New Mineral Found in Meteorite is From Solar System’s Beginnings

Scientists have discovered a new mineral embedded in a meteorite that fell to Earth over 40 years ago, and it could be among the oldest minerals, formed in the early days of our solar system. The mineral is a type of titanium oxide and has been named panguite, after Pan Gu, the giant from ancient Chinese mythology who established the world by separating yin from yang to create the Earth and the sky.

“Panguite is an especially exciting discovery since it is not only a new mineral, but also a material previously unknown to science,” says Chi Ma, from Caltech and author of a new paper detailing the discovery.

The Allende meteorite arrived at Earth in 1969 as an exploding fireball in the skies over Mexico, scattering thousands of pieces of meteorites across the state of Chihuahua. The Allende meteorite is the largest carbonaceous chondrite—a diverse class of primitive meteorites—ever found on our planet and is considered by many the best-studied meteorite in history.

Ma has been leading nanomineralogy investigations of primitive meteorites, which looks at tiny particles of minerals, and has now found nine new minerals, including allendeite, hexamolybdenum, tistarite, kangite and now panguite.

“The intensive studies of objects in this meteorite have had a tremendous influence on current thinking about processes, timing, and chemistry in the primitive solar nebula and small planetary bodies,” said coauthor George Rossman, also from Caltech.

The team said the new mineral is likely among the first solid objects formed in our solar system and could date back to over 4 billion years ago, before the formation of Earth and the other planets.

According to Ma, studies of panguite and other newly discovered refractory minerals are continuing in an effort to learn more about the conditions under which they formed and subsequently evolved. “Such investigations are essential to understand the origins of our solar system,” he said.

The new mineral’s chemical name is Ti4+,Sc,Al,Mg,Zr,Ca, so it contains some unusual elements like zirconium and scandium.

The mineral and the mineral name have been approved by the International Mineralogical Association’s Commission on New Minerals, Nomenclature and Classification.

Image credit: Chi Ma/Caltech

Source: Caltech

Mars Has Watery Insides, Just Like Earth

Researchers from the Carnegie Institution have found that water is present in surprisingly Earthlike amounts within Mars’ mantle, based on studies of meteorites that originate from the Red Planet. The findings offer insight as to how Martian water may have once made its way to the planet’s surface, as well as what may lie within other terrestrial worlds.

Earth has water on its surface (obviously) and also within its crust and mantle. The water content of Earth’s upper mantle — the layer just below the crust —  is between 50 and 300 ppm (parts per million). This number corresponds to what the research team has identified within the mantle of Mars, based on studies of two chunks of rock — called shergottites — that were blasted off Mars during an impact event 2.5 million years ago.

“We analyzed two meteorites that had very different processing histories,” said Erik Hauri, the analysis team’s lead investigator from the Carnegie Institute . “One had undergone considerable mixing with other elements during its formation, while the other had not. We analyzed the water content of the mineral apatite and found there was little difference between the two even though the chemistry of trace elements was markedly different. The results suggest that water was incorporated during the formation of Mars and that the planet was able to store water in its interior during the planet’s differentiation.”

The water stored within Mars’ mantle may have made its way to the surface through volcanic activity, the researchers suggest, creating environments that were conducive to the development of life.

Like Earth, Mars may have gotten its water from elements available in the neighborhood of the inner Solar System during its development. Although Earth has retained its surface water while that on Mars got lost or frozen, both planets appear to have about the same relative amounts tucked away inside… and this could also be the case for other rocky worlds.

“Not only does this study explain how Mars got its water, it provides a mechanism for hydrogen storage in all the terrestrial planets at the time of their formation,” said former Carnegie postdoctoral scientist Francis McCubbin, who led the study.

The team’s research is published in the July edition of the journal Geology. Read more on the Carnegie Institution for Science’s site here.

Image: The remains of what appears to be a river delta within Eberswalde crater on Mars, imaged by ESA’s Mars Express. Credit: ESA/DLR/FU Berlin (G. Neukum).

Voyager 1 Breaking Through the Borders of the Solar System

After almost 35 years traveling at over 35,000 mph, the venerable (and still operational!) Voyager 1 spacecraft is truly breaking through to the other side, crossing the outermost boundaries of our solar system into interstellar space — over 11 billion miles from home.

Data received from Voyager 1 — a trip that currently takes the information 16 hours and 38 minutes to make — reveal steadily increasing levels of cosmic radiation, indicating that the spacecraft is leaving the relatively protected bubble of the Sun’s influence and venturing into the wild and wooly space beyond.

