Dr. Alan Stern Answers Your Questions!

Dr. Alan Stern preparing for a high-altitude test flight in A two-seater, NASA WB-57 aircraft. Photo Credit: SOuthwest Research Institute.

[/caption]Some of you may know, we recently launched a new “Ask” feature here at Universe Today. Our inaugural launch features Dr. Alan Stern, Principal Investigator for the New Horizons mission to Pluto and the Kuiper Belt. We collected your questions in our initial post and passed them along to Dr. Stern who graciously took the time to answer them.

Here are the questions picked by you, the readers, and Dr. Stern’s responses. We’d like to thank our readers for making this kick-off a success, as well as Dr. Stern for his participation.


1.) Many sci-fi authors have dreamed of putting some sort of telescope on the surface of Pluto to take advantage of the relative darkness and extreme cold encountered on this distant dwarf planet. How feasible would it be, judging from what we’re learning from the New Horizons expedition, to actually land a spacecraft, or a telescope, on Pluto’s surface? If such a telescope where deployed, how much more effective, if at all, could it be than an instrument like the JWST?

Alan Stern:“Space astronomy has revolutionized the way we look at the universe and is fundamental to modern astrophysics.” There are benefits to getting telescopes out of the atmosphere, and even benefits to getting out of Earth orbit, as in the case of Kepler and someday maybe JWST.

With regard to taking advantage of Pluto’s cold temperature – we’ve gotten really good at cooling down space telescopes. “There would be a benefit to placing a radio telescope on the far side of the Moon, but there’s no real practical reasons to place a telescope on Pluto—particularly given the cost of getting there, other than it being cool.”

2.) Kuiper objects differentiate strongly in color suggesting compositional or perhaps formation differences. Interestingly the color distribution correlates with the two different cold and hot Kuiper populations. Assuming the spectral analysis capability of New Horizon works for identifying the follow up Kuiper objects beyond Pluto-Charon, and given the putative possibility of choosing between several such targets, what type of target would the mission aim for? Would it try to cover as much diversity of objects as possible or is there a certain class of objects that could be important to concentrate on?

A.S: “We have to find Kuiper belt objects within our spacecraft’s fuel supply.” Stern elaborated, stating, “Predictions from our computer models tell us to expect to be able to have perhaps six possible candidates, to choose from, but so far we’ve just begun to search for these and though we’re finding KBOs, none we’ve found are yet are within the fuel supply.”

Stern also added, “Keep in mind our search for candidates isn’t easy – these are 27th magnitude objects which are roughly 50,000 times fainter than Pluto. What we’ll use to select between candidates once we have them are color, orbits, moons, rotational speeds – basically what combination of properties give us the most science for our fuel budget. The longer we wait after the Pluto flyby in July 2015 to make a decision, the more fuel will be consumed, so the “sweet spot” would be to have preliminary candidates in early 2015.”
(UT Note: New Horizons will perform its Pluto flyby in mid-2015 ).

3.) Given the limited funds available, Which do you recommend (Europa or Enceladus) as a suitable target for a mission in the 2025 time-frame in terms of value for money, scientific return, and practicality, and what kind of mission do you propose (lander vs. orbiter) ?

A.S: “Every scientist has their own judgment of what would make a good outer system flagship mission, or the best world to perform a series of missions that would equal a flagship mission.” Dr. Stern’s opinion is to explore Titan first, with Enceladus as a secondary target of that mission and Europa last, stating “Titan is the belle of the ball”, citing Titan’s active liquid cycle and thick atmosphere. Stern also added that he believes a mission to Titan would provide the most science per budget dollar.

4.) Four of the craft escaping the Solar System – Pioneers 10 & 11 and Voyagers 1 & 2 – have on board some sort of “message” to any possible extraterrestrials in the unlikely event they find it. Why was not some sort of message like that included on New Horizons, which may be the last (in our lifetimes) craft to also escape the Solar System?

A.S “There are several mementos onboard New Horizons, but no Voyager-like message.” Dr. Stern discussed a promise he made to his team that New Horizons would not be canceled and that he wanted his team focused on the science of the mission. Stern also pointed out that the process of deciding what to place on the Voyager plaques became mired in political correctness, (should the humans have been clothed? What cultures and races should be represented, etc.)

By separating the “icing from the cake”. Stern and his team have been able to concentrate on their main objective—to execute the New Horizons mission for about twenty cents on the dollar, as compared to the Voyager missions. Stern concluded with, “I’m proud that we got this done and that New Horizons is operating perfectly now way out there between Uranus and Neptune and flying almost a million kilometers per day toward the Pluto system.”

5.) Are any present or foreseeable technologies being considered for exploring the depths of our four “gas giant” planets?

