Solar Storm Blasting to Mars Shuts Down Curiosity – 1st Rocky Sample Results on tap

Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera - accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com)

Due to a fast approaching solar storm, NASA has temporarily shut down surface operations of the Curiosity Mars Science Lab (MSL) rover.

NASA took the precautionary measure because ‘a big coronal mass ejection’ was predicted to hit Mars over the next few days starting March 7, or Martian Sol 207 of the mission, researchers said.

The rover team wants to avoid a repeat of the computer memory glitch that afflicted Curiosity last week, and caused the rover to enter a protective ‘safe mode’.

“The rover was commanded to go to sleep,” says science team member Ken Herkenhoff of the US Geological Survey (USGS).

“Space weather can by nasty!”

This is the 2nd shutdown of the 1 ton robot in a week. Curiosity had just been returned to active status over the weekend.

A full resumption of science operations had been anticipated for next week, but is now on hold pending the outcome of effects from the solar storm explosions.

“We are making good progress in the recovery,” said Mars Science Laboratory Project Manager Richard Cook, of NASA’s Jet Propulsion Laboratory, prior to the new solar flare.

“Storm’s a-comin’! There’s a solar storm heading for Mars. I’m going back to sleep to weather it out,” tweeted Curiosity.

Solar flares cause intense bursts of radiation that can damage spacecraft and also harm space faring astronauts, and require the installation of radiation shielding and hardening on space based assets.

Since Mars lacks a magnetic field, the surface is virtually unprotected from constant bombardment by radiation.

NASA’s other spacecraft exploring Mars were unaffected by the solar eruptions – including the long lived Opportunity rover and the orbiters; Mars Odyssey & Mars Reconnaissance Orbiter.

Curiosity has been in the midst of analyzing the historic 1st samples of gray rocky powder ever cored from the interior of a Martian rock about a month ago.

Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS Read more: http://www.universetoday.com/99911/historic-mars-rock-drilling-sample-set-for-analysis-by-curiosity-robot-in-search-of-organics/#ixzz2Mu1y6Fpr
Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSSCuriosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.

So far Curiosity has snapped over 48,000 images and traveled nearly 0.5 miles.

Curiosity’s goal is to assess whether the Gale Crater area on Mars ever offered a habitable zone conducive for Martian microbial life, past or present.

Ken Kremer

Russian Asteroid Explosion and Past Impactors Paint a Potentially Grim Future for Earth

Impactors strike during the reign of the dinosaurs (image credit: MasPix/devianart)

The recent meteor explosion over Chelyabinsk brought to the forefront a topic that has worried astronomers for years, namely that an impactor from space could cause widespread human fatalities.  Indeed, the thousand+ injured recently in Russia was a wake-up call. Should humanity be worried about impactors? “Hell yes!” replied astronomer Neil deGrasse Tyson to CNN’s F. Zakharia .

The geological and biological records attest to the fact that some impactors have played a major role in altering the evolution of life on Earth, particularly when the underlying terrestrial material at the impact site contains large amounts of carbonates and sulphates. The dating of certain large impact craters (50 km and greater) found on Earth have matched events such as the extinction of the Dinosaurs (Hildebrand 1993, however see also G. Keller’s alternative hypothesis).  Ironically, one could argue that humanity owes its emergence in part to the impactor that killed the Dinosaurs.

The Manicouagan impact crater in Quebec, Canada (image credit: NASA)
More than a dozen known impactors created 50 km sized craters (and larger) on Earth. One such example is the Manicouagan crater in Quebec, Canada.  The crater is 215 million years old, and exhibits an 85 km diameter (image credit: NASA).

Only rather recently did scientists begin to widely acknowledge that sizable impactors from space strike Earth.

“It was extremely important in that first intellectual step to recognize that, yes, indeed, very large objects do fall out of the sky and make holes in the ground,” said Eugene Shoemaker. Shoemaker was a co-discoverer of Shoemaker-Levy 9, which was a fragmented comet that hit Jupiter in 1994 (see video below).

Hildebrand 1993 likewise noted that, “the hypothesis that catastrophic impacts cause mass extinctions has been unpopular with many geologists … some geologists still regard the existence of ~140 known impact craters on the Earth as unproven despite compelling evidence to the contrary.”

Beyond the asteroid that struck Mexico 65 million years ago and helped end the reign of the dinosaurs, there are numerous lesser-known terrestrial impactors that also appear destructive given their size. For example, at least three sizable impactors struck Earth ~35 million years ago, one of which left a 90 km crater in Siberia (Popigai). At least two large impactors occurred near the Jurassic-Cretaceous boundary (Morokweng and Mjolnir), and the latter may have been the catalyst for a tsunami that dwarfed the recent event in Japan (see also the simulation for the tsunami generated by the Chicxulub impactor below).

Glimsdal et al. 2007 note, “it is clear that both the geological consequences and the tsunami of an impact of a large asteroid are orders off magnitude larger than those of even the largest earthquakes recorded.”

However, in the CNN interview Neil deGrasse Tyson remarked that we’ll presumably identify the larger impactors ahead of time, giving humanity the opportunity to enact a plan to (hopefully) deal with the matter.   Yet he added that often we’re unable to identify smaller objects in advance, and that is problematic.  The meteor that exploded over the Urals a few weeks ago is an example.

Sketch of the ensuing Tsunami caused by an impactor from Space (image credit: binouse49/devianart).
An artist’s sketch of a tsunami which can be potentially generated by an asteroid/comet impactor (image credit: binouse49/deviantart).

