Drill, Baby, Drill! – How Does Curiosity ‘Do It’

Panoramic view of Yellowknife Bay basin back dropped by Mount Sharp shows the location of the first two drill sites - John Klein & Cumberland - targeted by NASA’s Curiosity Mars rover. Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) near where the robotic arm is touching the surface. This week the rover scooted about 9 feet to the right to Cumberland (right of center) for 2nd drill campaign in late-May 2013. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Video Caption: This JPL video shows the complicated choreography to get drill samples to Curiosity’s instruments as she prepares for 2nd drilling at “Cumberland.” See where “Cumberland” is located in our panoramic photo mosaic below.

It’s time at last for “Drill, Baby, Drill!” – Martian Style.

Ever wonder how Curiosity “Does It”

Well, check out this enlightening and cool new NASA video for an exquisitely detailed demonstration of just how Curiosity shakes, rattles and rolls on the Red Planet and swallows that mysterious Martian powder.

“Shake, shake, shake… shake that sample. See how I move drilled rock to analytical instruments,” tweeted Curiosity to millions of fans.

Get set to witness Martian gyrations like you’ve never seen before.

After a pair of short but swift moves this past week, NASA’s Curiosity rover is finally in position to bore into the Red Planet’s alien surface for the second time – at a target called “Cumberland.”

See where “Cumberland” is located in our panoramic photo mosaic below.

“Two short drives & 3.8 meters later, I’m zeroing in on my second Mars drilling target,” tweeted Curiosity.

Panoramic view of Yellowknife Bay basin back dropped by Mount Sharp shows the location of the first two drill sites – John Klein & Cumberland – targeted by NASA’s Curiosity Mars rover. Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) near where the robotic arm is touching the surface. This week the rover scooted about 9 feet to the right to Cumberland (right of center) for 2nd drill campaign in late-May 2013.
Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo [/caption]

These were Curiosity’s first drives since arriving at the “John Klein” outcrop in mid- January 2013 where she carried out the historic first ever interplanetary drilling by a robot on another world.

For the past few days the robot has snapped a series of close up images of “Cumberland” with the high resolution MAHLI camera on the “hand” of the dextrous robotic arm.

And now that Curiosity has switched to the B-side computer, the rover has switched over to an back up set of never before used cameras on the mast head, which appear to be functioning perfectly.

“Curiosity is now using the new pair of navigation cameras associated with the B-side computer,” said Curiosity science team member Kimberly Lichtenberg to Universe Today.

The rover also evaluated the potential drill site with the ChemCAM and APXS instruments to confirm whether ‘Cumberland’ is indeed a worthy target for the time consuming process to collect the drill tailings for delivery to the duo of miniaturized chemistry labs named SAM and Chemin inside her belly

As outlined in the video, the robot engages in an incredibly complex procedure to collect the drill bit tailings and then move and pulverize them through the chambers of the CHIMRA sample system on the tool turret for processing, filtering and delivery for in situ analysis that could take weeks to complete.

This patch of bedrock, called "Cumberland," has been selected as the second target for drilling by NASA's Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS
This patch of bedrock, called “Cumberland,” has been selected as the second target for drilling by NASA’s Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS

The state-of-the-art SAM and Chemin chemistry labs test aspirin sized quantities of the carefully sieved powder for the presence of organic molecules – the building blocks of life – and determine the inorganic chemical composition.

The science team wants to know how ‘Cumberland’ stacks up compared to ‘John Klein’, inside the shallow depression named ‘Yellowknife Bay’ where Curiosity has been exploring since late 2012.

“We’ll drill another hole to confirm what we found in the John Klein hole,” said John Grotzinger to Universe Today. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

‘Cumberland’ and ‘John Klein’ are patches of flat-lying bedrock shot through with pale colored hydrated mineral veins composed of calcium sulfate hydrated and a bumpy surface texture at her current location inside the ‘Yellowknife Bay’ basin that resembles a dried out lake bed.

“The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water,” according to NASA.

At Yellowknife Bay, Curiosity found evidence for an ancient habitable environment that could possibly have supported simple Martian microbial life forms eons ago when the Red Planet was warmer and wetter.

Analysis of the gray colored rocky Martian powder at ‘John Klein’ revealed that the fine-grained, sedimentary mudstone rock possesses significant amounts of phyllosilicate clay minerals; indicating the flow of nearly neutral liquid water and a habitat friendly to the possible origin of microbes.

Curiosity is expected to drill and swallow the ‘Cumberland’ powder at any moment if all goes well, a team member told Universe Today.

High resolution close-up of Cumberland outcrop on Sol 275 (May 15, 2013).   Photo mosaic of Mastcam 100  raw images.  Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo
High resolution close-up of Cumberland outcrop on Sol 275 (May 15, 2013) – where Curiosity will bore her 2nd drill hole. Photo mosaic of Mastcam 100 raw images. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Meanwhile as Curiosity was moving to Cumberland, her older sister Opportunity was blazing a trail at Endeavour Crater on the opposite side of Mars and breaking the distance driving record for an American space rover. Read all about it in my new story – here.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:

June 11: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 8 PM.

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

Opportunity Mars Rover Blazes Past 40 Year Old Space Driving Record

Opportunity pops a ‘wheelie’ on May 15, 2013 (Sol 3308) and then made history by driving further to the mountain ahead on the next day, May 16 (Sol 3309), to establish a new American driving record for a vehicle on another world. This navcam mosaic shows the view forward to Opportunity’s future destinations of Solander Point and Cape Tribulation along the lengthy rim of huge Endeavour crater spanning 14 miles (22 km) in diameter. Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo.

Now more than 9 years and counting into her planned mere 90 day mission to Mars, NASA’s legendary Opportunity rover has smashed past another space milestone and established a new distance driving record for an American vehicle on another world this week.

On Thursday, May 16, the long-lived Opportunity drove another 263 feet (80 meters) on Mars – bringing her total odometry since landing on 24 January 2004 to 22.220 miles (35.760 kilometers) – and broke through the 40 year old driving record set back in December 1972 by Apollo 17 astronauts Eugene Cernan and Harrison Schmitt.

See below our complete map of the 9 Year Journey of Opportunity on Mars.

Cernan and Schmitt visited Earth’s moon on America’s final lunar landing mission and drove their mission’s Lunar Roving Vehicle (LRV-3) 22.210 miles (35.744 kilometers) over the course of three days on the moon’s surface at Taurus-Littrow.

