form in potentially drinkable, neutral water that is not extremely acidic or basic.

Previously at Cape York, Opportunity had found another outcrop containing a small amount of clay minerals formed by exposure to water called “Whitewater Lake.”

“There appears to have been extensive, but weak, alteration of Whitewater Lake, but intense alteration of Esperance along fractures that provided conduits for fluid flow,” said Squyres.

Opportunity rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013, coinciding with her 9th anniversary on Mars.  “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. This panoramic view was snapped from ‘Matijevic Hill’ on Cape York ridge at Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer
Opportunity rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013, coinciding with her 9th anniversary on Mars. “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. This panoramic view was snapped from ‘Matijevic Hill’ on Cape York ridge at Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer

Cape York is a hilly segment of the rim of Endeavour crater which spans 14 miles (22 km) across – where the robot arrived in mid-2011 and will spend her remaining life.

Opportunity has now set sail for her next crater rim destination named “Solander Point”, an area about 1.4 miles (2.2 kilometers) away – due south from “Cape York.”

“Our next destination will be Solander Point,” Squyres told Universe Today.

Along the way, Opportunity will soon cross “Botany Bay” and “Sutherland Point”, last seen when Opportunity first arrived at Cape York.

Eventually she will continue further south to a rim segment named ‘Cape Tribulation’ which holds huge caches of clay minerals.

The rover must arrive at “Solander Point” before the onset of her 6th Martian winter so that she can be advantageously tilted along north facing slopes to soak up the maximum amount of sun by her power generating solar wings. She might pull up around August.

On the other side of Mars, Opportunity’s new sister rover Curiosity also recently discovered clay minerals on the floor of her landing site inside Gale Crater.

Curiosity found the clay minerals – and a habitat that could support life – after analyzing powdery drill tailings from the Yellowknife Bay basin worksite with her on board state-of-the-art chemistry labs.

Just a week ago on May 15 (Sol 3309), Opportunity broke through the 40 year old American distance driving record set back in December 1972 by Apollo 17 astronauts Eugene Cernan and Harrison Schmitt.

But she is not sitting still resting on her laurels!

This past week the robots handlers’ back on Earth put the pedal to the metal and pushed her forward another quarter mile during 5 additional drives over 7 Sols, or Martian days. Thus her total odometry since landing on 24 January 2004 now stands at 22.45 miles (36.14 kilometers).

Opportunity will blast through the world record milestone of 23 miles (37 kilometers) held by the Lunokhod 2 lunar rover (from the Soviet Union), somewhere along the path to “Solander Point” in the coming months.

Opportunity captures the eerie Martian scenery looking south across Botany Bay from the southern tip of Cape York to her next destination - Solander Point,  about 1 mile (1.6 km) away. This navcam photo mosaic was taken on Sol 3317, May  23, 2013.    Credit: NASA/JPL/Cornell//Marco Di Lorenzo/Ken Kremer (kenkremer.com)
Opportunity captures the eerie Martian scenery looking south across Botany Bay from the southern tip of Cape York to her next destination – Solander Point, about 1 mile (1.6 km) away. This navcam photo mosaic was taken on Sol 3317, May 23, 2013. Credit: NASA/JPL/Cornell//Marco Di Lorenzo/Ken Kremer (kenkremer.com)

Endeavour Crater features terrain with older rocks than previously inspected and unlike anything studied before by Opportunity. It’s a place no one ever dared dream of reaching prior to Opportunity’s launch in the summer of 2003 and landing on the Meridiani Planum region in 2004.

Signatures of clay minerals, or phyllosilicates, were detected at several spots at Endeavour’s western rim by observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard NASA’s Mars Reconnaissance Orbiter (MRO).

“The motherlode of clay minerals is on Cape Tribulation. The exposure extends all the way to the top, mainly on the inboard side,” says Ray Arvidson, the rover’s deputy principal investigator at Washington University in St. Louis.

Stay tuned for the continuing breathtaking adventures of NASA’s sister rovers Opportunity and Curiosity!

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:

June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM

June 11: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 8 PM.

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

Traverse Map for NASA’s Opportunity rover from 2004 to 2013 to Record Setting Drive on May 15. This map shows the entire path the rover has driven during more than 9 years and over 3318 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south to Solander Point from  Cape York ridge at the western rim of Endeavour Crater.  On May 15, 2013 Opportunity drove 263 feet (80 meters) southward - achieving a total traverse distance on Mars of 22.22 miles (35.76 kilometers) - and broke the driving record by any NASA vehicle that was previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2013 to Record Setting Drive on May 15. This map shows the entire path the rover has driven during more than 9 years and over 3318 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south to Solander Point from Cape York ridge at the western rim of Endeavour Crater. On May 15, 2013 Opportunity drove 263 feet (80 meters) southward – achieving a total traverse distance on Mars of 22.22 miles (35.76 kilometers) – and broke the driving record by any NASA vehicle that was previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Opportunity Heads Toward Next Destination, 'Solander Point' This map of a portion of the western rim of Endeavour Crater on Mars shows the area where NASA's Mars Exploration Rover Opportunity worked for 20 months, "Cape York," in relation to the area where the rover team plans for Opportunity to spend its sixth Martian winter, "Solander Point." Credit: NASA/JPL-Caltech/Univ. of Arizona
Opportunity Heads Toward Next Destination, ‘Solander Point’
-This map of a portion of the western rim of Endeavour Crater on Mars shows the area where NASA’s Mars Exploration Rover Opportunity worked for 20 months, “Cape York,” in relation to the area where the rover team plans for Opportunity to spend its sixth Martian winter, “Solander Point.” Credit: NASA/JPL-Caltech/Univ. of Arizona