In recent human history the Tunguska event, and the asteroid that recently exploded over Chelyabinsk, are reminders of the havoc that even smaller-sized objects can cause. The Tunguska event is presumed to be a meteor that exploded in 1908 over a remote forested area in Siberia, and was sufficiently powerful to topple millions of trees (see image below).  Had the event occurred over a city it may have caused numerous fatalities.

Mark Boslough, a scientist who studied Tunguska noted, “That such a small object can do this kind of destruction suggests that smaller asteroids are something to consider … such collisions are not as improbable as we believed. We should be making more efforts at detecting the smaller ones than we have till now.” 

Neil deGrasse Tyson hinted that humanity was rather lucky that the recent Russian fireball exploded about 20 miles up in the atmosphere, as its energy content was about 30 times larger than the Hiroshima explosion.  It should be noted that the potential negative outcome from smaller impactors increases in concert with an increasing human population.

The Tungunska impactor is thought to have felled millions of trees in Siberia in 1908 (image credit: Kulik).
In 1908 the Tunguska impactor toppled millions of trees in a rather remote part of Siberia (image credit: Kulik).  Had the object exploded over a city, the effects may have been catastrophic.

So how often do large bodies strike Earth, and is the next catastrophic impactor eminent? Do such events happen on a periodic basis? Scientists have been debating those questions and no consensus has emerged. Certain researchers advocate that large impactors (leaving craters greater than 35 km) strike Earth with a period of approximately 26-35 million years.

The putative periodicity  (i.e., the Shiva hypothesis) is often linked to the Sun’s vertical oscillations through the plane of the Milky Way as it revolves around the Galaxy, although that scenario is likewise debated (as is many of the assertions put forth in this article). The Sun’s motion through the denser part of the Galactic plane is believed to trigger a comet shower from the Oort Cloud. The Oort Cloud is theorized to be a halo of loosely-bound comets that encompasses the periphery of the Solar System. Essentially, there exists a main belt of asteroids between Mars and Jupiter, a belt of comets and icy bodies located beyond Neptune called the Kuiper belt, and then the Oort Cloud.  A lower-mass companion to the Sun was likewise considered as a perturbing source of Oort Cloud comets (“The Nemesis Affair” by D. Raup).

A belt of comets called the Oort Cloud is theorized to encircle the Solar system  (image credit: NASA/JPL).
A halo of comets designated the Oort Cloud is theorized to encircle the periphery of the Solar System, and reputedly acts as a reservoir for objects that may become terrestrial impactors (image credit: NASA/JPL).

The aforementioned theory pertains principally to periodic comets showers, however, what mechanism can explain how asteroids exit their otherwise benign orbits in the belt and enter the inner solar system as Earth-crossers? One potential (stochastic) scenario is that asteroids are ejected from the belt via interactions with the planets through orbital resonances.  Evidence for that scenario is present in the image below, which shows that regions in the belt coincident with certain resonances are nearly depleted of asteroids.  A similar trend is seen in the distribution of icy bodies in the Kuiper belt, where Neptune (rather than say Mars or Jupiter) may be the principal scattering body.  Note that even asteroids/comets not initially near a resonance can migrate into one by various means (e.g., the Yarkovsky effect).

Indeed, if an asteroid in the belt were to breakup (e.g., collision) near a resonance, it would send numerous projectiles streaming into the inner solar system.  That may help partly explain the potential presence of asteroid showers (e.g., the Boltysh and Chicxulub craters both date to near 65 million years ago).   In 2007, a team argued that the asteroid which helped end the reign of the Dinosaurs 65 million years ago entered an Earth-crossing orbit via resonances. Furthermore, they noted that asteroid 298 Baptistina is a fragment of that Dinosaur exterminator, and it can be viewed in the present orbiting ~2 AU from the Sun.  The team’s specific assertions are being debated, however perhaps more importantly: the underlying transport mechanism that delivers asteroids from the belt into Earth-crossing orbits appears well-supported by the evidence.

Kirkwood Gaps, histogram of asteroids as a function of their average distance from the Sun.  Regions deplete of asteroids are called Kirkwood Gaps, and those bodies may have been escavated from the main belt owing to orbital resonances (image credit: Alan Chamberlain, JPL/Caltech).
A histogram featuring the number of asteroids as a function of their average distance from the Sun. Regions depleted of asteroids are often coincident with orbital resonances, the latter being a mechanism by which objects in the belt can be scattered into enter Earth-crossing orbits (image credit: Alan Chamberlain, JPL/Caltech).

Thus it appears that the terrestrial impact record may be tied to periodic and random phenomena, and comet/asteroid showers can stem from both.  However, reconstructing that terrestrial impact record is rather difficult as Earth is geologically active (by comparison to the present Moon where craters from the past are typically well preserved).  Thus smaller and older impactors are undersampled.  The impact record is also incomplete since a sizable fraction of impactors strike the ocean.  Nevertheless, an estimated frequency curve for terrestrial impacts as deduced by Rampino and Haggerty 1996 is reproduced below.  Note that there is considerable uncertainty in such determinations, and the y-axis in the figure highlights the “Typical Impact Interval”.

Estimated frequency of impacts as a function of age, diameter, and energy yield.  Results assume an impact speed of 20 km/s and density of 3 g/cm^3 (image credit: Fig. 2 from Rampino & Haggerty 1996, NASA ADS/Springer).
Estimated frequency of impactors as a function of diameter, energy yield, and typical impact interval. Results assume an impact speed of 20 km/s and density of 3 g/cm^3 (image credit: Fig. 2 from Rampino and Haggerty 1996, NASA ADS/Springer).