Apollo 17 lunar rover at final resting place. Credit: NASA
Apollo 17 lunar rover at final resting place on the Moon. Lunar module in the background. Credit: NASA

Cernan was ecstatic at the prospect of the Apollo 17 record finally being surpassed.

“The record we established with a roving vehicle was made to be broken, and I’m excited and proud to be able to pass the torch to Opportunity, ” said Cernan to team member Jim Rice of NASA Goddard Space Flight Center, Greenbelt, Md, in a NASA statement.

And Opportunity still has plenty of juice left!

So, although there are no guarantees, one can reasonably expect the phenomenal Opportunity robot to easily eclipse the ‘Solar System World Record’ for driving distance on another world that is currently held by the Soviet Union’s remote-controlled Lunokhod 2 rover. See detailed graphic below.

In 1973, Lunokhod 2 traveled 23 miles (37 kilometers) on the surface of Earth’s nearest neighbor.

Why could Opportunity continue farther into record setting territory ?

Because Opportunity’s handlers back on Earth have dispatched the Martian robot on an epic trek to continue blazing a path forward around the eroded rim of the huge crater named ‘Endeavour’ – where she has been conducting ground breaking science since arriving at the “Cape York” rim segment in mid 2011.

Out-of-this-World Records. This chart illustrates comparisons among the distances driven by various wheeled vehicles on the surface of Earth's moon and Mars. Of the vehicles shown, the NASA Mars rovers Opportunity and Curiosity are still active and the totals for those two are distances driven as of May 15, 2013. Opportunity set the new NASA driving record on May 15, 2013 by traveling 22.220 miles (35.760 kilometers).  The international record for driving distance on another world is still held by the Soviet Union's remote-controlled Lunokhod 2 rover, which traveled 23 miles (37 kilometers) on the surface of Earth's moon in 1973. Credit:  NASA/JPL-Caltech
Out-of-this-World Records. This chart illustrates comparisons among the distances driven by various wheeled vehicles on the surface of Earth’s moon and Mars. Of the vehicles shown, the NASA Mars rovers Opportunity and Curiosity are still active and the totals for those two are distances driven as of May 15, 2013. Opportunity set the new NASA driving record on May 15, 2013 by traveling 22.220 miles (35.760 kilometers). The international record for driving distance on another world is still held by the Soviet Union’s remote-controlled Lunokhod 2 rover, which traveled 23 miles (37 kilometers) on the surface of Earth’s moon in 1973. Credit: NASA/JPL-Caltech

Opportunity has just now set sail for her next crater rim destination named “Solander Point”, an area about 1.4 miles (2.2 kilometers) away – due south from “Cape York.”

Endeavour Crater is 14 miles (22 km) wide, featuring terrain with older rocks than previously inspected and unlike anything studied before. It’s a place no one ever dared dream of reaching prior to Opportunity’s launch in the summer of 2003 and landing on the Meridiani Planum region in 2004.

Opportunity will blast through the world record milestone held by the Lunokhod 2 rover somewhere along the path to “Solander Point.”

Thereafter Opportunity will rack up ever more miles as the rover continues driving further south to a spot called “Cape Tribulation”, that is believed to hold caches of clay minerals that formed eons ego when liquid water flowed across this region of the Red Planet.

It’s a miracle that Opportunity has lasted so far beyond her design lifetime – 37 times longer than the 3 month “warranty.”

“Regarding achieving nine years, I never thought we’d achieve nine months!” Principal Investigator Prof. Steve Squyres of Cornell University told me recently on the occasion of the rovers 9th anniversary on Mars in January 2013.

“Our next destination will be Solander Point,” said Squyres.

Opportunity was joined on Mars by her younger sister Curiosity, currently exploring the crater floor inside Gale Crater since landing on Aug. 6, 2012.

Curiosity is likewise embarked on a epic trek – towards 3 mile high (5.5 km) Mount Sharp some 6 miles away.

Both rovers Opportunity & Curiosity have discovered phyllosilicates, hydrated calcium sulfate mineral veins and vast evidence for flowing liquid water on Mars. All this data enhances the prospects that Mars could have once supported microbial life forms.

The Quest for Life beyond Earth continues ably with NASA’s Martian sister rovers.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….

Learn more about NASA missions, Opportunity, Curiosity and more at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “Antares Rocket Launch from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

Traverse Map for NASA’s Opportunity rover from 2004 to 2013 to Record Setting Drive on May 15. This map shows the entire path the rover has driven during more than 9 years and over 3309 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south from  Cape York ridge at the western rim of Endeavour Crater.  On May 15, 2013 Opportunity drove 263 feet (80 meters) southward - achieving a total traverse distance on Mars of 22.22 miles (35.76 kilometers) - and broke the driving record by any NASA vehicle that was previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2013 to Record Setting Drive on May 15. This map shows the entire path the rover has driven during more than 9 years and over 3309 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south from Cape York ridge at the western rim of Endeavour Crater. On May 15, 2013 Opportunity drove 263 feet (80 meters) southward – achieving a total traverse distance on Mars of 22.22 miles (35.76 kilometers) – and broke the driving record by any NASA vehicle that was previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972.
Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
View Back at Record-Setting Drive by Opportunity. On the 3,309th Martian day, or sol, of its mission on Mars (May 15, 2013) NASA's Mars Exploration Rover Opportunity drove 263 feet (80 meters) southward along the western rim of Endeavour Crater. That drive put the total distance driven by Opportunity since the rover's January 2004 landing on Mars at 22.220 miles (35.760 kilometers. This exceeded the distance record by any NASA vehicle, previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL-Caltech
View Back at Record-Setting Drive by Opportunity. On the 3,309th Martian day, or sol, of its mission on Mars (May 15, 2013) NASA’s Mars Exploration Rover Opportunity drove 263 feet (80 meters) southward along the western rim of Endeavour Crater. That drive put the total distance driven by Opportunity since the rover’s January 2004 landing on Mars at 22.220 miles (35.760 kilometers. This exceeded the distance record by any NASA vehicle, previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL-Caltech
Soviet Lunokhod-2 lunar rover.  Credit: Ria Novosti
Soviet Lunokhod-2 lunar rover. Credit: Ria Novosti

‘Star Trek into Darkness’ & NASA Station Crews Join Forces at Live NASA Webcast

NASA and Star Trek connect on NASA TV on May 16 for the premiere of “Star Trek Into Darkness” on May 17, 2013 to celebrate the wonders of Space Exploration. Still image of the fictional star ship ‘Enterprise’. Credit: Star Trek

Science Fact and Science Fiction join forces in space today for a one of a kind meeting turning science fiction into reality – and you can participate courtesy of NASA and Hollywood!