A.S “There are no serious proposals to put a probe into one of the giant planets now, or even any call for such in the recent decadal survey for planetary missions. Keep in mind, though, that the Juno mission (now en route to Jupiter ) will use powerful remote sensing techniques to probe Jupiter from orbit around it to greater depths than the Galileo probe (which actually entered Jupiter’s atmosphere).”

6.) Why was it considered “urgent” to get to Pluto before the atmosphere refroze?

A.S “We have three “Group 1″ objectives for New Horizons. Map the surface, map the composition, and assay the atmosphere.” Stern referred to the objectives as a “three legged stool” in that no one objective could be omitted and still justify the mission, adding “so we need to accomplish that.. we need to get there before the atmosphere collapses”. Stern also referred to Pluto’s atmosphere as “very different from any other planet yet studied”, hence its inclusion as one of the three “Group 1” objectives.

7.) The Dawn mission to Vesta has shown us a body that was much less round than expected. Do you think it is possible that New Horizons will surprise us about Pluto, to the same degree? Please compare the expectations of the New Horizons fly by, to the early images of Vesta from Dawn.

A.S “With New Horizons being the first mission to Pluto, we will be surprised—after all, we’re always surprised on first reconnaissance flybys”. Stern added, “With Mariner 10, we discovered Mercury was all core, with Voyager we discovered volcanos and geysers across the outer solar system, and of course we were surprised when craters and river valleys were discovered by early Mars probes.”

Regarding Pluto, Stern stated “Pluto is the first discovered and soon to be reconnoitered of the most plentiful class of planets, while I’m not big on making predictions, I will say that what we will find will certainly be, well, wonderful.”

9.) Can new horizons now take more detailed photos of Pluto than HST? If not, when does it get close enough?

A.S “Great question! We actually thought about that a lot when designing New Horizons. One of our instruments, LORRI (Long-Range Reconnaissance Imager – http://pluto.jhuapl.edu/spacecraft/sciencePay.html) will provide us with views better than HST around April of 2015, and we expect to have about twenty weeks (10 weeks before, 10 weeks after the Pluto flyby) when we “own” the Pluto system — and I can guarantee the best images we hope to make should be as good as Landsat images of Earth!”

That wraps up our interview with Dr. Alan Stern. Once again, we at Universe Today would like to thank Dr. Stern for his gracious participation. If you’d like to learn more about the New Horizons mission to Pluto and The Kuiper Belt, visit: http://pluto.jhuapl.edu/index.php

Next month, we’ll be having an “Ask an Astronaut” feature with Mike Fossum, Commander of Expedition 29 on the International Space Station. Stay tuned!

Absolutely Spectacular Photos of Comet Lovejoy from the Space Station

Comet Lovejoy on 22 Dec. 2011 from the International Space Station. Comet Lovejoy is visible near Earth’s horizon in this nighttime image photographed by NASA astronaut Dan Burbank, Expedition 30 commander, onboard the International Space Station on Dec. 22, 2011. Credit: NASA/Dan Burbank

[/caption]
Check out this absolutely stunning collection of new Comet Lovejoy photos taken by space station commander Dan Burbank just before the Christmas holidays on Dec. 22, 2011 – what an amazing holiday treat, the Chrtistmas Comet!

Burbank shot these exquisitely detailed nighttime images showing the comet near the Earth’s horizon and framed with a gorgeously rich star field, all while floating aboard the International Space Station (ISS) some 400 kilometers (250 miles) above all of us – and absent any atmospheric interferences and distortions !

Burbank is a NASA astronaut and commander of ISS Expedition 30.

The comet has put on a spectacular show for observers in the Earth’s southern hemisphere despite prognostications of a fiery death as it careened through the suns corona during perihelion on Dec. 16 at a distance of 140,000 kilometers (87,000 mi).

Astronaut Burbank launched to the ISS on Nov. 13 along with Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin aboard the Soyuz TMA-22 capsule from the Baikonur Cosmosdrome. The trio docked on Nov. 16 for a more than 4 month stay.

Comet Lovejoy was only discovered on 27 November 2011, by Australian amateur astronomer Terry Lovejoy and classified as a Kreutz sungrazer. It has put on an unexpected and magnificent Christmas Comet holiday show.

Burbank first caught an accidental glimpse of Comet Lovejoy on Dec. 21 and snapped an initial set of beautiful comet photos from the Cupola observation dome aboard the ISS.