In sum, as noted by Eugene Shoemaker, large objects do indeed fall out of the sky and cause damage. It is unclear when in the near or distant future humanity will be forced to rise to the challenge and counter an incoming larger impactor, or again deal with the consequences of a smaller impactor that went undetected and caused human injuries (the estimated probabilities aren’t reassuring given their uncertainty and what’s in jeopardy).  Humanity’s technological progress and scientific research must continue unabated (and even accelerated), thereby affording us the tools to better tackle the described situation when it arises.

Is discussion of this topic fear mongering and alarmist in nature? The answer should be obvious given the fireball explosion that happened recently over the Ural mountains, the Tunguska event, and past impactors.  Given the stakes excessive vigilance is warranted.

Fareed Zakharia’s discussion with Neil deGrasse Tyson is below.

The interested reader desiring additional information will find the following pertinent: the Earth Impact Database, Hildebrand 1993Rampino and Haggerty 1996Stothers et al. 2006, Glimsdal et al. 2007Bottke et al. 2007Jetsu 2011, G. Keller’s discussion concerning the end of the Dinosaurs, “T. rex and the Crater of Doom” by W. Alvarez, “The Nemesis Affair” by D. Raup, “Collision Earth! The Threat from Outer Space” by P. Grego.  **Note that there is a diverse spectrum of opinions on nearly all the topics discussed here, and our understanding is constantly evolving.  There is much research to be done.

Berth of a Dragon after Thruster Failure Recovery Establishes American Lifeline to ISS

SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA

Kennedy Space Center – After overcoming a frightening thruster failure that could have spelled rapid doom on the heels of a breathtakingly beautiful launch, the privately developed Dragon spacecraft successfully berthed at the International Space Station (ISS) a short while ago, at 8:56 a.m. EST Sunday morning, March 3, 2013 – thereby establishing an indispensable American Lifeline to the massive orbiting lab complex.

Hearts sank and hopes rose in the span of a few troubling hours following Friday’s (Mar. 1) flawless launch of the Dragon cargo resupply capsule atop the 15 story tall Falcon 9 rocket from Cape Canaveral Air Force Station, Florida and the initial failure of the life giving solar arrays to deploy and failure of the maneuvering thrusters to fire.

“Congrats to the @NASA/@SpaceX team. Great work getting #Dragon to the #ISS…our foothold for future exploration!” tweeted NASA Deputy Administrator Lori Garver.

Space station Expedition 34 crew members Kevin Ford and Tom Marshburn of NASA used the station’s 58 foot long Canadian supplied robotic arm to successfully grapple and capture Dragon at 5:31 a.m. Sunday as the station was flying 253 miles above northern Ukraine. See the grappling video – here.

SpaceX Dragon holding at 10m capture point. ISS crew standing by for "go" to perform grapple. Credit: NASA
SpaceX Dragon holding at 10m capture point. ISS crew standing by for “go” to perform grapple. Credit: NASA

“The vehicle’s beautiful, space is beautiful, and the Canadarm2 is beautiful too”, said station commander Kevin Ford during the operation.

The capsule pluck from free space came one day, 19 hours and 22 minutes after the mission’s launch.

Ground controllers at NASA’s Johnson Space Center in Houston then commanded the arm to install Dragon onto the Earth-facing port of the Harmony module – see schematic.

Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA
Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA

Originally, Dragon capture was slated only about 20 hours after launch. But that all went out the window following the serious post-launch anomalies that sent SpaceX engineers desperately scrambling to save the flight from a catastrophic finale.

The $133 million mission dubbed CRS-2 is only the 2nd contracted commercial resupply mission ever to berth at the ISS under NASA’s Commercial Resupply Services (CRS) contract. The contract is worth $1.6 Billion for at least a dozen resupply flights.

Following the forced retirement of NASA’s space shuttle orbiters in July 2011, American was left with zero capability to launch either cargo or astronauts to the primarily American ISS. NASA astronauts are 100% reliant on Russian Soyuz capsules for launch to the ISS.

Both the Falcon 9 rocket and Dragon spacecraft were designed and built by SpaceX Corporation based in Hawthorne, Calif., and are entirely American built.

The Falcon 9/Dragon commercial system restores America’s unmanned cargo resupply capability. But the time gap will be at least 3 to 5 years before American’s can again launch to the ISS aboard American rockets from American soil.

And continuing, relentless cuts to NASA’s budget are significantly increasing that human spaceflight gap and consequently forces more payments to Russia.

“Today we marked another milestone in our aggressive efforts to make sure American companies are launching resupply missions from U.S. shores,” said NASA Admisistrator Charles Bolden in a NASA statement.

“Our NASA-SpaceX team completed another successful berthing of the SpaceX Dragon cargo module to the International Space Station (ISS) following its near flawless launch on the Falcon-9 booster out of Cape Canaveral, Florida Friday morning. Launching rockets is difficult, and while the team faced some technical challenges after Dragon separation from the launch vehicle, they called upon their thorough knowledge of their systems to successfully troubleshoot and fully recover all vehicle capabilities. Dragon is now once again safely berthed to the station.”

“I was pleased to watch the launch from SpaceX’s facility in Hawthorne, CA, and I want to congratulate the SpaceX and NASA teams, who are working side by side to ensure America continues to lead the world in space.”

“Unfortunately, all of this progress could be jeopardized with the sequestration ordered by law to be signed by the President Friday evening. The sequester could further delay the restarting of human space launches from U.S. soil, push back our next generation space vehicles, hold up development of new space technologies, and jeopardize our space-based, Earth observing capabilities,” said Bolden.

ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013.  Credit: NASA
ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013. Credit: NASA

Dragon is loaded with about 1,268 pounds (575 kilograms) of vital supplies and provisions to support the ongoing science research by the resident six man crew, including more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and clothing.

NASA says that despite the one-day docking delay, the Dragon unberthing will still be the same day as originally planned on March 25 – followed by a parachute assisted splashdown in the Pacific Ocean off the coast of Baja California.

Dragon will spend 22 days docked to the ISS. The station crew will soon open the hatch and unload all the up mass cargo and research supplies. Then they will pack the Dragon with about 2,668 pounds (1,210 kilograms) of science samples from human research, biology and biotechnology studies, physical science investigations, and education activities for return to Earth.

Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013.  Credit:
Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013. Credit:

Dragon is the only spacecraft in the world today capable of returning significant amounts of cargo to Earth.

Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule.

NASA hopes the first Antares/Cygnus demonstration test flight from NASA’s Wallops Island Facility in Virginia will follow in April. Cygnus cargo transport is one way – to orbit only.

“SpaceX is proud to execute this important work for NASA, and we’re thrilled to bring this capability back to the United States,” said Gwynne Shotwell, President of SpaceX.

“Today’s launch continues SpaceX’s long-term partnership with NASA to provide reliable, safe transport of cargo to and from the station, enabling beneficial research and advancements in technology and research.”

The SpaceX CRS-3 flight is slated to blast off in September 2013.

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 ISS - shot from the roof of the Vehicle Assembly Building.  .  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

Curiosity’s Landing Leftovers

Enhanced-color HiRISE image of impact craters from MSL's ballast weights (NASA/JPL-Caltech)

During its “seven minutes of terror” landing on August 6, 2012, NASA’s Mars Science Laboratory dropped quite a few things down onto the Martian surface: pieces from the cruise stage, a heat shield, a parachute, the entry capsule’s backshell, a sky crane, one carefully-placed rover (obviously) and also eight tungsten masses — weights used for ballast and orientation during the descent process.

Two 75 kilogram (165 lb) blocks were released near the top of the atmosphere and six 25 kg (55 lb) weights a bit farther down, just before the deployment of the parachute. The image above, an enhanced-color image from the HiRISE camera aboard the Mars Reconnaissance Orbiter, shows the impact craters from four of these smaller tungsten masses in high resolution. This is part of a surface scan acquired on Jan. 29, 2013.

These four craters are part of a chain of six from all the 55 kg weights. See below for context:

CLICK TO PLAY - Before-and-after images of the 55 kg-mass landing sites (NASA/JPL/MSSS)
CLICK TO PLAY – Before-and-after images of the 55 kg-mass landing sites (NASA/JPL/MSSS)

Captured by MRO’s Context Camera shortly after the rover landed, the animation above shows the impact site of all six 55 kg masses. These impacted the Martian surface about 12 km (7.5 miles) from the Curiosity rover’s landing site.

A mosaic has been assembled showing potential craters from the larger ballast blocks as well as other, smaller pieces of the cruise stage. Check it out below or download the full 50mb image here.

HiRISE images of MSL's impact craters (NASA/JPL/University of Arizona)
HiRISE images of MSL’s impact craters (NASA/JPL/University of Arizona)

As Alfred McEwen wrote in his article on the University of Arizona’s HiRISE site: “most of the stuff we sent to Mars crashed on the surface–everything except the Curiosity rover.”

 

Curiosity Mars Rover Eats 1st Sample of Gray Rocky Powder

NASA's Mars rover Curiosity took this image of Curiosity's sample-processing and delivery tool just after the tool delivered a portion of powdered rock into the rover's Sample Analysis at Mars (SAM) instrument. This Collection and Handling for In-situ Martian Rock Analysis (CHIMRA) tool delivered portions of the first sample ever acquired from the interior of a rock on Mars into both SAM and the rover's Chemistry and Mineralogy (CheMin) instrument. Credit: NASA/JPL-Caltech/MSSS

NASA’s Curiosity rover has eaten the 1st ever samples of gray rocky powder cored from the interior of a Martian rock.

The robotic arm delivered aspirin sized samples of the pulverized powder to the rover’s Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments this past weekend on Feb. 22 and 23, or Sols 195 and 196 respectively.

Both of Curiosity’s chemistry labs have already begun analyzing the samples – but don’t expect results anytime soon because of the complexity of the operation involved.

“Analysis has begun and could take weeks,’ NASA JPL spokesman Guy Webster told Universe Today.

The samples were collected from the rover’s 1st drilling site known as ‘John Klein’ – comprised of a red colored slab of flat, fine-grained, sedimentary bedrock shot through with mineral veins of Calcium Sulfate that formed in water.

“Data from the instruments have confirmed the deliveries,” said Curiosity Mission Manager Jennifer Trosper of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

On Feb. 8, 2013 (mission Sol 182), Curiosity used the rotary-percussion drill mounted on the tool turret at the end of the 7 foot (2.1 meter) long robotic arm to bore a circular hole about 0.63 inch (16 mm) wide and about 2.5 inches (64 mm) deep into ‘John Klein’ that produced a slurry of gray tailings

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals - dramatically back dropped with  her ultimate destination; Mount Sharp.  Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

The gray colored tailings give a completely fresh insight into Mars that offers a stark contrast to the prevailing views of reddish-orange rusty, oxidized dust.

The eventual results from SAM and CheMin may give clues about what exactly does the color change mean. One theory is that it might be related to different oxidations states of iron that could potentially inform us about the habitability of Mars insides the rover’s Gale Crater landing site.