Fictional astronauts and crews from the newest Star Trek incarnation; “Star Trek into Darkness” and real life astronauts taking part from outer space and Earth get connected today (May 16) via a live ‘space bridge’ webcast hosted by NASA. The movies premieres today – May 16.

NASA Television broadcasts the face-to-face meeting as a Google+ Hangout from noon to 12:45 p.m. EDT, May 16. Watch live below!

The webcast includes “Captain Kirk” – played by actor Chris Pine, and NASA astronaut Chris Cassidy – fresh off from his real life ‘emergency spacewalk’ this past weekend that saved the critically important cooling system aboard the International Space Station (ISS). “Into Darkness” features dramatic life and death spacewalks.

Astronaut Chris Cassidy during the May 11, 2013 emergency spacewalk at the ISS. Credit: NASA
Astronaut Chris Cassidy during the May 11, 2013 emergency spacewalk at the ISS. Credit: NASA

Also participating in the live NASA webcast are ‘Star Trek’ director J.J. Abrams, screenwriter and producer Damon Lindelof; and actors Alice Eve (Dr. Carol Marcus) and John Cho (Sulu) and astronauts Michael Fincke and Kjell Lindgren at NASA’s Johnson Space Center in Houston.

Fincke flew on the Space Shuttle and the ISS and made a guest appearance on the finale of the TV series – “Star Trek: Enterprise”. See photo below.

‘Star Trek Into Darkness’ movie still image. Credit: Star Trek
‘Star Trek Into Darkness’ movie still image. Credit: Star Trek

The ISS is a sort of early forerunner for the fictional ‘Federation’ in the ‘Star Trek’ Universe – constructed in low Earth orbit by the combined genius and talents of 5 space agencies and 16 nations of Earth to forge a united path forward for the peaceful exploration of Outer Space.

Cassidy will provide insights about everyday life aboard the real space station – like eating, sleeping, exercising and fun ( think Chris Hadfield’s guitar strumming ‘Space Oddity’ -watch the YouTube video below) – as well as the myriad of over 300 biological, chemical and astronomical science experiments performed by himself and the six person station crews during their six-month stints in zero gravity.

Astronaut Terry Virts, left, Actor Scott Bakula and Astronaut Mike Fincke, right, beam on the set of Star Trek's final Enterprise voyage. Credit: NASA
Astronaut Terry Virts, left, Actor Scott Bakula and Astronaut Mike Fincke, right, beam on the set of Star Trek’s final Enterprise voyage. Credit: NASA

The participants will ask questions of each other and take questions from the Intrepid Sea, Air & Space Museum in New York City (home of the space shuttle Enterprise), the Smithsonian’s National Air and Space Museum in Washington, and social media followers, says NASA.

Social media followers were allowed to submit 30 sec video questions until early this morning.

And you can submit questions today and during the live broadcast using the hashtag #askNASA on YouTube, Google+, Twitter and Facebook.

Captain Kirk and Mr. Spock in ‘Star Trek Into Darkness’. Credit: Star Trek
Captain Kirk and Mr. Spock in ‘Star Trek Into Darkness’. Credit: Star Trek

Watch the hangout live on NASA’s Google+ page, the NASA Television YouTube channel, or NASA TV starting at Noon EDT, May 16.

As a long time Star Trek fan (since TOS) I can’t wait to see ‘Into Darkness’

Ken Kremer

…………….
Learn more about NASA missions, Mars, Curiosity and more at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

NASA’s real life Space Shuttle Enterprise transits the NYC Skyline at Dusk on a barge on June 3, 2012 during a two stage seagoing  journey to her permanent  new home at the Intrepid Sea, Air and Space Museum. Enterprise is bracketed by the Empire State Building, The Freedom Tower (still under construction) and the torch lit Statue of Liberty. Credit: Ken Kremer
NASA’s real life Space Shuttle Enterprise transits the NYC Skyline at Dusk on a barge on June 3, 2012 during a two stage seagoing journey to her permanent new home at the Intrepid Sea, Air and Space Museum. Enterprise is bracketed by the Empire State Building, The Freedom Tower (still under construction) and the torch lit Statue of Liberty. Credit: Ken Kremer

Mercury Shows Off Its Reds, Whites, and Blues

An 11-color MESSENGER targeted image of Mercury's Tyagaraja crater

At first glance, the planet Mercury may bear a striking resemblance to our own Moon. True, both are heavily-cratered, airless worlds that hide pockets of ice inside polar shadows… but there the similarities end. In addition to being compositionally different than the Moon, Mercury also has surface features that you won’t find on the lunar surface — or anywhere else in the Solar System.

The picture above, part of an 11-color targeted image acquired by MESSENGER on April 25, 2013, shows the varied terrain found within the 97-kilometer-wide Tyagaraja crater located near Mercury’s equator. The reds, blues, greens, and oranges, much more saturated than anything we’d see with our own eyes, correspond to surface materials of different compositions… and the brightest spots within the crater are features called “hollows” that are truly unique to Mercury, possibly resulting from the planet’s close interaction with the solar wind.

First noted in September of 2011, hollows have been identified across many areas of Mercury. One hypothesis is that they’re formed by the sublimation of subsurface material exposed inside larger craters. Being so close to the Sun and lacking a protective atmosphere, Mercury is constantly being scoured by the solar wind — a relentless stream of charged particles that’s actively “sandblasting” exposed volatiles from the planet’s surface!

Read more about hollows here.

A previous MESSENGER image of hollows inside Tyagaraja crater
A previous MESSENGER image of hollows inside Tyagaraja crater

The reddish spot at the center of the crater in the top image is likely material surrounding a pyroclastic vent, which appear red and orange in MDIS images. The dark material that appears bluish is something called “low reflectance material” (LRM).