And – there’s still time to create an Asteroid Vesta themed winter holiday greeting card, here

Prelaunch photo of Soyuz-TMA-22/Expedition 29/30 crew - NASA astronaut Dan Burbank and Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin Credit: Roscosmos

NASA’s Dawn Orbiter snaps Best Ever Images of Vesta

Crater in Shadow on Vesta. This new image from Dawn in its low altitude mapping orbit on Dec. 13 shows part of the rim of a fresh crater on Vesta located in an area known as the Heavily Cratered Terrain in the northern hemisphere at around 17 degrees latitude and 77 degrees longitude. It was obtained at an altitude of 119 miles (191 km) and covers an area 11 mi x 11 mi (18 km x 18 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

[/caption]

NASA’s Dawn spacecraft has swooped down to the closest orbit above the monster asteroid Vesta that the craft’s cameras and spectrometers will ever glimpse and the probe has begun transmitting these highest resolution pictures to anxiously waiting scientists back on Earth.

Dawn arrived at its Low Altitude Mapping Orbit, known as LAMO, on Dec. 12, 2011 and will continue circling scarcely 130 miles (210 kilometers) above Vesta for at least the next 10 weeks. Each orbit takes about 4.3 hours.

NASA has now released the first batch of crisp new close-ups images taken by the Framing Camera on Dec. 13 showing the stippled and lumpy surface in an exquisitely fine detail never seen before.

The photo montage below shows side by side views of the same portion of the Vestan surface at ever increasing resolution and clarity from ever lower altitudes.

Closer and Closer to the Vesta Surface
NASA’s Dawn spacecraft has spiraled closer and closer to the surface of the giant asteroid Vesta since arriving in mid-2011. The two images on the left represent an identical area, first observed during Dawn's survey orbit (far left image). The picture in the center is from Dawn's high-altitude mapping orbit (HAMO) from an altitude of about 430 miles (700 km) with about 230 feet (70 meters-per-pixel) resolution. The image at right was obtained on Dec. 13 from the low altitude mapping orbit (LAMO) at an altitude of 124 miles (199 km) above the surface and has a resolution of 75 feet (23 m) per pixel. It shows small impact craters or slumping at the steep-flanked mountain in the image center that can be identified in the two images to the left. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The high resolution image gallery reveals fine scale highlights such as multitudes of small craters, grooves and lineaments, landslides and slumping, ejecta from past colossal impacts, and small outcrops of bright and dark materials.

The science team, led by Principal Investigator Prof Chris Russell of UCLA, believes that Vesta is actually more like a planet than an asteroid based on the data obtained thus far.

Vesta is the smallest terrestrial planet in our Solar System”, Russell told Universe Today. “We do not have a good analog to Vesta anywhere else in the Solar System.”

The primary science objectives at the LAMO orbit are to measure the elemental abundances on the surface of Vesta with the US built gamma ray and neutron detector (GRaND) and to probe the interior structure of the asteroid by measuring the gravity field.

Vesta is a proto-planet formed just a few million years after the birth of the solar system whose evolution into a larger planet was stopped cold by the massive gravitational influence of the planet Jupiter.

Scientists are plowing through thousands of images and millions of spectral measurements to glean clues about the origin and evolution of the solar system that have been preserved on the hitherto unexplored world.

Buried Craters on Vesta
This Dec. 13 image from Dawn spacecraft in its low altitude mapping orbit shows many buried craters located within the equatorial trough region of Vesta. This area bears traces of the material thrown out by the impact that created the Rheasilvia basin in the asteroid’s south polar region. Lineated features are visible in a variety of shapes and sizes from an altitude of 117 miles (189 km) over an area of 11 mi x 11 mi (18 km x 18 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“Vesta is a transitional body between a small asteroid and a planet and is unique in many ways,” says mission scientist Vishnu Reddy of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. “Vesta is unlike any other asteroid we have visited so far.”

After completing the LAMO measurements, Dawn will again spiral back to a higher altitude for further data gathering especially at the unseen North Pole which is in darkness now.

Dawn will continue orbiting Vesta until July 2012 when it will fire up its ion propulsion system and depart for Ceres, the largest body in the main Asteroid belt between Mars and Jupiter.

“What can be more exciting than to explore an alien world that until recently was virtually unknown!” Dr. Marc Rayman told Universe Today. Rayman is Dawn’s Chief Engineer from NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif.

Equatorial Trough in Dark and Bright on Vesta
This image was one of the first obtained by Dawn in its low altitude mapping orbit and shows a part of one of the long troughs at the equator of Vesta. Credit: NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA

“Dawn continues to gather gamma ray spectra and neutron spectra,” Rayman reports. “The bonus imaging at LAMO is yielding pictures more than three times better than those acquired in the high altitude mapping orbit (HAMO). Every week at this low altitude, Dawn will use its ion propulsion system to fine tune its orbit. The first of these weekly orbit adjustments was performed on December 17.”

The framing cameras eere built by the Max Planck Institute for Solar System Research in Germany.

A treasure trove of spectacular Vesta close-ups are streaming at this moment to the home planet and we’ll have many more goodies to show.