“The rock drilling capability is a significant advancement. It allows us to go beyond the surface layer of the rock, unlocking a time capsule of evidence about the state of Mars going back 3 or 4 Billion years,” said Louise Jandura of JPL and Curiosity’s chief engineer for the sampling system.

Additional portions of the first John Klein sample could be delivered to SAM and CheMin if the results warrant. The state-of-the-art instruments are testing the gray powder to elucidate the chemical composition and search for simple and complex organic molecules based on carbon, which are the building blocks of life as we know it.

Curiosity’s Mastcam camera snapped this photo mosaic of 1st drill holes into Martian rock at John Klein outcrop inside Yellowknife Bay basin where the robot is currently working. Notice the gray powdery tailings from the rocks interior. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity’s Mastcam camera snapped this photo mosaic of 1st drill holes into Martian rock at John Klein outcrop inside Yellowknife Bay basin where the robot is currently working. Notice the gray powdery tailings from the rocks interior. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

The Curiosity science team believes that this work area inside Gale Crater called Yellowknife Bay, experienced repeated percolation of flowing liquid water long ago when Mars was warmer and wetter – and therefore was potentially more hospitable to the possible evolution of life.

Curiosity is nearly 7 months into her 2 year long primary mission. So far she has snapped over 45,000 images.

“The mission is discovery driven,” says John Grotzinger, the Curiosity mission’s chief scientist of the California Institute of Technology.

The rover will likely remain in the John Klein area for several more weeks to a month or more to obtain a more complete scientific characterization of the area which has seen repeated episodes of flowing water.

Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.

Ken Kremer

Pluto May Soon Have a Moon Named Vulcan (Thanks to William Shatner)

These may soon be the names of Pluto's family of moons (Hubble image: NASA, ESA and M. Showalter/SETI)

The votes have been tallied and the results are in from the SETI Institute’s Pluto Rocks Poll: “Vulcan” and “Cerberus” have come out on top for names for Pluto’s most recently-discovered moons, P4 and P5.

After 450,324 votes cast over the past two weeks, Vulcan is the clear winner with a landslide 174,062 votes… due in no small part to a little Twitter intervention by Mr. William Shatner, I’m sure.

In other words… yes, the Trekkies have won.

Screen Shot 2013-02-25 at 2.32.53 PMDuring a Google+ Hangout today, SETI Institute senior scientist Mark Showalter — who discovered the moons and opened up the poll — talked with SETI astronomer Franck Marchis and MSNBC’s Alan Boyle about the voting results. Showalter admitted that he wasn’t quite sure how well the whole internet poll thing would work out, but he’s pleased with the results.

“I had no idea what to expect,” said Showalter. “As we all know the internet can be an unruly place… but by and large this process has gone very smoothly. I feel the results are fair.”

As far as having a name from the Star Trek universe be used for an actual astronomical object?

“Vulcan works,” Showalter said. “He’s got a family tie to the whole story. Pluto and Zeus were brothers, and Vulcan is a son of Pluto.”

And what can you say when even Mr. Spock agrees?

Leonard Nimoy's tweet

The other winning name, Cerberus, is currently used for an asteroid. So because the IAU typically tries to avoid confusion with two objects sharing the same exact name, Showalter said he will use the Greek version of the spelling: Kerberos.

Cerberus (or Kerberos) is the name of the giant three-headed dog that guards the gates to the underworld in Greek mythology.

Now that the international public has spoken, the next step will be to submit these names to the International Astronomical Union for official approval, a process that could take 1–2 months.

(Although who knows… maybe Bill can help move that process along as well?)

Read more about the names on the Pluto Rocks ballot here, and watch the full recorded Google+ Hangout below:

European Asteroid Smasher Could Bolster Planetary Defense

US-European Asteroid Impact and Deflection mission – AIDA.

Planetary Defense is a concept very few people heard of or took seriously – that is until last week’s humongous and totally unexpected meteor explosion over Russia sent millions of frightened residents ducking for cover, followed just hours later by Earth’s uncomfortably close shave with the 45 meter (150 ft) wide asteroid named 2012 DA14.

This ‘Cosmic Coincidence’ of potentially catastrophic space rocks zooming around Earth is a wakeup call that underscores the need to learn much more about the ever present threat from the vast array of unknown celestial debris in close proximity to Earth and get serious about Planetary Defense from asteroid impacts.

The European Space Agency’s (ESA) proposed Asteroid Impact and Deflection Assessment mission, or AIDA, could significantly bolster both our basic knowledge about asteroids in our neighborhood and perhaps even begin testing Planetary Defense concepts and deflection strategies.

After two years of work, research teams from the US and Europe have selected the mission’s target – a so called ‘binary asteroid’ named Didymos – that AIDA will intercept and smash into at about the time of its closest approach to Earth in 2022 when it is just 11 million kilometers away.

“AIDA is not just an asteroid mission, it is also meant as a research platform open to all different mission users,” says Andres Galvez, ESA studies manager.

Asteroid Didymos could provide a great platform for a wide variety of research endeavors because it’s actually a complex two body system with a moon – and they orbit each other. The larger body is roughly 800 meters across, while the smaller one is about 150 meters wide.

Didymos with its Moon
Didymos with its Moon. Credit: ESA

So the smaller body is some 15 times bigger than the Russian meteor and 3 times the size of Asteroid 2012 DA14 which flew just 27,700 km (17,200 mi) above Earth’s surface on Feb. 15, 2013.

The low cost AIDA mission would be comprised of two spacecraft – a mother ship and a collider. Two ships for two targets.