The image was acquired as a targeted high-resolution 11-color image set. Acquiring 11-color targets is a new MESSENGER campaign that began in March and utilizes all of the Wide-Angle Camera’s 11 narrow-band color filters. Because of the large data volume involved, only features of special scientific interest are targeted for imaging in all 11 colors.

Full of geologically interesting features the crater was named for Kakarla Tyagabrahmam, an 18th century composer of classical South Indian music.

The first spacecraft to establish orbit around Mercury in summer 2011, MESSENGER is capable of continuing orbital operations until early 2015.

Read more on the Johns Hopkins University APL MESSENGER site here.

Credits:  NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Curiosity Reaches Out with Martian Handshake and Contemplates New Drilling at Habitable Site

NASA’s Curiosity rover reaches out in ‘handshake’ like gesture to welcome the end of solar conjunction and resumption of contact with Earth. This mosaic of images was snapped by Curiosity on Sol 262 (May 2) and shows her flexing the robotic arm with Mount Sharp in the background. Two drill holes are visible on the surface bedrock below the robotic arm’s turret. Credit: NASA/JPL-Caltech/Ken Kremer-(kenkremer.com)/Marco Di Lorenzo

NASA’s Curiosity rover reaches out in ‘handshake’ like gesture to welcome the end of solar conjunction and resumption of contact with Earth. This mosaic of images was snapped by Curiosity on Sol 262 (May 2, 2013) and shows her flexing the robotic arm with dramatic scenery of Mount Sharp in the background. Two drill holes are visible on the surface bedrock below the robotic arm’s turret where she discovered a habitable site.
Credit: NASA/JPL-Caltech/Ken Kremer-(kenkremer.com)/Marco Di Lorenzo[/caption]

NASA’s Curiosity rover has reached out in a Martian ‘handshake’ like gesture welcoming the end of solar conjunction that marks the resumption of contact with her handlers back on Earth – evidenced in a new photo mosaic of images captured as the robot and her human handlers contemplate a short traverse to a 2nd drilling target in the next few days.

“We’ll move a small bit and then drill another hole,” said John Grotzinger to Universe Today. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

The rover science team and Grotzinger have selected that 2nd drill location and are itching to send the rover on her way to the bumpy spot called “Cumberland.”

Cumberland lies about nine feet (2.75 meters) west of the “John Klein’ outcrop where Curiosity conducted humanity’s first ever interplanetary drilling on the alien Martian surface in February 2013.

“We’ll confirm what we found in the John Klein hole,” Grotzinger told me.

Curiosity discovered a habitable zone at the John Klein drill site.

After pulverizing and carefully sifting the John Klein drill tailings, a powered, aspirin sized portion of the gray rock was fed into a trio of inlet ports atop the rovers deck and analyzed by Curiosity’s duo of miniaturized chemistry labs named SAM and Chemin inside her belly to check for the presence of organic molecules and determine the inorganic chemical composition.

‘Cumberland’ and ‘John Klein’ are patches of flat-lying bedrock shot through with pale colored calcium sulfate hydrated mineral veins and a bumpy surface texture at her current location inside the ‘Yellowknife Bay’ basin.

This patch of bedrock, called "Cumberland," has been selected as the second target for drilling by NASA's Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS
This patch of bedrock, called “Cumberland,” has been selected as the second target for drilling by NASA’s Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS

“The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water,” NASA said in a statement.

Curiosity snapped high resolution color images of Cumberland on Sol 192 (Feb. 19, 2013) as part of the ongoing data collection campaign to put Yellowknife Bay into scientific context and search for future drill targets.

The John Klein bore hole (drilled on Feb 8, 2013, Sol 182) is visible in our new photo mosaic above created by myself and my imaging partner Marco Di Lorenzo. It was stitched from a ‘Martian baker’s dozen’ of raw images captured on May 2 (Sol 262). and shows the hand-like tool turret positioned above the first pair of drill holes.

Our new Sol 262 mosaic illustrates that Curiosity is again fully functional and flexing the miracle arm following a relaxing month long period of ‘Spring Break’ when there was no two- way communication with Earth during April’s solar conjunction.

The Sol 262 photo mosaic was originally featured at NBC News by Cosmic Log science editor Alan Boyle who likened it to a future Martian handshake in this cleverly titled story; “Curiosity’s ‘hand’ outstretched on Mars: Will humans ever shake it?”

See below our Sol 169 panoramic context view of Curiosity inside Yellowknife Bay collecting spectroscopic science measurements at the John Klein outcrop.

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) - back dropped with Mount Sharp - where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) – back dropped with Mount Sharp – where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer -(kenkremer.com)/Marco Di Lorenzo

Curiosity found that the fine-grained, sedimentary mudstone rock at the John Klein worksite inside the shallow depression known as Yellowknife Bay possesses significant amounts of phyllosilicate clay minerals; indicating the flow of nearly neutral liquid water and a habitat friendly to the possible origin of simple Martian microbial life forms eons ago.

Grotzinger also explained to Universe Today that Curiosity will soon to more capable than ever before.

“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities’” said Grotzinger.

“Then we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”

Curiosity will spend a month or more at the Cumberland site to collect and completely analyze the drill tailings.

Then she’ll resume her epic trek to mysterious Mount Sharp, the 3.5 mile (5 km) high mountain that dominates her landing site and is her ultimate driving inside Gale Crater according to Grotzinger.

“After that [Cumberland] we’re likely to begin the trek to Mt. Sharp, though we’ll stop quickly to look at a few outcrops that we passed by on the way into Yellowknife Bay,” Grotzinger explained to Universe Today.

The Shaler outcrop passed by on the path into Yellowknife Bay is high on the list of stops during the year long journey to Mount Sharp, says Grotzinger. Read more details about Shaler in a new BBC story by Jonathan Amos – here – featuring our Shaler outcrop mosaic.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity and NASA missions at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “Antares Rocket Launch from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

This map shows the location of "Cumberland," the second rock-drilling target for NASA's Mars rover Curiosity, in relation to the rover's first drilling target, "John Klein," within the southwestern lobe of a shallow depression called "Yellowknife Bay." Cumberland, like John Klein, is a patch of flat-lying bedrock with pale veins and bumpy surface texture. The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water. Image credit: NASA/JPL-Caltech/Univ. of Arizona
This map shows the location of “Cumberland,” the second rock-drilling target for NASA’s Mars rover Curiosity, in relation to the rover’s first drilling target, “John Klein,” within the southwestern lobe of a shallow depression called “Yellowknife Bay.” Cumberland, like John Klein, is a patch of flat-lying bedrock with pale veins and bumpy surface texture. The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water. Image credit: NASA/JPL-Caltech/Univ. of Arizona

Send Your Name and a Haiku Poem to Mars on a Solar Winged MAVEN

The MAVEN missions ‘Going to Mars’ campaign invites the public to submit names and poems which will be included on a special DVD. The DVD will be adhered to the MAVEN spacecraft and launched to Mars on Nov. 18, 2013. Credit: NASA/GSFC

Do you want to go to Mars?