Mystery of Escaping Planetary Atmospheres Comes Under Japanese Scrutiny

Artist's conception of the solar system, often used in the Eyes on the Solar System 3D Simulator. Credit: NASA

Venus and Mars may be all right tonight, but there’s still a lot we don’t understand about these planets. Why does one, Venus,  have such a thick atmosphere? Why is that of Mars so thin? And why is Earth’s atmosphere so different again from what we see on Venus and Mars?

A new JAXA (Japan Aerospace Exploration Agency) satellite aims to better understand what’s going on. It’s called SPRINT-A, for Spectroscopic Planet Observatory for Recognition of Interaction of Atmosphere.

JAXA has set an official launch date of Aug. 22 from the Uchinoura Space Center, although the window extends as far as Sept. 30. (Launches can be delayed due to weather and mechanical difficulties.) The satellite’s expected Earth orbit will range from 590 to 715 miles (950 to 1150 kilometers) above the planet.

“Venus and Earth may be called twin planets, and it recently becomes clear that three terrestrial planets in the solar system – including Mars – have very similar environments in the beginning era of the solar system,” JAXA stated in a press release.

Earth may not have formed quite like once thought (Image: NASA/Suomi NPP)
Earth’s atmosphere was similar to that of Venus and Mars in the early solar system, but now it’s quite different, says JAXA. (Image: NASA/Suomi NPP)

The agency pointed out, however, that these three planets ended up with different fates. Venus has a runaway greenhouse effect on its planet, with surface temperatures reaching a scorching 752 degrees Fahrenheit (400 degrees Celsius). Mars, on the other hand, has a very thin atmosphere and more variable temperatures that can get a little chilly.

Understanding how atmospheres escape into outer space is the main goal of SPRINT-A. The sun, the scientists stated, had more intense activity in the past than what we see presently, which could have blown away the atmosphere on some terrestrial planets.

“The study on interaction of the strong solar wind on the atmosphere of the planet leads to acquiring knowledge of history in the early stage of the solar system,” JAXA stated.

Besides looking at the inner solar system, SPRINT-A will investigate a phenomenon related to a splotchy volcanic moon orbiting the planet Jupiter.

Io, a moon of Jupiter.  The colors in this image have been enhanced to better show differences. Sulfur dioxide frost appears in white and grey, and other types of sulfur are in yellow and brown. Recent volcanic activity is marked by red and black blotches. Credit: NASA
Io, a moon of Jupiter. The colors in this image have been enhanced to better show differences. Sulfur dioxide frost appears in white and grey, and other types of sulfur are in yellow and brown. Recent volcanic activity is marked by red and black blotches. Credit: NASA

SPRINT-A aims to better understand a ring of material surrounding Jupiter that came from Io.

Electrons and ions from the volcanic moon surround Jupiter and, as they collide, produce ultraviolet light in a process similar to what causes auroras in the upper atmosphere of Earth and other planets. How this happens is still being figured out, though.

It’s a pretty radiation-heavy environment in that region of the solar system. The spacecraft Galileo safely orbited the Jovian moons for years, but humans would have a little more trouble surviving the radiation without heavy shielding and careful precautions.

Check out more information about SPRINT-A on JAXA’s website. Japan also recently announced it will launch the  Kounotori 4 cargo spacecraft to the International Space Station in August, likely Aug. 4.

Curiosity Drills 2nd Hole into Ancient Mars Rocks Searching for the Ingredients of Life

This time lapse mosaic shows Curiosity moving her robotic arm to drill into her 2nd rockt target named “Cumberland” to collect powdery material on May 19, 2013 (Sol 279) for analysis by her onboard chemistry labs; SAM & Chemin. The photomosaic was stitched from raw images captured by the navcam cameras on May 14 & May 19 (Sols 274 & 279). Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

NASA’s Curiosity rover has just successfully bored inside ancient rocks on Mars for only the 2nd time since her nail biting landing in August 2012 inside Gale Crater as she searches for the ingredients of life.

On Sunday, May 20, the rover drilled about 2.6 inches (6.6 centimeters) deep into a target named “Cumberland” to collect powdery samples from the rock’s interior that hold the secrets to the history of water and habitability on the Red Planet.

“Cumberland” is literally just a stone’s throw away from the first drill target named “John Klein” where Curiosity bored the historic first drill hole on an alien world three months ago in February.