From the JPL press release:

“The laws of physics say that someday Voyager will become the first human-made object to enter interstellar space, but we still do not know exactly when that someday will be,” said Ed Stone, Voyager project scientist at the California Institute of Technology in Pasadena. “The latest data indicate that we are clearly in a new region where things are changing more quickly. It is very exciting. We are approaching the solar system’s frontier.”

The data making the 16-hour-38 minute, 11.1-billion-mile (17.8-billion-kilometer), journey from Voyager 1 to antennas of NASA’s Deep Space Network on Earth detail the number of charged particles measured by the two High Energy telescopes aboard the 34-year-old spacecraft. These energetic particles were generated when stars in our cosmic neighborhood went supernova.

“From January 2009 to January 2012, there had been a gradual increase of about 25 percent in the amount of galactic cosmic rays Voyager was encountering,” said Stone. “More recently, we have seen very rapid escalation in that part of the energy spectrum. Beginning on May 7, the cosmic ray hits have increased five percent in a week and nine percent in a month.”

This marked increase is one of a triad of data sets which need to make significant swings of the needle to indicate a new era in space exploration. The second important measure from the spacecraft’s two telescopes is the intensity of energetic particles generated inside the heliosphere, the bubble of charged particles the sun blows around itself. While there has been a slow decline in the measurements of these energetic particles, they have not dropped off precipitously, which could be expected when Voyager breaks through the solar boundary.

“When the Voyagers launched in 1977, the space age was all of 20 years old. Many of us on the team dreamed of reaching interstellar space, but we really had no way of knowing how long a journey it would be — or if these two vehicles that we invested so much time and energy in would operate long enough to reach it.”

– Ed Stone, Voyager project scientist, Caltech

Read more on the JPL site here.

Addition: Check out the accompanying video from Science@NASA below:

Top image: Artist’s concept showing NASA’s two Voyager spacecraft exploring a turbulent region of space known as the heliosheath, the outer shell of the bubble of charged particles around our sun. Credit: NASA/JPL-Caltech. Secondary image: Artist’s concept of NASA’s Voyager spacecraft. Credit: NASA/JPL-Caltech.

 

Clouds part for Transit of Venus from Princeton University

Transit of Venus snapped from Princeton University at 6:19 p.m. June 5, 2012. This image was taken with a Questar telescope at 6:19 p.m. as the clouds over Princeton, NJ parted to the delight of hundreds of onlookers and whole families. Hundreds attended the Transit of Venus observing event organized jointly by Princeton University Astrophysics Dept and telescopes provided by the Amateur Astronomers Association of Princeton (AAAP), local astronomy club. Credit: Robert Vanderbei

[/caption]

Despite a horrendous weather forecast, the clouds parted – at least partially – just in the nick of time for a massive crowd of astronomy and space enthusiasts gathered at Princeton University to see for themselves the dramatic start of the Transit of Venus shortly after 6 p.m. EDT as it arrived at and crossed the limb of the Sun.

And what a glorious view it was for the well over 500 kids, teenagers and adults who descended on the campus of Princeton University in Princeton, New Jersey for a viewing event jointly organized by the Astrophysics Dept and the Amateur Astronomers Association of Princeton (AAAP), the local astronomy club to which I belong.

See Transit of Venus astrophotos snapped from Princeton, above and below by Astrophotographer and Prof. Bob Vanderbei of Princeton U and a AAAP club member.

Transit of Venus snapped from Princeton University - full sized image
This photo was taken with a Questar telescope at 6:26 p.m. on June 5, 2012 - it’s a stack of eight - 2 second images. Stacking essentially eliminates the clouds. Hundreds attended the Transit of Venus observing event organized jointly by Princeton University Astrophysics Dept and telescopes provided by the Amateur Astronomers Association of Princeton (AAAP), local astronomy club. Credit: Robert Vanderbei

It was gratifying to see so many children and whole families come out at dinner time to witness this ultra rare celestial event with their own eyes – almost certainly a last-in-a-lifetime experience that won’t occur again for another 105 years until 2117. The crowd gathered on the roof of Princeton’s Engineering Dept. parking deck – see photos

Excited crowd witnesses last-in-a-lifetime Transit of Venus from campus rooftop on Princeton University. Onlookers gathered to view the rare Transit of Venus event using solar telescopes provided by the Amateur Astronomers Association of Princeton (AAAP) and solar glasses provided by NASA and lectures from Princeton University Astrophysics Dept.
Credit: Ken Kremer

For the next two and a half hours until sunset at around 8:30 p.m. EDT, we enjoyed spectacular glimpses as Venus slowly and methodically moved across the northern face of the sun as the racing clouds came and went on numerous occasions, delighting everyone up to the very end when Venus was a bit more than a third of the way through the solar transit.