Read continuing features about Dawn by Ken Kremer starting here:
Holiday Greetings from an Alien Snowman on Vesta
Dawn swoops to lowest orbit around Vesta – Unveiling Spectacular Alien World
Rainbow of Colors Reveal Asteroid Vesta as More Like a Planet
Vrooming over Vivid Vestan Vistas in Vibrant 3 D – Video
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Dawn Discovers 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain

Have Complex Molecules Been Found on Pluto’s Surface?

Artist's conception of New Horizons during its flyby of Pluto in 2015. Credit:Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

[/caption]

First there was the recent story about evidence for a possible subsurface ocean on Pluto, of all places. Now there is a new report regarding evidence for complex molecules on its surface, from scientists at Southwest Research Institute and Nebraska Wesleyan University. Little enigmatic Pluto is starting to get even more interesting…

The findings come from the Hubble Space Telescope, using the new and highly sensitive Cosmic Origins Spectrograph which indicate that there is a strong ultraviolet-wavelength absorber on the surface. This absorbing material is thought to likely be complex hydrocarbons and/or nitriles. The results have been published in the Astronomical Journal.

Pluto’s surface is known to be coated with ices composed of methane, carbon monoxide and nitrogen (it is extremely cold there!). The putative molecules can be produced by sunlight or cosmic rays interacting with those ices.

“This is an exciting finding because complex Plutonian hydrocarbons and other molecules that could be responsible for the ultraviolet spectral features we found with Hubble may, among other things, be responsible for giving Pluto its ruddy color,” said project leader Dr. Alan Stern.

The team also found evidence for surface changes in the ultraviolet spectrum, comparing current observations to those from the 1990s. The cause may be an increase in the pressure of Pluto’s tenuous atmosphere or different terrain which is being viewed at different times.

In a unique first for Universe Today, Dr. Alan Stern was the first researcher to be asked questions from readers via the comments section of this recent interview article by Ray Sanders. His answers to the top five questions (as ranked by “likes” on the discussion posts) will be posted soon in a subsequent article. Stern is also the principal investigator for the New Horizons spacecraft currently en route to Pluto.

A copy of the paper by Stern et al. is available here.

With all of the new discoveries already being made about Pluto, it should be very interesting when New Horizons gets there in 2015, providing us with the first close-up look of this fascinating little world.

Top Astronomy Events Coming Up in 2012

Stargazing Credit: http://twitter.com/VirtualAstro

[/caption]

As 2011 is drawing to a close, the festive season is here and many of us are winding down and looking forward to the holidays. But this is a great time to look ahead to 2012 and pencil into our calendar and diaries the top astronomical events we don’t want to miss next year.

2012 is going to be a great year for astronomy observing, with some rare and exciting things taking place and a good outlook with some of the regular annual events.

So what top wonders should we expect to see and what will 2012 bring?

Conjunction of Venus and Jupiter

Venus & Jupiter Conjunction Credit: Anthony Arrigo UtahSkies.org

On March 15th the Planets Venus and Jupiter will be within 3 degrees and very close to each other in the early evening sky. This will be quite a spectacle as both planets are very bright (Venus being the brightest) and the pair will burn brightly together like a pair of alien eyes watching us after the Sun sets.

This conjunction (where planets group close together as seen from Earth) will be a fantastic visual and photographic opportunity, as it’s not often you get the brightest Planets in our Solar System so close together.

Transit of Venus

Transit of Venus Credit: Australian Space Alliance

For many, the transit of Venus is the year’s most anticipated astronomical event and it takes place on June 5th – 6th. The Planet Venus will pass between the Earth and the Sun and you will see Venus (a small black circle) slowly move across, or “transit” the disc of the Sun.

Transits of Venus are very rare and only a few have been witnessed since the dawn of the telescope. Be sure not to miss this very rare event as the next one isn’t visible for over another 100 years from now in 2117 and the next after that is in 2125.

The full transit of Venus in 2012 will be visible in North America, the northwest part of South America, Western Pacific, North East Asia, Japan, Australia and New Zealand. Other parts of the world will see a partial transit such as observers in the UK, who will only be able to see the last part of the transit as the Sun rises.

First contact will be at 22:09 UT and final contact will be at 04:49 UT

Take note! You have to use the right equipment for viewing the Sun, such as eclipse glasses, solar filters, or projection through a telescope. Never ever look directly at the Sun and never look at it through a normal telescope or binoculars – You will be permanently blinded! The transit of Venus will be a very popular event, so contact your local astronomy group and see if they are holding an event to celebrate this rare occasion.

Meteor Showers

Don't Miss the Major 2012 Meteor Showers Credit: Shooting Star Wallpapers

2011 was a poor year for meteor showers due to the presence of a largely illuminated Moon on all of the major showers; this prevented all but the brightest meteors being seen.