NASA's Mars rover Curiosity drilled into this rock target, "Cumberland," during the 279th Martian day, or sol, of the rover's work on Mars (May 19, 2013) and collected a powdered sample of material from the rock's interior. Analysis of the Cumberland sample using laboratory instruments inside Curiosity will check results from "John Klein," the first rock on Mars from which a sample was ever collected and analyzed. The two rocks have similar appearance and lie about nine feet (2.75 meters) apart. Image Credit: NASA/JPL-Caltech/MSSS
NASA’s Mars rover Curiosity drilled into this rock target, “Cumberland,” during the 279th Martian day, or sol, of the rover’s work on Mars (May 19, 2013) and collected a powdered sample of material from the rock’s interior. Analysis of the Cumberland sample using laboratory instruments inside Curiosity will check results from “John Klein,” the first rock on Mars from which a sample was ever collected and analyzed. The two rocks have similar appearance and lie about nine feet (2.75 meters) apart. Image Credit: NASA/JPL-Caltech/MSSS

Analysis of the gray colored, powdery “John Klein” sample by Curiosity’s pair of onboard chemistry labs – SAM & Chemin – revealed that this location on Mars was habitable in the past and possesses the key chemical ingredients required to support microbial life forms – thereby successfully accomplishing the key science objective of the mission and making a historic discovery.

The Cumberland powder will be fed into SAM and Chemin shortly through a trio of inlet ports on the rover deck.

‘Cumberland’ lies about nine feet (2.75 meters) west of ‘John Klein’. Both targets are inside the shallow depression named ‘Yellowknife Bay’ where Curiosity has been exploring since late 2012.

The six wheeled NASA robot arrived at Cumberland just last week on May 14 (Sol 274) after a pair of short drives.

6 Wheels on Mars at “Cumberland” drill target is shown in this photo mosaic of Curiosity’s underbelly snapped on May 15, 2013 (Sol 275) after the rover drove about 9 feet (2.75 m) from the John Klein outcrop inside Yellowknife Bay. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
6 Wheels on Mars at “Cumberland” drill target is shown in this photo mosaic of Curiosity’s underbelly snapped on May 15, 2013 (Sol 275) after the rover drove about 9 feet (2.75 m) from the John Klein outcrop inside Yellowknife Bay. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

The science team directed Curiosity to drill into ‘Cumberland’ to determine if it possesses the same ingredients found at “John Klein” and whether the habitable environment here is widespread and how long it existed in Mars’ history.

“We’ll drill another hole [at Cumberland] to confirm what we found in the John Klein hole,” said John Grotzinger to Universe Today. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

“The favorable conditions included the key elemental ingredients for life, an energy gradient that could be exploited by microbes, and water that was not harshly acidic or briny,” NASA said in a statement.

Panoramic view of Yellowknife Bay basin back dropped by Mount Sharp shows the location of the first two drill sites - John Klein & Cumberland - targeted by NASA’s Curiosity Mars rover.  Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) near where the robotic arm is touching the surface.  This week the rover scooted about 9 feet to the right to Cumberland (right of center) for 2nd drill campaign in late-May 2013.  Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Panoramic view of Yellowknife Bay basin back dropped by Mount Sharp shows the location of the first two drill sites – John Klein & Cumberland – targeted by NASA’s Curiosity Mars rover. Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) near where the robotic arm is touching the surface. This week the rover scooted about 9 feet to the right to Cumberland (right of center) for 2nd drill campaign on May 19, 2013 (Sol 279). Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

‘Cumberland’ and ‘John Klein’ are patches of flat-lying bedrock shot through with pale colored hydrated mineral veins composed of calcium sulfate and featuring a bumpy surface texture inside the ‘Yellowknife Bay’ basin that resembles a dried out lake bed.

“We have found a habitable environment [at John Klein] which is so benign and supportive of life that probably if this water was around, and you had been on the planet, you would have been able to drink it,” said Grotzinger.

Curiosity will remain at Cumberland for several weeks to fully characterize the area and then continue exploring several additional outcrops in and around Yellowknife Bay.

“After that we’re likely to begin the trek to Mt. Sharp, though we’ll stop quickly to look at a few outcrops that we passed by on the way into Yellowknife Bay,” Grotzinger told me.

One stop is likely to include the ‘Shaler’ outcrop of cross-bedding that was briefly inspected on the way in.

Thereafter the 1 ton rover will resume her epic trek to the lower reaches of mysterious Mount Sharp, the 3.5 mile (5.5 km) high layered mountain that dominates her landing site and is the ultimate driving goal inside Gale Crater.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:

June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM

June 11: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 8 PM.

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.


Video Caption: This JPL video shows the complicated choreography to get drill samples to Curiosity’s science instruments after completing 2nd drill campaign at “Cumberland.”

Drill, Baby, Drill! – How Does Curiosity ‘Do It’

Panoramic view of Yellowknife Bay basin back dropped by Mount Sharp shows the location of the first two drill sites - John Klein & Cumberland - targeted by NASA’s Curiosity Mars rover. Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) near where the robotic arm is touching the surface. This week the rover scooted about 9 feet to the right to Cumberland (right of center) for 2nd drill campaign in late-May 2013. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Video Caption: This JPL video shows the complicated choreography to get drill samples to Curiosity’s instruments as she prepares for 2nd drilling at “Cumberland.” See where “Cumberland” is located in our panoramic photo mosaic below.