Indeed the flittering clouds passing by in front of Venus and the Sun’s active disk made for an especially eerie, otherworldly and constantly changing scene for all who observed through about a dozen AAAP provided telescopes properly outfitted with special solar filters for safely viewing the sun.

Kids of all ages enjoy the Transit of Venus from a rooftop at Princeton University. Solar telescopes provided by the Amateur Astronomers Association of Princeton (AAAP), solar glasses provided by NASA and lectures from Princeton University Astrophysics Dept. Credit: Ken Kremer

As part of this public outreach program, NASA also sent me special solar glasses to hand out as a safe and alternative way to directly view the sun during all solar eclipses and transits through your very own eyes – but not optical aids such as cameras or telescopes.

Transit of Venus snapped from Princeton University - quarter sized image
This photo was taken with a Questar telescope at 6:26 p.m. on June 5, 2012 - it’s a stack of eight - 2 second images. Credit: Robert Vanderbei

Altogether the Transit lasted 6 hours and 40 minutes for those in the prime viewing locations such as Hawaii – from where NASA was streaming a live Transit of Venus webcast.

You should NEVER look directly at the sun through any telescopes or binoculars not equipped with special eye protection – because that can result in severe eye injury or permanent blindness!

We in Princeton were quite lucky to observe anything because other astro friends and fans in nearby areas such as Philadelphia, PA and Brooklyn, NY reported seeing absolutely nothing for this last-in-a-lifetime celestial event.

Transit of Venus enthusiasts view the solar transit from Princeton University rooftop using special solar glasses provided by NASA. Credit: Ken Kremer

Princeton’s Astrophysics Department organized a series of lectures prior to the observing sessions about the Transit of Venus and how NASA’s Kepler Space Telescope currently uses the transit method to detect and discover well over a thousand exoplanet and planet candidates – a few of which are the size of Earth and even as small as Mars, the Red Planet.

NASA’s Curiosity rover is currently speeding towards Mars for an August 6 landing in search of signs of life. Astronomers goal with Kepler’s transit detection method is to search for Earth-sized planets in the habitable zone that could potentially harbor life !

So, NASA and astronomers worldwide are using the Transit of Venus in a scientifically valuable way – beyond mere enjoyment – to help refine their planet hunting techniques.

Doing an outreach program for NASA, science writer Dr Ken Kremer distributes special glasses to view the transit of Venus across the sun during a viewing session on the top level of a parking garage at the E-quad at Princeton University to see the transit of Venus across the sun on Tuesday evening, June 5, 2012. Michael Mancuso/The Times

Historically, scientists used the Transit of Venus over the past few centuries to help determine the size of our Solar System.

See more event photos from the local daily – The Trenton Times – here

And those who stayed late after sunset – and while the Transit of Venus was still visibly ongoing elsewhere – were treated to an extra astronomical bonus – at 10:07 p.m. EDT the International Space Station (ISS) coincidentally flew overhead and was visible between more break in the clouds.

The International Space Station (ISS) flew over Princeton University at 10:07 p.m. on June 5 after the sun had set but while the Transit of Venus was still in progress. Credit: Ken Kremer
Transit Of Venus image from Hinode Spacecraft. Click to enlarge. Credit: JAXA/NASA/Lockheed Martin/enhanced by Marco Di Lorenzo

Of course clouds are no issue if you’re watching the Transit of Venus from the ISS or the Hinode spacecraft. See this Hinode Transit image published on APOD on June 9 and enhanced by Marco Di Lorenzo.

This week, local NY & NJ residents also had another extra special space treat – the chance to see another last-in-a-lifetime celestial event: The Transit of Space Shuttle Enterprise across the Manhattan Skyline on a seagoing voyage to her permanent new home at the Intrepid Sea, Air and Space Museum.