Well here’s your chance to get connected for a double barreled dose of Red Planet adventure courtesy of MAVEN – NASA’s next ‘Mission to Mars’ which is due to liftoff this November from the Florida Space Coast.

For a limited time only, NASA is offering the general public two cool ways to get involved and ‘Go to Mars’ aboard a DVD flying on the solar winged MAVEN (Mars Atmosphere and Volatile Evolution) orbiter.

You can send your name and a short poetic message to Mars via the ‘Going to Mars’ campaign being managed by the University of Colorado at Boulder’s Laboratory for Atmospheric and Space Physics (CU/LASP).

“Anybody on planet Earth is welcome to participate!” says NASA.

“The Going to Mars campaign offers people worldwide a way to make a personal connection to space, space exploration, and science in general, and share in our excitement about the MAVEN mission,” said Stephanie Renfrow, lead for the MAVEN Education and Public Outreach program at CU/LASP.

Signing up to send your name is easy. Simply click on the MAVEN mission website – here.

The MAVEN missions ‘Going to Mars’ campaign invites submissions from the public; artwork, messages, and names will be included on a special DVD. The DVD will be adhered to the MAVEN spacecraft and launched into orbit around Mars. (Courtesy Lockheed Martin)
The MAVEN missions ‘Going to Mars’ campaign invites submissions from the public; artwork, messages, and names will be included on a special DVD. The DVD will be adhered to the MAVEN spacecraft and launched into orbit around Mars. (Courtesy Lockheed Martin)

Everyone who submits their name will be included on a DVD that will be attached to the winged orbiter. And you can print out a beautiful certificate of participation emblazoned with your name!

Over 1 million folks signed up to send their names to Mars with NASA’s Curiosity rover. So they are all riding along as Curiosity continues making ground breaking science discoveries and already found habitats that could support potential Martian microbes.

Writing the haiku poem will require thought, inspiration and creativity and involves a public contest – because only 3 poems will be selected and sent to Mars. The public will vote for the three winning entries.

Haiku’s are three line poems. The rules state that “the first and last lines must have exactly five syllables each and the middle line must have exactly seven syllables. All messages must be original and not plagiarized in any way.”

The complete contest rules are found at the mission website – here:

This is a simple way for kids and adults alike to participate in humanity’s exploration of the Red Planet. And it’s also a great STEM activity for educators and school kids of all ages before this year’s school season comes to a close.

470505_10150721848592868_1231281550_o[1]

“This new campaign is a great opportunity to reach the next generation of explorers and excite them about science, technology, engineering and math,” said Bruce Jakosky, MAVEN principal investigator from CU/LASP. “I look forward to sharing our science with the worldwide community as MAVEN begins to piece together what happened to the Red Planet’s atmosphere.”

MAVEN is slated to blast off atop an Atlas V rocket from Cape Canaveral Florida on Nov. 18, 2013. It will join NASA’s armada of four robotic spacecraft when it arrives at Mars during 2014.

MAVEN is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. The spacecraft will investigate how the loss of Mars’ atmosphere to space determined the history of water on the surface.

But don’t dawdle- the deadline for submissions is July 1.

So, sign up to ‘Go to Mars’ – and do it NOW!

Juice up your inner poet and post your ‘Haiku’ here – if you dare

Ken Kremer

Mars Armada Resumes Contact with NASA – Ready to Rock ‘n Roll n’ Drill

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) - back dropped with Mount Sharp - where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) – back dropped with Mount Sharp – where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
See drill hole and conjunction videos below[/caption]

After taking a well deserved and unavoidable break during April’s solar conjunction with Mars that blocked two way communication with Earth, NASA’s powerful Martian fleet of orbiters and rovers have reestablished contact and are alive and well and ready to Rock ‘n Roll ‘n Drill.

“Both orbiters and both rovers are in good health after conjunction,” said NASA JPL spokesman Guy Webster exclusively to Universe Today.

Curiosity’s Chief Scientist John Grotzinger confirmed to me today (May 1) that further drilling around the site of the initial John Klein outcrop bore hole is a top near term priority.

The goal is to search for the chemical ingredients of life.

“We’ll drill a second sample,” Grotzinger told Universe Today exclusively. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

“We’ll move a small bit, either with the arm or the wheels, and then drill another hole to confirm what we found in the John Klein hole.”

Earth, Mars and the Sun have been lined up in nearly a straight line for the past several weeks, which effectively blocked virtually all contact with NASA’s four pronged investigative Armada at the Red Planet.

NASA’s Red Planet fleet consists of the Curiosity (MSL) and Opportunity (MER) surface rovers as well as the long lived Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO) robotic orbiters circling overhead. ESA’s Mars Express orbiter is also exploring the Red Planet.

“All have been in communications,” Webster told me today, May 1.

The NASA spacecraft are functioning normally and beginning to transmit the science data collected and stored in on board memory during the conjunction period when a commanding moratorium was in effect.

“Lots of data that had been stored on MRO during conjunction has been downlinked,” Webster confirmed to Universe Today.

Curiosity and Mount Sharp: Curiosity's elevated robotic arm and drill are staring back at you - back dropped by Mount Sharp, her ultimate destination.  The rover team anticipates new science discoveries following the resumption of contact with NASA after the end of solar conjunction.  This panoramic vista of Yellowknife Bay basin was snapped on March 23, Sol 223 prior to conjunction and assembled from several dozen raw images snapped by the rover's navigation camera system.  These images were snapped after the robot recovered from a computer glitch in late Feb and indicated she was back alive and functioning working normally. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/KenKremer (kenkremer.com).
Curiosity and Mount Sharp: Curiosity’s elevated robotic arm and drill stare back at you at the John Klein drill site – back dropped by mysterious Mount Sharp. The rover has resumed contact with NASA following the end of solar conjunction. This panoramic vista was snapped on March 23, 2013, Sol 223. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/KenKremer (kenkremer.com)

And NASA is already transmitting and issuing new marching orders to the Martian Armada to resume their investigations into unveiling the mysteries of the Red Planet and determine whether life ever existed eons ago or today.