It’s time at last for “Drill, Baby, Drill!” – Martian Style.

Ever wonder how Curiosity “Does It”

Well, check out this enlightening and cool new NASA video for an exquisitely detailed demonstration of just how Curiosity shakes, rattles and rolls on the Red Planet and swallows that mysterious Martian powder.

“Shake, shake, shake… shake that sample. See how I move drilled rock to analytical instruments,” tweeted Curiosity to millions of fans.

Get set to witness Martian gyrations like you’ve never seen before.

After a pair of short but swift moves this past week, NASA’s Curiosity rover is finally in position to bore into the Red Planet’s alien surface for the second time – at a target called “Cumberland.”

See where “Cumberland” is located in our panoramic photo mosaic below.

“Two short drives & 3.8 meters later, I’m zeroing in on my second Mars drilling target,” tweeted Curiosity.

Panoramic view of Yellowknife Bay basin back dropped by Mount Sharp shows the location of the first two drill sites – John Klein & Cumberland – targeted by NASA’s Curiosity Mars rover. Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) near where the robotic arm is touching the surface. This week the rover scooted about 9 feet to the right to Cumberland (right of center) for 2nd drill campaign in late-May 2013.
Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo [/caption]

These were Curiosity’s first drives since arriving at the “John Klein” outcrop in mid- January 2013 where she carried out the historic first ever interplanetary drilling by a robot on another world.

For the past few days the robot has snapped a series of close up images of “Cumberland” with the high resolution MAHLI camera on the “hand” of the dextrous robotic arm.

And now that Curiosity has switched to the B-side computer, the rover has switched over to an back up set of never before used cameras on the mast head, which appear to be functioning perfectly.

“Curiosity is now using the new pair of navigation cameras associated with the B-side computer,” said Curiosity science team member Kimberly Lichtenberg to Universe Today.

The rover also evaluated the potential drill site with the ChemCAM and APXS instruments to confirm whether ‘Cumberland’ is indeed a worthy target for the time consuming process to collect the drill tailings for delivery to the duo of miniaturized chemistry labs named SAM and Chemin inside her belly

As outlined in the video, the robot engages in an incredibly complex procedure to collect the drill bit tailings and then move and pulverize them through the chambers of the CHIMRA sample system on the tool turret for processing, filtering and delivery for in situ analysis that could take weeks to complete.

This patch of bedrock, called "Cumberland," has been selected as the second target for drilling by NASA's Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS
This patch of bedrock, called “Cumberland,” has been selected as the second target for drilling by NASA’s Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS

The state-of-the-art SAM and Chemin chemistry labs test aspirin sized quantities of the carefully sieved powder for the presence of organic molecules – the building blocks of life – and determine the inorganic chemical composition.

The science team wants to know how ‘Cumberland’ stacks up compared to ‘John Klein’, inside the shallow depression named ‘Yellowknife Bay’ where Curiosity has been exploring since late 2012.

“We’ll drill another hole to confirm what we found in the John Klein hole,” said John Grotzinger to Universe Today. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

‘Cumberland’ and ‘John Klein’ are patches of flat-lying bedrock shot through with pale colored hydrated mineral veins composed of calcium sulfate hydrated and a bumpy surface texture at her current location inside the ‘Yellowknife Bay’ basin that resembles a dried out lake bed.

“The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water,” according to NASA.

At Yellowknife Bay, Curiosity found evidence for an ancient habitable environment that could possibly have supported simple Martian microbial life forms eons ago when the Red Planet was warmer and wetter.

Analysis of the gray colored rocky Martian powder at ‘John Klein’ revealed that the fine-grained, sedimentary mudstone rock possesses significant amounts of phyllosilicate clay minerals; indicating the flow of nearly neutral liquid water and a habitat friendly to the possible origin of microbes.

Curiosity is expected to drill and swallow the ‘Cumberland’ powder at any moment if all goes well, a team member told Universe Today.

High resolution close-up of Cumberland outcrop on Sol 275 (May 15, 2013).   Photo mosaic of Mastcam 100  raw images.  Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo
High resolution close-up of Cumberland outcrop on Sol 275 (May 15, 2013) – where Curiosity will bore her 2nd drill hole. Photo mosaic of Mastcam 100 raw images. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Meanwhile as Curiosity was moving to Cumberland, her older sister Opportunity was blazing a trail at Endeavour Crater on the opposite side of Mars and breaking the distance driving record for an American space rover. Read all about it in my new story – here.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:

June 11: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 8 PM.

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

Opportunity Mars Rover Blazes Past 40 Year Old Space Driving Record

Opportunity pops a ‘wheelie’ on May 15, 2013 (Sol 3308) and then made history by driving further to the mountain ahead on the next day, May 16 (Sol 3309), to establish a new American driving record for a vehicle on another world. This navcam mosaic shows the view forward to Opportunity’s future destinations of Solander Point and Cape Tribulation along the lengthy rim of huge Endeavour crater spanning 14 miles (22 km) in diameter. Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo.