The US collider is named the Double Asteroid Redirection Test, or DART and would smash into the smaller body at about 6.25 km per second. The impact should change the pace at which the objects spin around each other.

ESA’s mothership is named Asteroid Impact Monitor, or AIM, and would carry out a detailed science survey of Didymos both before and after the violent collision.

“The project has value in many areas,” says Andy Cheng, AIDA lead at Johns Hopkins’ Applied Physics Laboratory, “from applied science and exploration to asteroid resource utilisation.” Cheng was a key member of NASA’s NEAR mission that first orbited and later landed on the near Earth Asteroid named Eros back in 2001.

Recall that back in 2005, NASA’s Deep Impact mission successfully lobbed a projectile into Comet Tempel 1 that unleashed a fiery explosion and spewing out vast quantities of material from the comet’s interior, including water and organics.

NASA’s Deep Impact images Comet Tempel 1 alive with light after colliding with the impactor spacecraft on July 4, 2005.  ESA and NASA are now proposing the AIDA mission to smash into Asteroid Didymos.  CREDIT: NASA/JPL-Caltech/UMD
NASA’s Deep Impact images Comet Tempel 1 alive with light after colliding with the impactor spacecraft on July 4, 2005. ESA and NASA are now proposing the AIDA mission to smash into Asteroid Didymos. CREDIT: NASA/JPL-Caltech/UMD

ESA has invited researchers to submit AIDA experiment proposals on a range of ideas including anything that deals with hypervelocity impacts, planetary science, planetary defense, human exploration or innovation in spacecraft operations. The deadline is 15 March.

“It is an exciting opportunity to do world-leading research of all kinds on a problem that is out of this world,” says Stephan Ulamec from the DLR German Aerospace Center. “And it helps us learn how to work together in international missions tackling the asteroid impact hazard.”

The Russian meteor exploded without warning in mid air with a force of nearly 500 kilotons of TNT, the equivalent of about 20–30 times the atomic bombs detonated at Hiroshima and Nagasaki.

Over 1200 people were injured in Russia’s Chelyabinsk region and some 4000 buildings were damaged at a cost exceeding tens of millions of dollars. A ground impact would have decimated cities like New York, Moscow or Beijing with millions likely killed.

ESA’s AIDA mission concept and NASA’s approved Osiris-REx asteroid sample return mission will begin the path to bolster our basic knowledge about asteroids and hopefully inform us on asteroid deflection and Planetary Defense strategies.

Ken Kremer

Near-Earth asteroid Eros imaged from NASA’s orbiting NEAR spacecraft. Credit: NASA
Near-Earth asteroid Eros imaged from NASA’s orbiting NEAR spacecraft. Credit: NASA

Historic Mars Rock Drilling Sample Set for Analysis by Curiosity Robot in Search of Organics

First Curiosity Drilling Sample in the Scoop. This image shows the first sample of powdered rock extracted by the rover's drill after transfer from the drill to the rover's scoop. The sample will now be sieved and portions delivered to the Chemistry and Mineralogy instrument and the Sample Analysis at Mars instrument. The scoop is 1.8 inches (4.5 centimeters) wide. The image was taken by Curiosity's Mastcam 34 camera on Feb. 20, or Sol 193.The image has been white-balanced to show what the sample would look like if it were on Earth. Credit: NASA/JPL-Caltech/MSSS

Newly received images from the surface of Mars confirm that NASA’s Curiosity rover successfully extracted the 1st ever samples collected by drilling down inside a rock on another planet and transferred the pulverized alien powder to the robots processing scoop, thrilled mission scientists announced just hours after seeing visual corroboration.

Collecting the 1st particles bored from the interior of a rock on a planet beyond Earth marks a historic feat in humankind’s exploration of the cosmos – and is crucial for achieving Curiosity’s goal to determine whether Mars ever could have supported microbial life, past or present.

The essential next step is to feed carefully sieved portions of the precious gray colored material into the high powered duo of miniaturized analytical chemistry labs (CheMin & SAM) inside the rover, for thorough analysis and scrutiny of their mineral content and to search for signatures of organic molecules – the building blocks of life as we know it.

Curiosity is drilling into ancient bedrock and hunting for clues to the planet’s habitability over the eons and that preserve the historical record – perhaps including organics.

The rover team believes that this work area inside Gale Crater called Yellowknife Bay, experienced repeated percolation of flowing liquid water long ago when Mars was warmer and wetter – and therefore was potentially more hospitable to the possible evolution of life. See our Yellowknife Bay worksite and drill hole photo mosaics below by Ken Kremer & Marco Di Lorenzo, created from rover raw images.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals - dramatically back dropped with  her ultimate destination; Mount Sharp.  Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer (kenkremer.com)/Marco Di Lorenzo

“We collected about a tablespoon of powder, which meets our expectations and is a great result,” said JPL’s Scott McCloskey, drill systems engineer for Curiosity, at a NASA media briefing on Feb. 20. “We are all very happy and relieved that the drilling was a complete success.”

The gray colored tailings from the rocky interior offer a startlingly fresh sight of Mars compared to the red-orangey veneer of rusty, oxidized dust we are so accustomed to seeing globally across what we humans have referred to for centuries as the “Red Planet”.

“For the first time we are examining ancient rocks that have not been exposed to the Martian surface environment, and weathering, and preserve the environment in which they formed,” said Joel Hurowitz, Curiosity sampling system scientist of JPL.

This is a key point because subsequent oxidation reactions can destroy organic molecules and thereby potential signs of habitability and life.