“New commanding, post-conjunction has been sent to both orbiters and Opportunity.”

“And the sequence is being developed today for sending to Curiosity tonight (May 1), as scheduled more than a month ago,” Webster explained.

“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities,” said Grotzinger.

“After that we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”

Curiosity is at work inside the Yellowknife Bay basin just south of the Martian equator. Opportunity is exploring the rim of Endeavour crater at the Cape York rim segment.

Opportunity Celebrates 9 Years and 3200 Sols on Mars snapping this panoramic view from her current location on ‘Matijevic Hill’ at Endeavour Crater. The rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013). “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer
Opportunity Celebrates 9 Years and 3200 Sols on Mars snapping this panoramic view from her current location on ‘Matijevic Hill’ at Endeavour Crater. The rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013). “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer

Mars Solar Conjunction is a normal celestial event that occurs naturally about every 26 months. The science and engineering teams take painstaking preparatory efforts to insure no harm comes to the spacecraft during the conjunction period when they have no chance to assess or intervene in case problems arise.

So it’s great news and a huge relief to the large science and operations teams handling NASA’s Martian assets to learn that all is well.

Since the sun can disrupt and garble communications, mission controllers suspended transmissions and commands so as not to inadvertently create serious problems that could damage the fleet in a worst case scenario.

So what’s on tap for Curiosity and Opportunity in the near term ?

“For the first few days for Curiosity we will be installing a software upgrade.”

“For both rovers, the science teams will be making decisions about how much more to do at current locations before moving on,” Webster told me.

The Opportunity science team has said that the long lived robot has pretty much finished investigating the Cape York area at Endeavour crater where she made the fantastic discovery of phyllosilicates clay minerals that form in neutral water.

Signals from Opportunity received a few days ago on April 27 indicated that the robot had briefly entered a standby auto mode while collecting imagery of the sun.

NASA reported today that all operations with Opportunity was “back under ground control, executing a sequence of commands sent by the rover team”, had returned to normal and the robot exited the precautionary status.

Opportunity Celebrates 9 Years on Mars snapping this panoramic view of the vast expanse of 14 mile (22 km) wide Endeavour Crater from atop ‘Matijevic Hill’ on Sol 3182 (Jan. 5, 2013). The rover then drove 43 feet to arrive at ‘Whitewater Lake’ and investigate clay minerals. Photo mosaic was stitched from Navcam images and colorized. Credit: NASA/JPL-Caltech/Cornell/Ken Kremer/Marco Di Lorenzo
Opportunity Celebrates 9 Years on Mars snapping this panoramic view of the vast expanse of 14 mile (22 km) wide Endeavour Crater from atop ‘Matijevic Hill’ on Sol 3182 (Jan. 5, 2013). The rover then drove 43 feet to arrive at ‘Whitewater Lake’ and investigate clay minerals. Photo mosaic was stitched from Navcam images and colorized. Credit: NASA/JPL-Caltech/Cornell/Ken Kremer/Marco Di Lorenzo

“The Curiosity team has said they want to do at least one more drilling in Yellowknife Bay area,” according to Webster.

Curiosity has already accomplished her primary task and discovered a habitable zone that possesses the key ingredients needed for potential alien microbes to once have thrived in the distant past on the Red Planet when it was warmer and wetter.

The robot found widespread evidence for repeated episodes of flowing liquid water, hydrated mineral veins and phyllosilicates clay minerals on the floor of her Gale Crater landing site after analyzing the first powder ever drilled from a Martian rock.

Video Caption: Historic 1st bore hole drilled by NASA’s Curiosity Mars rover on Sol 182 of the mission (8 Feb 2013). Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/Ken Kremer (http://www.kenkremer.com/)

During conjunction Curiosity collected weather, radiation and water measurements but no imagery.

Check out this wonderful new story at Space.com featuring Curiosity mosaics by me and my imaging partner Marco Di Lorenzo and an interview with me.

Ken Kremer

Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera - accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com).
Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera – accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com).

Watch this brief NASA JPL video for an explanation of Mars Solar Conjunction.

SpaceShipTwo Fires Rocket Engines for First Ever Supersonic Test Flight- Photos & Video

SpaceShipTwo fires her rocket motor in flight for 1st time on April 29, 2013. Credit: MarsScientific.com

SpaceShipTwo fires her rocket motor in flight for 1st time on April 29, 2013. Credit: MarsScientific.com
Updated with more Photos & Video[/caption]

In a momentous and long awaited day in spaceflight, Virgin Galactic’s SpaceShipTwo (SS2) commercial spaceliner named “Enterprise” lit up her hybrid rocket engines in flight and reached supersonic speeds for the first time in history, today, Monday, April 29, 2013 – in the skies over the Mojave Desert in California.

“What a feeling to be on the ground with all the team in Mojave to witness Virgin Galactic go faster than the speed of sound,” wrote Virgin Galacic founder and owner, billionaire Sir Richard Branson, a short while ago.

Branson wants to bring the incomparable joys of human spaceflight– including weightlessness and spectacular views of the Earth’s curvature- to the masses. Thus making science fiction fantasies of the future like “2001: A Space Odyssey” and “Star Trek” a reality – TODAY!

“This is a momentous day and the single most important flight test to date for our Virgin Galactic program,” said Branson from the Mojave Air and Space Port. “What a feeling to be on the ground with all the team in Mojave to witness Virgin Galactic go faster than the speed of sound.”

ShaceShipTwo from Virgin Galactic fires its rocket engines for the first time in history on April 29, 2013 to achieve supersonic speed. Credit: Virgin Galactic
ShaceShipTwo from Virgin Galactic fires its rocket engines for the first time in history on April 29, 2013 to achieve supersonic speed. Credit: Virgin Galactic

The SpaceShipTwo test of Virgin Spaceship Enterprise was conducted by builder Scaled Composites, led by famed aerospace engineer Burt Rutan, and Virgin Galactic.