Now more than 9 years and counting into her planned mere 90 day mission to Mars, NASA’s legendary Opportunity rover has smashed past another space milestone and established a new distance driving record for an American vehicle on another world this week.

On Thursday, May 16, the long-lived Opportunity drove another 263 feet (80 meters) on Mars – bringing her total odometry since landing on 24 January 2004 to 22.220 miles (35.760 kilometers) – and broke through the 40 year old driving record set back in December 1972 by Apollo 17 astronauts Eugene Cernan and Harrison Schmitt.

See below our complete map of the 9 Year Journey of Opportunity on Mars.

Cernan and Schmitt visited Earth’s moon on America’s final lunar landing mission and drove their mission’s Lunar Roving Vehicle (LRV-3) 22.210 miles (35.744 kilometers) over the course of three days on the moon’s surface at Taurus-Littrow.

Apollo 17 lunar rover at final resting place. Credit: NASA
Apollo 17 lunar rover at final resting place on the Moon. Lunar module in the background. Credit: NASA

Cernan was ecstatic at the prospect of the Apollo 17 record finally being surpassed.

“The record we established with a roving vehicle was made to be broken, and I’m excited and proud to be able to pass the torch to Opportunity, ” said Cernan to team member Jim Rice of NASA Goddard Space Flight Center, Greenbelt, Md, in a NASA statement.

And Opportunity still has plenty of juice left!

So, although there are no guarantees, one can reasonably expect the phenomenal Opportunity robot to easily eclipse the ‘Solar System World Record’ for driving distance on another world that is currently held by the Soviet Union’s remote-controlled Lunokhod 2 rover. See detailed graphic below.

In 1973, Lunokhod 2 traveled 23 miles (37 kilometers) on the surface of Earth’s nearest neighbor.

Why could Opportunity continue farther into record setting territory ?

Because Opportunity’s handlers back on Earth have dispatched the Martian robot on an epic trek to continue blazing a path forward around the eroded rim of the huge crater named ‘Endeavour’ – where she has been conducting ground breaking science since arriving at the “Cape York” rim segment in mid 2011.

Out-of-this-World Records. This chart illustrates comparisons among the distances driven by various wheeled vehicles on the surface of Earth's moon and Mars. Of the vehicles shown, the NASA Mars rovers Opportunity and Curiosity are still active and the totals for those two are distances driven as of May 15, 2013. Opportunity set the new NASA driving record on May 15, 2013 by traveling 22.220 miles (35.760 kilometers).  The international record for driving distance on another world is still held by the Soviet Union's remote-controlled Lunokhod 2 rover, which traveled 23 miles (37 kilometers) on the surface of Earth's moon in 1973. Credit:  NASA/JPL-Caltech
Out-of-this-World Records. This chart illustrates comparisons among the distances driven by various wheeled vehicles on the surface of Earth’s moon and Mars. Of the vehicles shown, the NASA Mars rovers Opportunity and Curiosity are still active and the totals for those two are distances driven as of May 15, 2013. Opportunity set the new NASA driving record on May 15, 2013 by traveling 22.220 miles (35.760 kilometers). The international record for driving distance on another world is still held by the Soviet Union’s remote-controlled Lunokhod 2 rover, which traveled 23 miles (37 kilometers) on the surface of Earth’s moon in 1973. Credit: NASA/JPL-Caltech

Opportunity has just now set sail for her next crater rim destination named “Solander Point”, an area about 1.4 miles (2.2 kilometers) away – due south from “Cape York.”

Endeavour Crater is 14 miles (22 km) wide, featuring terrain with older rocks than previously inspected and unlike anything studied before. It’s a place no one ever dared dream of reaching prior to Opportunity’s launch in the summer of 2003 and landing on the Meridiani Planum region in 2004.

Opportunity will blast through the world record milestone held by the Lunokhod 2 rover somewhere along the path to “Solander Point.”

Thereafter Opportunity will rack up ever more miles as the rover continues driving further south to a spot called “Cape Tribulation”, that is believed to hold caches of clay minerals that formed eons ego when liquid water flowed across this region of the Red Planet.

It’s a miracle that Opportunity has lasted so far beyond her design lifetime – 37 times longer than the 3 month “warranty.”

“Regarding achieving nine years, I never thought we’d achieve nine months!” Principal Investigator Prof. Steve Squyres of Cornell University told me recently on the occasion of the rovers 9th anniversary on Mars in January 2013.

“Our next destination will be Solander Point,” said Squyres.

Opportunity was joined on Mars by her younger sister Curiosity, currently exploring the crater floor inside Gale Crater since landing on Aug. 6, 2012.

Curiosity is likewise embarked on a epic trek – towards 3 mile high (5.5 km) Mount Sharp some 6 miles away.

Both rovers Opportunity & Curiosity have discovered phyllosilicates, hydrated calcium sulfate mineral veins and vast evidence for flowing liquid water on Mars. All this data enhances the prospects that Mars could have once supported microbial life forms.