“The tailings are gray. All things being equal it’s better to have a gray color than red because oxidation is something that can destroy organic compounds,” said John Grotzinger, the Curiosity mission’s chief scientist of the California Institute of Technology.

On Feb. 8, 2013 (mission Sol 182), Curiosity used the rotary-percussion drill mounted on the tool turret at the end of the 7 foot (2.1 meter) long robotic arm to bore a circular hole about 0.63 inch (16 mm) wide and about 2.5 inches (64 mm) deep into a red colored slab of flat, fine-grained, veiny sedimentary bedrock named “John Klein” that formed in water.

“Curiosity’s first drill hole at the John Klein site is a historic moment for the MSL mission, JPL, NASA and the United States. This is the first time any robot, fixed or mobile, has drilled into a rock to collect a sample on Mars,” said Louise Jandura, Curiosity’s chief engineer for the sampling system.

“In fact, this is the first time any rover has drilled into a rock to collect a sample anywhere but on Earth. In the five decade history of the space age this is indeed a rare event.”

“The rock drilling capability is a significant advancement. It allows us to go beyond the surface layer of the rock, unlocking a time capsule of evidence about the state of Mars going back 3 or 4 Billion years.”

“Using our roving geologist Curiosity, the scientists can choose the rock, get inside the rock and deliver the powdered sample to instruments on the rover for analysis.”

“We couldn’t all be happier as Curiosity drilled her first hole on Mars,” said Jandura.

Over the next few days, the powdery gray scoop material will be shaken and moved through Curiosity’s sample processing device known as CHIMRA, or Collection and Handling for In-Situ Martian Rock Analysis and sieved through ultra fine screens that filter out particles larger than 150 microns (0.006 inch) across – about the width of a human strand of hair.

Figure shows the location of CHIMRA on the turret of NASA's Curiosity rover, together with a cutaway view of the device. The CHIMRA, short for Collection and Handling for In-situ Martian Rock Analysis, processes samples from the rover's scoop or drill and delivers them to science instruments. Credit: NASA/JPL-Caltech
Figure shows the location of CHIMRA on the turret of NASA’s Curiosity rover, together with a cutaway view of the device. The CHIMRA, short for Collection and Handling for In-situ Martian Rock Analysis, processes samples from the rover’s scoop or drill and delivers them to science instruments. Credit: NASA/JPL-Caltech

Drilling goes to the heart of the mission. It is absolutely indispensable for collecting and conveying pristine portions of Martian rocks and soil to a trio of inlet ports on top of the rover deck leading into the Chemistry and Mineralogy (CheMin) instrument and Sample Analysis at Mars (SAM) instrument .

The sieving process is designed to prevent clogging downstream into the chemistry labs.

The pair of state-of-the-art instruments will then test the gray rocky powder for a variety of inorganic minerals as well as both simple and complex organic molecules.

Samples will be dropped off first to CheMin and then SAM over the next few days. Results are expected soon.

The data so far indicate the drilled rock is either siltstone or mudstone with a basaltic bulk composition, said Hurowitz. The CheMin and SAM testing will be revealing.

The high powered drill was the last of Curiosity 10 instruments still to be checked out and put into full operation and completes the robots commissioning phase.

“This is a real big turning point for us as we had a passing of the key for the rover [from the engineering team] to the science team,” said Grotzinger.

Curiosity has discovered that Yellowknife Bay is loaded with hydrated mineral veins of calcium sulfate that precipitated from interaction with aqueous environments.

I asked how was the drill target hole selected?

“We wanted to be well centered in a large plate of bedrock where we knew we could place the drill into a stable location on an interesting rock,” Hurowitz told Universe Today.

“The drill did not specifically target the veins or nodular features visible in this rock. But these rocks are so shot through with these features that it’s hard to imagine that we would have been missed them somewhere along the travel of the drill.”

“We will find out what’s in the material once we get the materials analyzed by SAM and CheMin.

“We will consider additional drill targets if we think we missed a component of the rock.”

“We believe the white vein material is calcium sulfate based on data from ChemCam and APXS but we don’t yet know the hydration state.” Hurowitz told me.

Regarding the prospects for conducting additional sample drilling and soil scooping at Yellowknife Bay, Grotzinger told me, “We have to take it one step at a time.”

“We have to see what we find in the first sample. We are discovery driven and that will determine what we do next here,” Grotzinger said. “We have no quotas.”

The long term mission goal remains to drive to the lower reaches of Mount Sharp some 6 miles away and look for habitable environments in the sedimentary layers.

Curiosity executed a flawless and unprecedented nail-biting, pinpoint touchdown on Aug. 5, 2012 to begin her 2 year long primary mission inside Gale Crater. So far she has snapped over 45,000 images, traveled nearly 0.5 miles, conducted 25 analysis with the APXS spectrometer and fired over 12,000 laser shots with the ChemCam instrument.

Ken Kremer

Image collage show Curiosty’s first bore hole drilled on Feb. 8, 2013 (Sol 182). Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com)
Image collage show Curiosty’s first bore hole drilled on Feb. 8, 2013 (Sol 182). Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com)
Curiosity's First Sample Drilling hole is shown at the center of this image in a rock called "John Klein" on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS
Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS

Take a Spin Around Mercury

Color map of Mercury's varied surface. The 1,550-km-wide Caloris Basin can be seen at upper right.

Created by the MESSENGER mission team at the Johns Hopkins University Applied Physics Laboratory and the Carnegie Institution of Washington, this animation gives us a look at the spinning globe of Mercury, its surface color-coded to reflect variations in surface material reflectance.