Ken Kremer

Repaired Space Shuttle Enterprise to set Sail on Final Voyage

NASA’s Space Shuttle Enterprise suffered minor damage to a wingtip on June 3, during the initial stages of her seagoing journey to her new home at the Intrepid Sea, Air and Space Museum. Inset shows location of the damage, which has since been repaired. Credit: Ken Kremer

[/caption]

Enterprise, post boo-boo and postponed a day by rainy weather, should arrive at the Intrepid today !

The final leg of the final voyage of Space Shuttle Enterprise is due to conclude on Wednesday, June 6 with a journey by barge up the Hudson River on Manhattan’s West Side to her permanent new home at the Intrepid Sea, Air and Space Museum.

And it can’t come soon enough. As might be expected, Barge rides for Space Shuttles can be both visually stunning and downright perilous.

And for the initial seagoing leg of Enterprise’s journey on Sunday, June 3, it was a mixture of both – mostly thrilling (as I can attest) plus a few bad moments

During Sunday’s transit of Enterprise across the New York skyline, the shuttle suffered some minor damage to the wing tip (see photo above) soon after she set sail.

According to collectSpace.com, Enterprise grazed a New York railroad bridge when wind gusts caused the shuttle loaded aboard the Weeks Marine barge to veer off course.

“Mother nature did not smile on us. Just as the barge entered the railroad bridge, the wind caught it and pushed the right wing into the bridge abutment. Fortunately, the damage seems to be cosmetic, limited to the foam that covered the wingtip. No structure or mechanisms appear to have been damaged,” wrote Dennis Jenkins who was aboard the barge with Enterprise.

Winds gusts caused Space Shuttle Enterprise to grazed a bridge and suffer minor damage to a wingtip on June 3, during the initial stages of her seagoing journey on a Weeks marine barge to her new home at the Intrepid Sea, Air and Space Museum. Credit: Ken Kremer

The remainder of the voyage went off without a hitch and was enjoyed by throngs of onlookers including myself.

I caught some shots of the damage late in the day as the crew from Weeks Marine was towing Enterprise into port for the night.
Workers have already repaired Enterprise, the Intrepid said in a statement.

On Wednesday morning, Enterprise is due to set sail atop a barge from Bayonne, New Jersey from where she docked on Sunday, June 3 on the initial leg of her seagoing journey to her permanent new home.

Enterprise is scheduled to depart from Bayonne at 10:15 am and then make her way North passing the Statue of Liberty at approximately 10:52 am and Ground Zero at about 11:30 am says the Intrepid. She will reach the Museum at around 12:30 pm and be hoisted onto the flight deck later in the day – all of which is weather permitting.

On July 19, Enterprise will be opened to public viewing

Ken Kremer

Enter the Universe Today “Wonders of the Universe” Contest!

The iPad app features seven apps in one, all of which are linked 3D environments to explore: Subatomic, Atomic, Local Stars, Solar System, Milky Way, Galaxy and the Universe.

If you’ve seen the excellent BBC/Science Channel series “Wonders of the Universe,” you know that host Brian Cox’s natural enthusiasm for astronomy is nothing short of infectious. His explanations of far-out concepts bring the mysteries of our Universe down to Earth for everyone to understand… and now he and HarperCollins UK have brought them even closer — right to your iPad.

Now, here on Universe Today you can win a free copy of the app as well as a signed copy of his Wonders of the Universe or Wonders of the Solar System hardcover book!

[/caption]

Brian Cox’s Wonders of the Universe is designed for people with any level of understanding of astronomy, from casual explorers interested in the aesthetics to those looking for a deeper educational experience. Users can travel with Professor Brian Cox on his personal tours through the Universe, or jet off on a solo voyage of discovery through the planets of the Solar System to local stars and onwards through the galaxy.

Additionally, the app takes full advantage of the extensive capabilities of the new iPad, using a powerful 3D engine capable of handling high-resolution textures and complex animations created exclusively for iOS5.

Watch a personal tour of the app given by Prof. Brian Cox above.

Brian Cox’s Wonders of the Universe is available on the iTunes store now for an introductory price of $6.99 USD… or you can enter for a chance to win a free download along with a signed copy of a Wonders of the Universe or Wonders of the Solar System hardcover book (four of each are available!) by emailing [email protected] with subject line “Wonders App”.

Be sure to put your mailing address in the body of the email, and we will randomly select 8 winners to receive a signed book (our discretion) and a download code for the app.

The contest is open to all U.S. residents. One winner per mailing address. Please allow 2-3 weeks for delivery of the books. Winners will be chosen by June 10, 2012.