In contrast 2012 brings a welcome respite from the glare of the Moon as it gives little or no interference with this year’s major showers. The only other issue left to contend with is the weather, but if you have clear skies on the evenings of these celestial fireworks, you are in for a treat.

  • The Quadrantid Meteor Shower peak is narrow and just before dawn on January 4th this shower is expected to have a peak rate (ZHR) of around 80 meteors per hour.
  • The Perseid Meteor Shower peak is fairly broad with activity increasing on the evenings of the August 9th and 10th with the showers peak on the morning of the 12th. Perseids are the most popular meteor shower of the year as it tends to be warm and the shower has very bright meteors and fireballs, with rates of 100+ an hour at its peak.
  • The Geminid Meteor Shower is probably the best meteor shower of the year with high rates of slow bright meteors. The peak is very broad and rates of 100+ meteors per hour can be seen. The best time to look out for Geminids is on the evenings of the 12th to 14th December, but they can be seen much earlier or later than the peak.

If you want to find out more and enjoy the meteor showers of 2012, why not join in with a meteorwatch and visit meteorwatch.org

Jupiter and the Moon

Occultation of Jupiter by the Moon on July 15th as seen from Southern England Credit: Adrian West

European observers are in for a very rare treat as the Moon briefly hides the planet Jupiter on the morning of July 15th. This “lunar occultation” can be seen from southern England and parts of Europe at approximately 1:50am UT (dependant on location) and the planet re-emerges from the dark lunar limb at approximately 3:10am UT.

This is a great chance to watch this rare and bright event, and it will also be a fantastic imaging opportunity.

Annular Eclipse

Annular Eclipse Credit: Kitt Peak Observatory

American observers will have treat on May 20th with an annular eclipse of the Sun. The eclipse will be visible from many western US states and a partial eclipse visible from most of North America.

Because the Moon’s orbit is not a perfect circle and is slightly elliptical, it moves closer and further away from us slightly in its orbit by 13% and on July 15th it is at its furthest point away from the Earth as it passes in front of the Sun.

Normally the Moon covers the entire disc of the Sun and creates a total solar eclipse, but because the Moon is at its furthest point in its orbit on the 15th, we get an annular eclipse, where we can still see a ring of bright light around the Sun, but we don’t get totality.

The eclipse starts roughly at 6:20pm local time for the Western US states and lasts for four and a half minutes.

As mentioned earlier; never, ever look at the Sun without proper protection such as eclipse glasses or filters for equipment! This can damage your eyes and permanently blind you. This is the same for cameras; the sensitive chips inside can be damaged.

The World Not Ending

End Of The World

Finally we get to December 21st, in which astronomy-minded folks will celebrate the solstice. But in case you haven’t heard, some have prophesied the end of the world, saying the Mayan calendar ends. This has been the subject of much discussion, comedy and media coverage, and it has even been made into films.

Will the Antichrist press the red button and will there be the Rapture? Will the Earth reverse its magnetic poles, or will we get wiped out by a solar flare, rogue comet or asteroid?

Nope, probably not. You can read our entire series which explains why this whole 2012 end-of-the-world craze is complete hokum.

All I know is 2012 is going to be a great year for astronomy with some very interesting, rare events taking place, with many more regular events to see, as well.

I’m sure it’s not going to end.

 

Is Jupiter’s Core Liquifying?

Credit: NASA/ESA/E. Karkoschka (U. Arizona)

[/caption]

Jupiter, the largest and most massive planet in our solar system, may be its own worst enemy. It turns out that its central core may in fact be self-destructing, gradually liquifying and dissolving over time. This implies it was previously larger than it is now, and may dissolve altogether at some point in the future. Will Jupiter eventually destroy itself completely? No, probably not, but it may lose its heart…

The core is composed of iron, rock and ice and weighs about ten times as much as Earth. That’s still small though, compared to the overall mass of Jupiter itself, which weighs as much as 318 Earths! The core is buried deep within the thick atmosphere of hydrogen and helium. Conditions there are brutal, with a temperature of about 16,000 kelvin – hotter than the surface of the Sun – and a pressure about 40 million times greater than the atmospheric pressure on Earth. The core is surrounded by a fluid of metallic hydrogen which results from the intense pressure deep down in the atmosphere. The bulk of Jupiter though is the atmosphere itself, hence why Jupiter (and Saturn, Uranus and Neptune) are called gas giants.

One of the primary ingredients in the rock of the core is magnesium oxide (MgO). Planetary scientists wanted to see what would happen when it is subjected to the conditions found at the core; they found that it had a high solubility and started to dissolve. So if it is in a state of dissolution, then it was probably larger in the past than it is now and scientists would like to understand the process. According to David Stevenson of the California Institute of Technology, “If we can do that, then we can make a very useful statement about what Jupiter was like at genesis. Did it have a substantial core at that time? If so, was it 10 Earth masses, 15, 5?”