Thousands of Wide Angle Camera images of Mercury’s surface were stitched together to create the full-planet views.

While the vibrant colors don’t accurately portray Mercury as our eyes would see it, they are valuable to scientists as they highlight the many different types of materials that make up the planet’s surface. Young crater rays surrounding fresh impact craters appear light blue or white. Medium- and dark-blue “low-reflectance material” (LRM) areas are thought to be rich in a dark, opaque mineral. Tan areas are plains formed by eruption of highly fluid lavas. Small orange spots are materials deposited by explosive volcanic eruptions.

At this point, over 99% of the Solar System’s innermost planet has been mapped by MESSENGER. Read more about the ongoing mission here.

Image/video credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

A Parting Look at 2012 DA14: Was This a Warning Shot from Space?

Asteroid DA14 seen from the 2.1 Kitt Peak telescope as it departed the vicinity of Earth. Credit: NOAO/Nicholas Moskovitz (MIT)

Just as anticipated, on Friday, Feb. 15, asteroid 2012 DA14 passed us by, zipping 27,000 kilometers (17,000 miles) above Earth’s surface — well within the ring of geostationary weather and communications satellites that ring our world. Traveling a breakneck 28,100 km/hr (that’s nearly five miles a second!) the 50-meter space rock was a fast-moving target for professional and amateur observers alike. And even as it was heading away from Earth DA14 was captured on camera by a team led by MIT researcher Dr. Nicholas Moskovitz using the 2.1-meter telescope at the Kitt Peak National Observatory in Tucson, AZ. The team’s images are shown above as an animated gif (you may need to click the image to play it.)

This object’s close pass, coupled with the completely unexpected appearance of a remarkably large meteor in the skies over Chelyabinsk, Russia on the morning of the same day, highlight the need for continued research of near-Earth objects (NEOs) — since there are plenty more out there where these came from.

“Flybys like this, particularly for objects smaller than 2012 DA14, are not uncommon. This one was special because we knew about it well in advance so that observations could be planned to look at how asteroids are effected by the Earth’s gravity when they come so close.”

– Dr. Nicholas Moskovitz, MIT

The animation shows 2012 DA14 passing inside the Little Dipper, crossing an area about a third the size of the full Moon in 45 minutes. North is to the left.

(For a high-resolution version of the animation, click here.)

Exterior of the 2.1-meter telescope of the Kitt Peak National Observatory (NOAO)
Exterior of the 2.1-meter telescope of the Kitt Peak National Observatory (NOAO/AURA/NSF)

According to the National Optical Astronomy Observatory, which operates the Kitt Peak Observatory, Dr. Moskovitz’ NSF-supported team “are analyzing their data to measure any changes in the rotation rate of the asteroid after its close encounter with the Earth. Although asteroids are generally too small to resolve with optical telescopes, their irregular shape causes their brightness to change as they rotate. Measuring the rotation rate of the asteroid in this way allows the team to test models that predict how the earth’s gravity can affect close-passing asteroids. This will lead to a better understanding of whether objects like 2012 DA14 are rubble piles or single solid rocks.

“This is critical to understanding the potential hazards that other asteroids could pose if they collide with the Earth.”

So just how close was DA14’s “close pass?” Well, if Earth were just a few minutes farther along in its orbit, we would likely be looking at images of its impact rather than its departure.*

Although this particular asteroid isn’t expected to approach Earth so closely at any time in the foreseeable future — at least within the next 130 years — there are lots of such Earth-crossing objects within the inner Solar System… some we’re aware of, but many that we’re not. Identifying them and knowing as many details as possible about their orbits, shapes, and compositions is key.

Even this soon after the Feb. 15 flyby observations of 2012 DA14 have provided more information on its orbit and characteristics., allowing for fine-tuning of the data on it.

According to the Goldstone Radar Observatory web page, the details on 2012 DA14 are as follows:
Semimajor axis                   1.002 AU
Eccentricity                          0.108
Inclination                           10.4 deg
Perihelion distance           0.893 AU
Aphelion distance              1.110 AU
Absolute magnitude (H)   24.4
Diameter                               ~50 meters (+- a factor of two)
Rotation period                   ~6 h  (N. Moskovitz, pers. comm.)
Pole direction                      unknown
Lightcurve amplitude        ~1 mag  (N. Moskovitz, pers. comm.)
Spectral class                       Ld  (N. Moskovitz, pers. comm.)

Goldstone is currently conducting radar observations on the asteroid. A radar map of its surface and motion is anticipated in the near future.

Read more about Dr. Moskovitz’ observations on the NOAO website here, and see more images of 2012 DA14 captured by astronomers around the world in our previous article.

A bright meteor witnessed over Russia on Feb. 15, 2013 (RussiaToday)
A bright daytime meteor witnessed over Russia on Feb. 15, 2013 (RussiaToday)

Also, in an encouraging move by international leaders in the field, during the fiftieth session of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space, currently being held from at the United Nation Office in Vienna, near-Earth objects are on the agenda with a final report to be issued by an Action Team. Read the report PDF here.

*According to astronomer Phil Plait, while the orbits of Earth and DA14 might intersect at some point, on the 15th of February 2013 the asteroid slipped just outside of Earth’s orbit — a little over 17,000 miles shy. “It was traveling one way and the Earth another, so they could not have hit each other on this pass no matter where Earth was in its orbit,” he wrote in an email. Still, 17,000 miles is a very close call astronomically, and according to Neil deGrasse Tyson on Twitter, it “will one day hit us, like the one in Russian [sic] last night.” When? We don’t know yet. That’s why we must keep watching.