With Scaled Composites test pilots Mark Stucky and Mike Alsbury at the helm, the engine burn lasted about 16 seconds, exactly as planned and achieved a speed of Mach 1.2 – breaking the sound barrier!

Watch this video of today’s SS2 rocket test flight:

The test flight began at about 7:02 a.m. local California time as SpaceShipTwo took off from Mojave strapped to the belly of the WhiteKnightTwo (WK2) mothership.

SS2 was released from the mothership at an altitude of 47,000 feet (14 km) some 45 minutes into the flight.

“The pilots triggered ignition of the rocket motor, causing the main oxidizer valve to open and igniters to fire within the fuel case. At this point, SS2 was propelled forward and upward to a maximum altitude of 55,000 feet [17 km],” said Virgin Galactic in a statement.

SS2 is powered by RocketMotorTwo, developed by Sierra Nevada Corporation – which is also constructing the manned DreamChaser mini shuttle ‘space taxi’ under contract to NASA and aiming to restart launches of American astronauts from American soil to low Earth orbit and the ISS.

Boom camera shot of SpaceShipTwo breaking the sound barrier.  Credit: Virgin Galactic
Boom camera shot of SpaceShipTwo breaking the sound barrier. Credit: Virgin Galactic

“The first powered flight of Virgin Spaceship Enterprise was without any doubt, our single most important flight test to date,” said Branson, who watched the flight from the grounds of Mojave.

The entire fight lasted about an hour with SS2 gliding back for a safe landing at the Mojave Air and Space Port to conclude the history making flight.

Until today’s engine firing, the SS2/WK2 aerial test flight program had been limited to captive carry and landing drop tests.

Branson’s near term goal is for SpaceShipTwo to fly to space – commonly defined as 62 miles (100 km) altitude – for the first time before year’s end, validate the vehicle with a rigorous test flight program of gradually expanding the flight envelope to insure full operability and safety and then carry the first revenue paying passengers to space thereafter from Spaceport America in New Mexico.

“For the first time, we were able to prove the key components of the system, fully integrated and in flight. Today’s supersonic success opens the way for a rapid expansion of the spaceship’s powered flight envelope, with a very realistic goal of full space flight by the year’s end. We saw history in the making today and I couldn’t be more proud of everyone involved.”

Rumors that this rocket firing test flight was imminent had reached a fever pitch over the past few days, stoked by broad hints in open messages from Branson himself. So, a large group of Virgin employees and space enthusiasts were present today to witness the momentous event (see photos).

Sir Richard Branson hugs designer Burt Rutan as they are surrounded by employee's of Virgin Galactic, The SpaceShip Company and Scaled Composites watch as Virgin Galactic's SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt's wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its "mothership", WhiteKnight2 over the Mojave, CA area, April 29, 2013 at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.
Sir Richard Branson hugs designer Burt Rutan as they are surrounded by employee’s of Virgin Galactic, The SpaceShip Company and Scaled Composites watch as Virgin Galactic’s SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt’s wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its “mothership”, WhiteKnight2 over the Mojave, CA area, April 29, 2013 at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.

In the not too distant future, the purpose of SS2 is for everyday folks – not just highly trained astronauts – to experience spaceflight and out of this world views of the Earth below and the heavens above.

Eventually, human spaceflight could be as commonplace as flying aboard a commercial jetliner is today.

SpaceShipTwo can carry 8 people total; including a crew of two pilots and six passengers on suborbital missions to space.

Although SS2 cannot go into Earth orbit, Branson hopes that future varients will achieve orbit.

Branson himself will fly aboard the first commercial SS2 flight. Over 500 people have already plucked down over $200,000 to reserve the unprecedented choice seats.

“Like our hundreds of customers from around the world, my children and I cannot wait to get on board this fantastic vehicle for our own trip to space and am delighted that today’s milestone brings that day much closer,” said Branson.

The Commercial Spaceflight Federation quickly lauded the Virgin Galactic team and issued this statement:

“The Commercial Spaceflight Federation congratulates the team at Virgin Galactic and Scaled Composites for the first powered test flight of SpaceShipTwo today,” said CSF President Michael Lopez-Alegria.

“This incredible achievement is the direct result of the hard work and dedication by these two companies, as well as by RocketMotorTwo developer Sierra Nevada Corporation. Because of their efforts, we are one step closer to achieving safe, routine, and cost-effective access to space that will create abundant opportunities for space-based research and that will inspire the next generation of engineers and scientists. I applaud the team at Virgin Galactic and Scaled Composites for their accomplishment, and the team at Mojave Air & Space Port for their efforts in creating a professional and safe testing environment.”

In this era of stingy federal funding and slashes to NASA’s budget, commercial spaceflight will play a major and increasing role in bringing down the high costs of access to space as well as enabling an expanding science exploration program and private commercial space exploitation programs to open up the High Frontier.

Other private companies like SpaceX and Orbital Sciences are already leading the charge with regards to the commercial space exploration race with their Falcon 9 and Antares commercial rockets – now launching crucial cargo for NASA to the International Space Station (ISS) since the retirement of the Space Shuttle orbiters in 2011.

Ken Kremer

Fly Along With Voyager

Fly along with NASA's Voyager spacecraft as the twin probes head towards interstellar space. In this artist's concept, a regularly updated gauge using data from the two spacecraft will indicate the levels of particles that originate from far outside our solar system and those that originate from inside our solar bubble. Those are two of the three signs scientists expect to see in interstellar space. The other sign is a change in the direction of the magnetic field. Image credit: NASA/JPL-Caltech

Far away, deep in the dark, near the edge of interstellar space, Voyager 1 and 2 are hurtling near the tenuous edge of the magnetic bubble surrounding the Sun known as the heliosphere and NASA wants you to ride along.

The Voyager website sports a new feature showing cosmic ray data. NASA’s Eyes on the Solar System, a popular Web-based interactive tool, contains a new Voyager module, that not only lets you ride along for the Voyagers’ journeys but also shows important scientific data flowing from the spacecraft.

[Warning:Play with this tool at your own risk. Interacting with this online feature can seriously impact your time; in an educational way, of course!]