The findings also mean that some exoplanets which are even larger and more massive than Jupiter, and thus likely even hotter at their cores, may no longer have any cores left at all. They would be indeed be gas giants in the most literal sense.

The conditions inside Jupiter’s core can’t be duplicated in labs yet, but the spacecraft Juno should provide much more data when it arrives at and starts orbiting Jupiter in 2016.

Curiosity Starts First Science on Mars Sojurn – How Lethal is Space Radiation to Life’s Survival

NASA's Mars Science Laboratory Curiosity rover will investigate Mars' past or present ability to sustain microbial life. Curiosity is cruising to Mars and has already investigating the lethality of the space radiation environment to humans. Credit: NASA/JPL-Caltech

[/caption]

Barely two weeks into the 8 month journey to the Red Planet, NASA’s Curiosity Mars Science Lab (MSL) rover was commanded to already begin collecting the first science of the mission by measuring the ever present radiation environment in space.

Engineers powered up the MSL Radiation Assessment Detector (RAD) that monitors high-energy atomic and subatomic particles from the sun, distant supernovas and other sources.

RAD is the only one of the car-sized Curiosity’s 10 science instrument that will operate both in space as well as on the Martian surface. It will provide key data that will enable a realistic assessment of the levels of lethal radiation that would confront any potential life forms on Mars as well as Astronauts voyaging between our solar systems planets.

“RAD is the first instrument on Curiosity to be turned on. It will operate throughout the long journey to Mars,” said Don Hassler, RAD’s principal investigator from the Southwest Research Institute in Boulder, Colo.

These initial radiation measurements are focused on illuminating possible health effects facing future human crews residing inside spaceships.


Video Caption: The Radiation Assessment Detector is the first instrument on Curiosity to begin science operations. It was powered up and began collecting data on Dec. 6, 2011. Credit: NASA

“We want to characterize the radiation environment inside the spacecraft because it’s different from the radiation environment measured in interplanetary space,” says Hassler.

RAD is located on the rover which is currently encapsulated within the protective aeroshell. Therefore the instrument is positioned inside the spacecraft, simulating what it would be like for an astronaut with some shielding from the external radiation, measuring energetic particles.

“The radiation hitting the spacecraft is modified by the spacecraft, it gets changed and produces secondary particles. Sometimes those secondary particles can be more damaging than the primary radiation itself.”

“What’s new is that RAD will measure the radiation inside the spacecraft, which will be very similar to the environment that a future astronaut might see on a future mission to Mars.”

Curiosity Mars Science Laboratory (MSL) Spacecraft During Cruise with Navigation Stars. Artist's concept of Curiosity during its cruise phase between launch on Nov. 26, 2011 and final approach to Mars in August 2012. Credit: NASA/JPL-Caltech

Curiosity’s purpose is to search for the ingredients of life and assess whether the rovers landing site at Gale Crater could be or has been favorable for microbial life.

The Martian surface is constantly bombarded by deadly radiation from space. Radiation can destroy the very organic molecules which Curiosity seeks.

“After Curiosity lands, we’ll be taking radiation measurements on the surface of another planet for the first time,” notes Hassler.

RAD was built by a collaboration of the Southwest Research Institute, together with Christian Albrechts University in Kiel, Germany with funding from NASA’s Human Exploration Directorate and Germany’s national aerospace research center, Deutsches Zentrum für Luft- und Raumfahrt.

“What Curiosity might find could be a game-changer about the origin and evolution of life on Earth and elsewhere in the universe,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington. “One thing is certain: The rover’s discoveries will provide critical data that will impact human and robotic planning and research for decades.”

Curiosity was launched from Florida on Nov. 26. After sailing on a 254 day and 352-million-mile (567-million-kilometer) interplanetary flight from the Earth to Mars, Curiosity will smash into the atmosphere at 13,000 MPH on August 6, 2012 and pioneer a nail biting and first-of-its-kind precision rocket powered descent system to touchdown inside layered terrain at Gale Crater astride a 3 mile (5 km) high mountain that may have preserved evidence of ancient or extant Martian life.

Miraculously, NASA’s Opportunity Mars rover and onboard instruments and cameras have managed to survive nearly 8 years of brutally harsh Martian radiation and arctic winters.

Curiosity MSL science instruments are state-of-the-art tools for acquiring information about the geology, atmosphere, environmental conditions, and potential biosignatures on Mars. Credit: NASA

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Ask Dr. Alan Stern

Dr. Alan Stern, Associate Vice President, Space Science and Engineering Division, Southwest Research Institute. Photo Credit: Southwest Research Institute

[/caption]
We’re testing a new “Ask” article format here at Universe Today and we know you’ve got a question you’d like to ask Alan Stern!