These are beautiful books that are chock full of information about our Universe as well as signed by Brian Cox himself… don’t miss out on a chance to get one!

Wonders of the Universe and Wonders of the Solar System books (HarperCollins UK)

Also, be sure to check out the latest app from HarperCollins UK, Fragile Earth. It uses amazing satellite imagery from all across the planet to put a century of climate change at your fingertips. It’s currently available from the iTunes store for $2.99 USD.

(App downloads and books provided courtesy of HarperCollins UK and Walker Sands Communications.)

Was Pluto Ever REALLY a Planet?

Pluto, Charon, Nix and Hydra (NASA)

Ever since the infamous 2006 reclassification of Pluto off the list of “official” planets (which had a rather incendiary effect on many of the distant world’s Earthly fans) the term “planet” has been seen by some as a variable one, difficult to define and apparently able to be given and taken away. But was Pluto ever really deserving of the title to begin with?

This fun info-animation by C.G.P. Grey suggests that it wasn’t, and offers a compelling explanation why.

[/caption]

Grey writes on his blog:

“To my constant surprise the issue of Pluto’s planetary status — which I think should be a dry technical issue — really gets people riled. But it’s also been my experience that the people who most want Pluto to be a planet know the least about it and the history of its discovery. So, I hope that this video can help correct that a little bit.”

We still love you, Pluto, no matter what you are!

See more of Grey’s excellent animations on YouTube here.

Worlds Without Suns: Nomad Planets Could Number In The Quadrillions

Artist's concept of a free-floating Jupiter-like planet. (NASA / JPL-Caltech)

[/caption]

The concept of nomad planets has been featured before here on Universe Today, and for good reason. Not only is the idea of mysterious lone planets drifting sunless through interstellar space an intriguing one, but also the sheer potential quantity of such worlds is simply staggering. If some very well-respected scientists’ calculations are correct there are more nomad planets in our Milky Way galaxy than there are stars — a lot more. With estimates up to 100,000 nomad planets for every star in the galaxy, there could be literally quadrillions of wandering worlds out there, ranging in size from Pluto-sized to even larger than Jupiter.

That’s a lot of nomads. But where did they all come from?

Recently, The Kavli Foundation had a discussion with several scientists involved in nomad planet research. Roger D. Blandford, Director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University, Dimitar D. Sasselov, Professor of Astronomy at Harvard University and Louis E. Strigari, Research Associate at KIPAC and the SLAC National Accelerator Laboratory talked about their findings and what sort of worlds these nomad planets might be, as well as how they may have formed.

One potential source for nomad planets is forceful ejection from solar systems.

“Most stars form in clusters, and around many stars there are protoplanetary disks of gas and dust in which planets form and then potentially get ejected in various ways,” said Strigari. “If these early-forming solar systems have a large number of planets down to the mass of Pluto, you can imagine that exchanges could be frequent.”

And the possibility of planetary formation outside of stellar disks is not entirely ruled out by the researchers — although they do impose a lower limit to the size of such worlds.

“Theoretical calculations say that probably the lowest-mass nomad planet that can form by that process is something around the mass of Jupiter,” said Strigari. “So we don’t expect that planets smaller than that are going to form independent of a developing solar system.”

“This is the big mystery that surrounds this new paper. How do these smaller nomad planets form?” Sasselov added.

Of course, without a sun of their own to supply heat and energy one might assume such worlds would be cold and inhospitable to life. But, as the researchers point out, that may not always be the case. A nomad planet’s internal heat could supply the necessary energy to fuel the emergence of life… or at least keep it going.

“If you imagine the Earth as it is today becoming a nomad planet… life on Earth is not going to cease,” said Sasselov. “That we know. It’s not even speculation at this point. …scientists already have identified a large number of microbes and even two types of nematodes that survive entirely on the heat that comes from inside the Earth.”

Researcher Roger Blandford also suggested that “small nomad planets could retain very dense, high-pressure ‘blankets’ around them. These could conceivably include molecular hydrogen atmospheres or possibly surface ice that would trap a lot of heat. They might be able to keep water liquid, which would be conducive to creating or sustaining life.”

And so with all these potentially life-sustaining planets knocking about the galaxy,  is it possible that they could have helped transport organisms from one solar system to another? It’s a concept called panspermia, and it’s been around since at least the 5th century BCE when the Greek philosopher Anaxagoras first wrote about it. (We’ve written about it too, as recently as three weeks ago, and it’s still a much-debated topic.)