The Quest for Life beyond Earth continues ably with NASA’s Martian sister rovers.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….

Learn more about NASA missions, Opportunity, Curiosity and more at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “Antares Rocket Launch from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

Traverse Map for NASA’s Opportunity rover from 2004 to 2013 to Record Setting Drive on May 15. This map shows the entire path the rover has driven during more than 9 years and over 3309 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south from  Cape York ridge at the western rim of Endeavour Crater.  On May 15, 2013 Opportunity drove 263 feet (80 meters) southward - achieving a total traverse distance on Mars of 22.22 miles (35.76 kilometers) - and broke the driving record by any NASA vehicle that was previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2013 to Record Setting Drive on May 15. This map shows the entire path the rover has driven during more than 9 years and over 3309 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south from Cape York ridge at the western rim of Endeavour Crater. On May 15, 2013 Opportunity drove 263 feet (80 meters) southward – achieving a total traverse distance on Mars of 22.22 miles (35.76 kilometers) – and broke the driving record by any NASA vehicle that was previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972.
Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
View Back at Record-Setting Drive by Opportunity. On the 3,309th Martian day, or sol, of its mission on Mars (May 15, 2013) NASA's Mars Exploration Rover Opportunity drove 263 feet (80 meters) southward along the western rim of Endeavour Crater. That drive put the total distance driven by Opportunity since the rover's January 2004 landing on Mars at 22.220 miles (35.760 kilometers. This exceeded the distance record by any NASA vehicle, previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL-Caltech
View Back at Record-Setting Drive by Opportunity. On the 3,309th Martian day, or sol, of its mission on Mars (May 15, 2013) NASA’s Mars Exploration Rover Opportunity drove 263 feet (80 meters) southward along the western rim of Endeavour Crater. That drive put the total distance driven by Opportunity since the rover’s January 2004 landing on Mars at 22.220 miles (35.760 kilometers. This exceeded the distance record by any NASA vehicle, previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL-Caltech
Soviet Lunokhod-2 lunar rover.  Credit: Ria Novosti
Soviet Lunokhod-2 lunar rover. Credit: Ria Novosti

‘Star Trek into Darkness’ & NASA Station Crews Join Forces at Live NASA Webcast

NASA and Star Trek connect on NASA TV on May 16 for the premiere of “Star Trek Into Darkness” on May 17, 2013 to celebrate the wonders of Space Exploration. Still image of the fictional star ship ‘Enterprise’. Credit: Star Trek

Science Fact and Science Fiction join forces in space today for a one of a kind meeting turning science fiction into reality – and you can participate courtesy of NASA and Hollywood!

Fictional astronauts and crews from the newest Star Trek incarnation; “Star Trek into Darkness” and real life astronauts taking part from outer space and Earth get connected today (May 16) via a live ‘space bridge’ webcast hosted by NASA. The movies premieres today – May 16.

NASA Television broadcasts the face-to-face meeting as a Google+ Hangout from noon to 12:45 p.m. EDT, May 16. Watch live below!

The webcast includes “Captain Kirk” – played by actor Chris Pine, and NASA astronaut Chris Cassidy – fresh off from his real life ‘emergency spacewalk’ this past weekend that saved the critically important cooling system aboard the International Space Station (ISS). “Into Darkness” features dramatic life and death spacewalks.

Astronaut Chris Cassidy during the May 11, 2013 emergency spacewalk at the ISS. Credit: NASA
Astronaut Chris Cassidy during the May 11, 2013 emergency spacewalk at the ISS. Credit: NASA

Also participating in the live NASA webcast are ‘Star Trek’ director J.J. Abrams, screenwriter and producer Damon Lindelof; and actors Alice Eve (Dr. Carol Marcus) and John Cho (Sulu) and astronauts Michael Fincke and Kjell Lindgren at NASA’s Johnson Space Center in Houston.

Fincke flew on the Space Shuttle and the ISS and made a guest appearance on the finale of the TV series – “Star Trek: Enterprise”. See photo below.

‘Star Trek Into Darkness’ movie still image. Credit: Star Trek
‘Star Trek Into Darkness’ movie still image. Credit: Star Trek

The ISS is a sort of early forerunner for the fictional ‘Federation’ in the ‘Star Trek’ Universe – constructed in low Earth orbit by the combined genius and talents of 5 space agencies and 16 nations of Earth to forge a united path forward for the peaceful exploration of Outer Space.

Cassidy will provide insights about everyday life aboard the real space station – like eating, sleeping, exercising and fun ( think Chris Hadfield’s guitar strumming ‘Space Oddity’ -watch the YouTube video below) – as well as the myriad of over 300 biological, chemical and astronomical science experiments performed by himself and the six person station crews during their six-month stints in zero gravity.