Here’s how it works: Readers can submit questions they would like Universe Today to ask the guest responder. Simply post your question in the comments section of this article. We’ll take the top five (or so) questions, as ranked by “likes” on the discussion posts. If you see a question you think is good, click the “like” button to give it a vote.

Keep in mind that final question acceptance is based on the discretion of Universe Today and in some cases, the responder and/or their employer.

Our inaugural launch (pun intended) will feature Dr. Alan Stern, principal investigator for NASA’s “New Horizons” mission to Pluto.

Stern is a planetary scientist and an author who has published more than 175 technical papers and 40 popular articles. His research has focused on studies of our solar system’s Kuiper belt and Oort cloud, comets, satellites of the outer planets, Pluto and the search for evidence of solar systems around other stars. He has worked on spacecraft rendezvous theory, terrestrial polar mesospheric clouds, galactic astrophysics and studies of tenuous satellite atmospheres, including the atmosphere of the Moon.

Stern has a long association with NASA, serving the agency’s Associate Administrator for the Science Mission Directorate from 2007-2008; he was on the NASA Advisory Council and was the principal investigator on a number of planetary and lunar missions, including his current stint with the New Horizons Pluto-Kuiper Belt mission. He was the principal investigator of the Southwest Ultraviolet Imaging System, which flew on two space shuttle missions, STS-85 in 1997 and STS-93 in 1999.

He has been a guest observer on numerous NASA satellite observatories, including the International Ultraviolet Explorer, the Hubble Space Telescope, the International Infrared Observer and the Extreme Ultraviolet Observer.

Stern holds bachelor’s degrees in physics and astronomy and master’s degrees in aerospace engineering and planetary atmospheres from the University of Texas, Austin. In 1989, Stern earned a doctorate in astrophysics and planetary science from the University of Colorado at Boulder.

Aside from being the Principal Investigator for NASA’s “New Horizons” mission to Pluto, Currently Stern is the Associate Vice President of R&D – Space Science and Engineering Division at the Southwest Research Institute and recently was appointed director of the Florida Space Institute at Kennedy Space Center.

For those of you who are fans of Pluto, Dr. Stern went on the record against the IAU’s decision in 2006, stating “It’s an awful definition; it’s sloppy science and it would never pass peer review..”

Before submitting your question, take a minute and read a bit more about Dr. Stern at: Dr. Alan Stern

We’ll take questions until 4:00PM (MST) Tuesday December 20th and provide a follow up article with Dr. Stern’s responses to your questions.

NASA Planning for Possible Landings on Europa

The Jovian Moon Europa, Credit: NASA/Ted Stryk

[/caption]

All these worlds are yours except Europa
Attempt no landing there
Use them together use them in peace 

Despite that famous cryptic warning in the film 2010: The Year We Make Contact, NASA is planning for a possible attempted landing on Jupiter’s moon Europa. This is a mission that many people have been hoping for, since Europa is believed to have a liquid water ocean beneath the icy surface (as well as lakes within the surface crust itself), making it a prime location in the search for life elsewhere in the solar system. Two landers are being proposed which would launch in 2020 and land about six years later.

As stated by Kevin Hand of JPL, “Europa, I think, is the premier place to go for extant life. Europa really does give us this opportunity to look for living life in the ocean that is there today, and has been there for much of the history of the solar system.”

While the landers wouldn’t be able to access the ocean water which is well below the surface, they could analyze the surface composition with a mass spectrometer, seismometers and cameras. The mass spectrometer could detect organics on the surface if there are any. The landers probably wouldn’t last too long though, because of the intense radiation from Jupiter on the unprotected surface (as Europa has only a very slight, tenuous atmosphere). Accessing any of the water from its ocean or lakes would require drilling deep down, something for a more advanced future mission.

Another mission being considered is a Europa orbiter, which could also launch in 2020. In some ways that might be even better, as it could provide a broader detailed study of the moon over a longer time period. Of course if both missions could be done, that would be fantastic, but budgets will probably only allow for one of them. The lander mission is estimated to probably cost about $800 million to $2 billion, while an orbiter would cost about $4.7 billion.

It might be noted that a return mission to Saturn’s moon Enceladus would also be possible, especially since the water from its subsurface ocean or sea (depending on the various working models of its interior and geology) can be sampled directly from its water vapour geysers, no need to drill down. The Cassini spacecraft has already done that more than once, and has found organics of various complexities, but Cassini’s instruments can’t detect life itself.