“In the 20th century, many eminent scientists have entertained the speculation that life propagated either in a directed, random or malicious way throughout the galaxy,” said Blandford. “One thing that I think modern astronomy might add to that is clear evidence that many galaxies collide and spray material out into intergalactic space. So life can propagate between galaxies too, in principle.

There could be quadrillions of nomad planets in our galaxy alone -- and they could even be ejected into intergalactic space. (Image: ESO/S.Brunier)

“And so it’s a very old speculation, but it’s a perfectly reasonable idea and one that is becoming more accessible to scientific investigation.”

Nomad planets may not even be limited to the confines of the Milky Way. Given enough of a push, they could be sent out of the galaxy entirely.

“Just a stellar or black hole encounter within the galaxy can, in principle, give a planet the escape velocity it needs to be ejected from the galaxy. If you look at galaxies at large, collisions between them leads a lot of material being cast out into intergalactic space,” Blandford said.

The discussion is a fascinating one and can be found in its entirety on The Kavli Foundation’s site here, and watch a recorded interview between Louis Strigari and journalist Bruce Lieberman here.

The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

Spot the New Space Era as ISS & Dragon Streak Across the Sky – This Week Only !

The New Commercial Space Era Streaks Across the Night Sky - Docked Dragon and International Space Station (ISS) at 4:07 AM EDT near Princeton, NJ on May 26, 2012, less than 24 hours after the Dragon was attached to the Harmony node. 25 sec exposure. Credit: Ken Kremer

[/caption]

This week and this week only you can see the dawn of the new Commercial Space Era with your own eyes – it’s soaring above your head a mere 400 kilometers (250 miles) away. All you have to do is a quick search, hope for clear skies and traipse outside.

Following the historic attachment of the maiden commercial Dragon cargo carrier to the Harmony node on the International Space Station (ISS) on May 25, the massive orbiting laboratory will be shining just a little bit brighter and prouder as it steaks overhead across the sky at 17,500 MPH (32140 KPH).

Dragon and ISS are literally trailblazing the pathway to the new Commercial Space Era for all to see.

So, for a limited time only between right now and the scheduled May 31 undocking of the SpaceX Dragon spacecraft from the ISS there will be occasional viewing opportunities to catch the dynamic duo speeding merrily across the night time sky.

And the station crew of 6 astronauts and cosmonauts living aboard just opened the hatch from the ISS and “Entered the Dragon” earlier today, May 26 – To make it even more special !

Many folks have never seen an ISS flyover and I can’t think of a better time than now to get started. I’ve held several ISS Sighting star parties in different US States and everyone is thrilled and amazed at how bright the ISS shines – In fact it’s the brightest object in the night sky other than the Sun and the Moon.

Docked Commercial SpaceX Dragon and International Space Station (ISS) streak across the pre dawn sky at 4:07 AM EDT near Princeton, NJ on May 26, 2012, less than 24 hours after the Dragon was attached to the Harmony node. 25 sec exposure. Credit: Ken Kremer

To determine if there are any favorable sighting opportunities in your area, check out the NASA website on Human Spaceflight Sighting Opportunities – here – for a detailed listing of the precise times, elevations, direction and durations. It’s an easy to use viewing guide. Just plug in the particulars of the country in which you live

Another great source is Heaven’s Above – here

ISS streaks over Florida skies at a star party for space enthusiasts around the KSC Quality Inn days prior to SpaceX Falcon 9/Dragon blastoff. Credit: Ken Kremer/www.kenkremer.com

Last night I shot some time lapse astrophotos (above) when the gloomy New Jersey clouds finally cleared using a digital SLR and exposure times of 20 to 30 seconds.

Read my eyewitness account of the spectacular pre-dawn May 19 launch of the Dragon resupply vehicle atop a Falcon 9 rocket from Cape Canaveral, Florida here and the docking here

Now – Go Spot the Dragon and the Station !

and send Ken your blazing Astrophotos to post at Universe Today

Happy Viewing and Clear Skies

Ken Kremer

Station Astronauts Enter the Dragon – First Private Capsule at ISS

NASA Astronuat Don Pettit and Russian cosmonaut Oleg Kononenko entered the Dragon commercial resupply ship for the first time on May 26, 2012 after Pettit opened the hatch at 5:53 AM EDT. Credit: NASA TV

[/caption]

For the first time in history space station astronauts have ‘Entered the Dragon’ .. The 1st Private Capsule in Space !