Astronaut Terry Virts, left, Actor Scott Bakula and Astronaut Mike Fincke, right, beam on the set of Star Trek's final Enterprise voyage. Credit: NASA
Astronaut Terry Virts, left, Actor Scott Bakula and Astronaut Mike Fincke, right, beam on the set of Star Trek’s final Enterprise voyage. Credit: NASA

The participants will ask questions of each other and take questions from the Intrepid Sea, Air & Space Museum in New York City (home of the space shuttle Enterprise), the Smithsonian’s National Air and Space Museum in Washington, and social media followers, says NASA.

Social media followers were allowed to submit 30 sec video questions until early this morning.

And you can submit questions today and during the live broadcast using the hashtag #askNASA on YouTube, Google+, Twitter and Facebook.

Captain Kirk and Mr. Spock in ‘Star Trek Into Darkness’. Credit: Star Trek
Captain Kirk and Mr. Spock in ‘Star Trek Into Darkness’. Credit: Star Trek

Watch the hangout live on NASA’s Google+ page, the NASA Television YouTube channel, or NASA TV starting at Noon EDT, May 16.

As a long time Star Trek fan (since TOS) I can’t wait to see ‘Into Darkness’

Ken Kremer

…………….
Learn more about NASA missions, Mars, Curiosity and more at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

NASA’s real life Space Shuttle Enterprise transits the NYC Skyline at Dusk on a barge on June 3, 2012 during a two stage seagoing  journey to her permanent  new home at the Intrepid Sea, Air and Space Museum. Enterprise is bracketed by the Empire State Building, The Freedom Tower (still under construction) and the torch lit Statue of Liberty. Credit: Ken Kremer
NASA’s real life Space Shuttle Enterprise transits the NYC Skyline at Dusk on a barge on June 3, 2012 during a two stage seagoing journey to her permanent new home at the Intrepid Sea, Air and Space Museum. Enterprise is bracketed by the Empire State Building, The Freedom Tower (still under construction) and the torch lit Statue of Liberty. Credit: Ken Kremer

Mercury Shows Off Its Reds, Whites, and Blues

An 11-color MESSENGER targeted image of Mercury's Tyagaraja crater

At first glance, the planet Mercury may bear a striking resemblance to our own Moon. True, both are heavily-cratered, airless worlds that hide pockets of ice inside polar shadows… but there the similarities end. In addition to being compositionally different than the Moon, Mercury also has surface features that you won’t find on the lunar surface — or anywhere else in the Solar System.

The picture above, part of an 11-color targeted image acquired by MESSENGER on April 25, 2013, shows the varied terrain found within the 97-kilometer-wide Tyagaraja crater located near Mercury’s equator. The reds, blues, greens, and oranges, much more saturated than anything we’d see with our own eyes, correspond to surface materials of different compositions… and the brightest spots within the crater are features called “hollows” that are truly unique to Mercury, possibly resulting from the planet’s close interaction with the solar wind.

First noted in September of 2011, hollows have been identified across many areas of Mercury. One hypothesis is that they’re formed by the sublimation of subsurface material exposed inside larger craters. Being so close to the Sun and lacking a protective atmosphere, Mercury is constantly being scoured by the solar wind — a relentless stream of charged particles that’s actively “sandblasting” exposed volatiles from the planet’s surface!

Read more about hollows here.

A previous MESSENGER image of hollows inside Tyagaraja crater
A previous MESSENGER image of hollows inside Tyagaraja crater

The reddish spot at the center of the crater in the top image is likely material surrounding a pyroclastic vent, which appear red and orange in MDIS images. The dark material that appears bluish is something called “low reflectance material” (LRM).

The image was acquired as a targeted high-resolution 11-color image set. Acquiring 11-color targets is a new MESSENGER campaign that began in March and utilizes all of the Wide-Angle Camera’s 11 narrow-band color filters. Because of the large data volume involved, only features of special scientific interest are targeted for imaging in all 11 colors.

Full of geologically interesting features the crater was named for Kakarla Tyagabrahmam, an 18th century composer of classical South Indian music.

The first spacecraft to establish orbit around Mercury in summer 2011, MESSENGER is capable of continuing orbital operations until early 2015.

Read more on the Johns Hopkins University APL MESSENGER site here.

Credits:  NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Curiosity Reaches Out with Martian Handshake and Contemplates New Drilling at Habitable Site

NASA’s Curiosity rover reaches out in ‘handshake’ like gesture to welcome the end of solar conjunction and resumption of contact with Earth. This mosaic of images was snapped by Curiosity on Sol 262 (May 2) and shows her flexing the robotic arm with Mount Sharp in the background. Two drill holes are visible on the surface bedrock below the robotic arm’s turret. Credit: NASA/JPL-Caltech/Ken Kremer-(kenkremer.com)/Marco Di Lorenzo

NASA’s Curiosity rover reaches out in ‘handshake’ like gesture to welcome the end of solar conjunction and resumption of contact with Earth. This mosaic of images was snapped by Curiosity on Sol 262 (May 2, 2013) and shows her flexing the robotic arm with dramatic scenery of Mount Sharp in the background. Two drill holes are visible on the surface bedrock below the robotic arm’s turret where she discovered a habitable site.
Credit: NASA/JPL-Caltech/Ken Kremer-(kenkremer.com)/Marco Di Lorenzo[/caption]

NASA’s Curiosity rover has reached out in a Martian ‘handshake’ like gesture welcoming the end of solar conjunction that marks the resumption of contact with her handlers back on Earth – evidenced in a new photo mosaic of images captured as the robot and her human handlers contemplate a short traverse to a 2nd drilling target in the next few days.