Either destination would be exciting, as both are thought to be two of the most likely places in the solar system, besides Earth of course, to be inhabitable or even possibly inhabited. Everywhere on Earth where there is water, there is life. That may or may not be true for Europa or Enceladus, but we’ll never know unless we look.

Revolutionary Air-Launched Commercial Rocket to Orbit Announced by Microsoft Billionaire Paul Allen

Stratolaunch Systems Carrier Aircraft - Air Launch to Orbit Space Launch System. Developed by Scaled Composites, the aircraft manufacturer and assembler founded by Burt Rutan. The carrier will loft and drop the 500,000 multistage SpaceX rocket that will propel payloads to orbit at dramatically reduced costs. It will be the largest aircraft ever flown with a wing span of 385 feet and weighing 1.2 million pounds. Credit: Stratolaunch Systems. Watch complete video below.

[/caption]

A mega quartet of luminaries led by Microsoft co-founder Paul G. Allen and legendary aerospace designer Burt Rutan have joined forces to create a revolutionary new approach to space travel. This new privately funded venture entails the development of a mammoth air-launched space transportation system that aims to dramatically cut the high costs and risks of launching both cargo and human crews to low Earth orbit.

Allen and Rutan are teaming up with Elon Musk, founder of Space Exploration Technologies Corp, or SpaceX, and Michael Griffin, former NASA Administrator, to build the world’s largest aircraft ever flown and use it as a platform to loft a multi-stage SpaceX rocket that will deliver a payload of some 13,500 pounds into earth orbit, about the same class as a Delta II.

Allen and Rutan hope to build upon the spaceflight revolution that they pioneered with the suborbital SpaceShipOne in 2004, which was the first privately funded spaceship to reach the edge of space, and now take the critical next step and actually vault all the way to orbit.


Video Caption: Stratolaunch Systems is pioneering innovative solutions to revolutionize space transportation to orbit.

To accomplish this innovative leap, Allen and Rutan, announced the formation of a new company, funded by Allen, called Stratolaunch Systems at a press briefing today, Dec. 13, held in Seattle, WA. Allen is a billionaire and philanthropist who has funded a host of projects to advance science,

“Our national aspirations for space exploration have been receding,” Allen lamented at the start of the briefing. “This year saw the end of NASA’s space shuttle program. Constellation, which would have taken us back to the moon, has been mothballed as well. For the first time since John Glenn, America cannot fly its own astronauts into space.”

“With government funded spaceflight diminishing, there’s a much expanded opportunity for privately funded efforts.”

Rutan said that Stratolaunch will build a 1.2 million pound carrier aircraft sporting a wingspan of 385 feet – longer than a football field – and which will be powered by six 747 engines on takeoff. The carrier will be a twin fuselage vehicle, like the WhiteKnight developed by Rutan to launch SpaceShipOne.

Air launch of SpaceX rocket to orbit

The 120 foot long SpaceX rocket, weighing up to 490,000 pounds, will be slung in between and dropped at an altitude of about 30,000 feet for the remaining ascent to orbit.

SpaceX will construct a shorter, less powerful version of the firms existing Falcon 9 rocket, which may be either a Falcon 4 or Falcon 5 depending on specifications.

The new launch system will operate from a large airport or spaceport like the Kennedy Space Center, require a 12,000 feet long runway for takeoff and landing and be capable of flying up to 1,300 nautical miles to the payload’s launch point. Crews aboard the huge carrier aircraft will also conduct the countdown and firing of the booster and will monitor payload blasting to orbit.

“I have long dreamed about taking the next big step in private space flight after the success of SpaceShipOne – to offer a flexible, orbital space delivery system,” Allen said. “We are at the dawn of radical change in the space launch industry. Stratolaunch Systems is pioneering an innovative solution that will revolutionize space travel.”

The goal of Stratolaunch is to “bring airport-like operations to the launch of commercial and government payloads and, eventually, human missions,” according to a company statement.

Plans call for a first orbital flight within five years by around 2016. Test flights could begin around 2015.

“We believe this technology has the potential to someday make spaceflight routine by removing many of the constraints associated with ground launched rockets,” said Mike Griffin. “Our system will also provide the flexibility to launch from a large variety of locations.”

Mike Griffin added that the venture is aiming for the small to medium class payload market similar to what has been served by the venerable Delta II rocket, which is now being retired after decades of service.

“NASA’s science satellites could also be lofted by Stratolaunch.”

“At some point this vehicle could loft a crew of say six people,” Griffin stated.

“This is an exciting day,” concluded Allen.

“Stratolaunch will keep America at the forefront of space exploration and give tomorrow’s children something to search for in the night sky and dream about. Work has already started on our project at the Mojave Spaceport.”

SpaceX Dragon cargo spaceship propels commercial and science payloads to orbit following air-launch from gigantic carrier aircraft. Credit: Stratolaunch Systems