The hatches between the newly arrived Dragon private capsule and the International Space Station’s Harmony Node 2 module were opened at 5:53 a.m. EDT (0953 GMT) today, Saturday, May 26 as the massive complex was flying 407 kilometers (253 miles) over the Tasman Sea between Australia and New Zealand, just west of Auckland.

NASA astronaut Don Pettit had the honors of opening the hatch to the history making first commercial spacecraft to dock at the ISS and begin a busy few days of unloading gear and supplies.

Clearly the crew was eager for the momentous moment because Pettit and Russian cosmonaut Oleg Kononenko, Station Commander floated into Dragon nearly two hours ahead of schedule for the initial inspections.

NASA Astronuat Don Pettit opens hatch to Dragon from Harmony node module on May 26, 2012

Dragon is the first private spacecraft ever to journey and connect to the International Space Station and marked a milestone event in space history when it arrived yesterday morning on May 25. Dragon is the world’s first commercial resupply vehicle and was built by SpaceX Corporation based in Hawthorne, Calif., founded by CEO and Chief Designer Elon Musk.

Dragon berthed at the International Space Station. NASA TV

As a routine precaution to guard against possible contamination and floating debris, Pettit and Kononenko wore protective eye goggles and dust masks over their mouths as they floated and somersaulted playfully through the hatch and all looked in ship shape. They took off the protective gear about 20 minutes later after the air had been well mixed and receiving the all clear from Houston Mission Control.

“There was no sign of any kind of FOD (foreign object debris) floating around in the atmosphere inside,” Pettit reported to Houston upon entering the Dragon. “It kind of reminds me of the cargo capability that I could put in the back of my pickup truck, and the smell inside smells like a brand new car.”

NASA Astronaut Don Pettit inside Dragon on May 26, 2012

Barely 21 hours ago yesterday morning Pettit snared the Dragon as it was drifting free in space about 10 meters (30 ft) away using the stations 18 m (58 ft) long Canadian-built robotic arm. ESA Astronaut Andre Kuiper then parked Dragon at an open port on the Harmony node. The arm will remain grappled to Dragon throughout most of its docked time.

Docked Dragon viewed from the Cupola Observation Dome aboard ISS. NASA TV
It will take about 20 to 25 hours to unload the cargo on Dragon over the next few days before it is scheduled to undock and depart on May 31.

Dragon is a resupply ship meant to replace some of the cargo duties – both up mass and down mass – fully lost with the forced retirement of NASA’s Space Shuttle fleet last year. It is the first American built spacecraft of any kind to visit the ISS since the departure of the final Shuttle mission STS-135 in July 2011.

Dragon grappled with Earth backdrop. NASA TV

The Dragon was packed with 460 kilograms (1014 lbs) of non-critical cargo including 306 kg (674 lbs) of food and crew provisions; 21 kg (46 lbs)of science experiment; 123 kg (271 lbs) prepositioned cargo bags to be used for future flights; and 10 kg (22 lbs) of assorted computer supplies and a laptop.

The vehicle will be refilled with more than 1400 pounds of science samples, trash and unneeded gear for the trip back home. Dragon is the only ISS cargo resupply vessel that has any significant return to Earth capability since it is equipped with parachutes and a heat shield, unlike the ATV, HTV and Cygnus which burn up on re-entry into the Earth’s atmosphere.

“Dragon is really the main means of carrying cargo back from the space station,” said Elon Musk at a post docking media briefing.

First look inside the Dragon spacecraft, currently attached to the International Space Station. Credit: SpaceX

SpaceX is under contract with NASA to conduct a dozen Falcon 9/Dragon resupply missions to carry about 44,000 pounds of cargo to the ISS at a cost of some $1.6 Billion over the next few years.

The first operational Dragon resupply mission to the ISS could launch as soon as September.

SpaceX Falcon 9 rocket clears the tower after liftoff at 3:44 a.m. on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla.,on the first commercial mission to loft the Dragon cargo resupply vehicle to the International Space Station. Credit: Ken Kremer/www.kenkremer.com

The Dragon was blasted to space atop a SpaceX Falcon 9 booster from Cape Canaveral, Florida on this historic test flight on May 22, 2012 and linked up with the ISS on Flight Day 4 on May 25.

Ken Kremer