“We’ll move a small bit and then drill another hole,” said John Grotzinger to Universe Today. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

The rover science team and Grotzinger have selected that 2nd drill location and are itching to send the rover on her way to the bumpy spot called “Cumberland.”

Cumberland lies about nine feet (2.75 meters) west of the “John Klein’ outcrop where Curiosity conducted humanity’s first ever interplanetary drilling on the alien Martian surface in February 2013.

“We’ll confirm what we found in the John Klein hole,” Grotzinger told me.

Curiosity discovered a habitable zone at the John Klein drill site.

After pulverizing and carefully sifting the John Klein drill tailings, a powered, aspirin sized portion of the gray rock was fed into a trio of inlet ports atop the rovers deck and analyzed by Curiosity’s duo of miniaturized chemistry labs named SAM and Chemin inside her belly to check for the presence of organic molecules and determine the inorganic chemical composition.

‘Cumberland’ and ‘John Klein’ are patches of flat-lying bedrock shot through with pale colored calcium sulfate hydrated mineral veins and a bumpy surface texture at her current location inside the ‘Yellowknife Bay’ basin.

This patch of bedrock, called "Cumberland," has been selected as the second target for drilling by NASA's Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS
This patch of bedrock, called “Cumberland,” has been selected as the second target for drilling by NASA’s Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS

“The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water,” NASA said in a statement.

Curiosity snapped high resolution color images of Cumberland on Sol 192 (Feb. 19, 2013) as part of the ongoing data collection campaign to put Yellowknife Bay into scientific context and search for future drill targets.

The John Klein bore hole (drilled on Feb 8, 2013, Sol 182) is visible in our new photo mosaic above created by myself and my imaging partner Marco Di Lorenzo. It was stitched from a ‘Martian baker’s dozen’ of raw images captured on May 2 (Sol 262). and shows the hand-like tool turret positioned above the first pair of drill holes.

Our new Sol 262 mosaic illustrates that Curiosity is again fully functional and flexing the miracle arm following a relaxing month long period of ‘Spring Break’ when there was no two- way communication with Earth during April’s solar conjunction.

The Sol 262 photo mosaic was originally featured at NBC News by Cosmic Log science editor Alan Boyle who likened it to a future Martian handshake in this cleverly titled story; “Curiosity’s ‘hand’ outstretched on Mars: Will humans ever shake it?”

See below our Sol 169 panoramic context view of Curiosity inside Yellowknife Bay collecting spectroscopic science measurements at the John Klein outcrop.

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) - back dropped with Mount Sharp - where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) – back dropped with Mount Sharp – where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer -(kenkremer.com)/Marco Di Lorenzo

Curiosity found that the fine-grained, sedimentary mudstone rock at the John Klein worksite inside the shallow depression known as Yellowknife Bay possesses significant amounts of phyllosilicate clay minerals; indicating the flow of nearly neutral liquid water and a habitat friendly to the possible origin of simple Martian microbial life forms eons ago.

Grotzinger also explained to Universe Today that Curiosity will soon to more capable than ever before.

“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities’” said Grotzinger.

“Then we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”

Curiosity will spend a month or more at the Cumberland site to collect and completely analyze the drill tailings.

Then she’ll resume her epic trek to mysterious Mount Sharp, the 3.5 mile (5 km) high mountain that dominates her landing site and is her ultimate driving inside Gale Crater according to Grotzinger.

“After that [Cumberland] we’re likely to begin the trek to Mt. Sharp, though we’ll stop quickly to look at a few outcrops that we passed by on the way into Yellowknife Bay,” Grotzinger explained to Universe Today.

The Shaler outcrop passed by on the path into Yellowknife Bay is high on the list of stops during the year long journey to Mount Sharp, says Grotzinger. Read more details about Shaler in a new BBC story by Jonathan Amos – here – featuring our Shaler outcrop mosaic.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity and NASA missions at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “Antares Rocket Launch from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

This map shows the location of "Cumberland," the second rock-drilling target for NASA's Mars rover Curiosity, in relation to the rover's first drilling target, "John Klein," within the southwestern lobe of a shallow depression called "Yellowknife Bay." Cumberland, like John Klein, is a patch of flat-lying bedrock with pale veins and bumpy surface texture. The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water. Image credit: NASA/JPL-Caltech/Univ. of Arizona
This map shows the location of “Cumberland,” the second rock-drilling target for NASA’s Mars rover Curiosity, in relation to the rover’s first drilling target, “John Klein,” within the southwestern lobe of a shallow depression called “Yellowknife Bay.” Cumberland, like John Klein, is a patch of flat-lying bedrock with pale veins and bumpy surface texture. The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water. Image credit: NASA/JPL-Caltech/Univ. of Arizona