As Voyager 1 explores the outer limits of the heliosphere, where the breath from our Sun is just a whisper, scientists are looking for three key signs that the spacecraft has left our solar system and entered interstellar space, or the space between stars. Voyager 1 began heading for the outer Solar System after zipping through the Saturn system in 1980.

The new module contains three gauges, updated every six hours from real data from Voyager 1 and 2, that indicate the level of fast-moving particles, slower-moving particles and the direction of the magnetic field. Fast-moving charged particles, mainly protons, come from distant stars and originate from outside the heliosphere. Slower-moving particles, also mainly protons, come from within the heliosphere. Scientists are looking for the levels of outside particles to jump dramatically while inside particles dip. If these levels hold steady, it means the Voyager spacecraft no longer feel the wind from our Sun and the gulf between stars awaits.

Over the past couple of years, data from Voyager 1, the most distant man-made object, show a steady increase of high-powered cosmic radiation indicating the edge is near, scientists say. Voyager 1 appears to have reached the last region before interstellar space. Scientists dubbed the region the “magnetic highway.” Particles from outside are streaming in while particles from inside are streaming out. Voyager 2’s instruments detect slight drops in inside particles but scientists don’t think the probe has entered the area yet.

Scientists also expect a change in the direction of the magnetic field. While particle data is updated every six hours, analyses of the magnetic field data usually takes a few months to prepare.

A snapshot riding along with Voyager 1's looking back at the Sun and inner solar system. The positions of Voyager 2 and Pioneers 10 and 11 show within the viewport as well.
A snapshot riding along with Voyager 1’s looking back at the Sun and inner solar system. The positions of Voyager 2 and Pioneers 10 and 11 show within the viewport as well.

Although launched first, Voyager 2 lags behind its twin Voyager 1 by more than 20 times the distance between the Earth and the Sun. Voyager 2 blasted off August 20, 1977 aboard a Titan-Centaur rocket from Cape Canaveral, Florida. The nuclear-powered craft visited Jupiter and Saturn with an additional mission, called the Grand Tour, to study Uranus and Neptune. Voyager 1 launched two weeks later on September 5, 1977. With a faster flight path, Voyager 1 arrived at Jupiter four months before its sister craft. Voyager 1 went on to study Saturn before using the ringed planet’s gravity field to slingshot it up and out of the plane of the solar system toward the constellation Ophiuchus, the Serpent Bearer.

NASA’s Eyes on the Solar System allows viewers to hitch a ride with any of NASA’s spacecraft as they explore the solar system. Time can be slowed for a near approach of a moon or asteroid or sped up to coast between the planets. Watch close at just the right moment and you can witness one of the spacecrafts roll maneuvers. All spacecraft movements are based on actual spacecraft navigation data.

Check out the Voyager module here, and check out the rest of the the Solar System here at Eyes on the Solar System.

Historic Comet Smashup Brought Water to Jupiter’s Stratosphere

Shoemaker-Levy 9 impact site G. The comet collided with Jupiter in 1994. Credit: R. Evans, J. Trauger, H. Hammel and the HST Comet Science Team

A large comet that peppered Jupiter two decades ago brought water into the giant planet’s atmosphere, according to new research from the Herschel space observatory.

Shoemaker-Levy 9 astounded astronomers worldwide when its 21 fragments hit Jupiter in June 1994. The event was predicted and observatories were trained on Jupiter as the impact occurred. The dark splotches the comet left behind were even visible in small telescopes. But apparently, those weren’t the only effects of the collision.

Herschel’s infrared camera revealed there is two to three times more water in the southern hemisphere of the planet, where the comet slammed into the atmosphere, than in the northern hemisphere. Further, the water is concentrated in high altitudes, around the various sites where Shoemaker-Levy 9 left its mark.

It is possible, researchers acknowledged, that water could have come from interplanetary dust striking Jupiter, almost like a “steady rain.” If this were the case, however, scientists expect the water would be evenly distributed and also would have filtered to lower altitudes. Jupiter’s icy moons were also in the wrong locations, researchers said, to have sent water towards the massive planet.

Internal water rising up was ruled out because it cannot penetrate the “cold trap” between Jupiter’s stratosphere and cloud deck, the researchers added.

“According to our models, as much as 95 percent of the water in the stratosphere is due to the comet impact,” said  Thibault Cavalié of the Astrophysical Laboratory of Bordeaux, in France, who led the research.

Eight impact sites from Comet Shoemaker-Levy 9 are visible in this 1994 image. Credit: Hubble Space Telescope
Eight impact sites from Comet Shoemaker-Levy 9 are visible in this 1994 image. Credit: Hubble Space Telescope

While researchers have suspected for years that Jupiter’s water came from the comet — ESA’s Infrared Space Observatory saw the water there years ago — these new observations provide more direct evidence of Shoemaker-Levy 9’s effect. The results were published in Astronomy and Astrophysics.

Herschel’s find provides more fodder for two missions that are scheduled for Jupiter observations in the coming few years. The first goal for NASA’s Juno spacecraft, which is en route and will arrive in 2016, is to figure out how much water is in Jupiter’s atmosphere.

Additionally, ESA’s Jupiter Icy moons Explorer (JUICE) mission is expected to launch in 2022. “It will map the distribution of Jupiter’s atmospheric ingredients in even greater detail,” ESA stated.

While ESA did not link the finding to how water came to be on Earth, some researchers believe that it was comets that delivered the liquid on to our planet early in Earth’s history. Others, however, say that it was outgassing from volcanic rocks that added water to the surface.

Conventional theory dictates ice was in our solar system from when it was formed, and today we know that many planets have water in some form. Last year, for example, water ice and organics were spotted at Mercury’s north pole.

Mars appeared to be full of water in the ancient past, as evidenced by a huge, underground trench recently discovered by scientists. There is frozen water at the Martian poles, and both the Curiosity and Spirit/Opportunity rover missions have found evidence of flowing water on the surface in the past.

The outer solar system also has its share of water, including in all four giant planets (Jupiter, Saturn, Uranus and Neptune) and (in ice form) on various moons. Even some exoplanets have water vapor in their atmospheres.

“All four giant planets in the outer solar system have water in their atmospheres, but there may be four different scenarios for how they got it,” added Cavalié. “For Jupiter, it is clear that Shoemaker-Levy 9 is by far the dominant source, even if other external sources may contribute also.”

Source: European Space Agency