For a birds-eye view of where it all started, watch the cool close-up launch video, below taken from within the Atlas pad security fence.
Indeed the launch precision was so good that mission controllers at NASA’s Jet Propulsion Lab in Pasadsena, Calif., have announced they postponed the first of six planned course correction burns for the agency’s newest Mars rover by at least a month. The firing had been planned for some two weeks after liftoff.
Curiosity is merrily sailing on a 254 day and 352-million-mile (567-million-kilometer) interplanetary flight from the Earth to Mars that will culminate on August 6, 2012 with a dramatic first-of-its-kind precision rocket powered touchdown inside Gale Crater.
“This was among the most accurate interplanetary injections ever,” said Louis D’Amario of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. He is the mission design and navigation manager for the Mars Science Laboratory.
Video Caption: View from inside the Pad 41 Security Fence at Cape Canaveral. Shot by a Canon 7D still camera during the launch of the Atlas V rocket carrying the MSL Curiosity rover to Mars. Thanks to a sound trigger my camera started firing at three frames per second from just after main engine ignition up until the exhaust plume finally envelops the camera and deadens all sound around it. The frames have been slowed down quite a bit for dramatic effect. Enjoy seeing what it is like for us media personnel who set out our remote cameras for launches at Kennedy Space Center and Cape Canaveral, Florida. Credit: Chase Clark/shuttlephotos.com
As of midday Friday, Dec. 2, the spacecraft had already traveled 10.8 million miles (17.3 million kilometers) and is moving at 7,500 mph (12,000 kilometers per hour) relative to Earth and at 73,800 mph (118,700 kilometers per hour) relative to the sun.
An interesting fact is that engineers deliberately planned the spacecraft’s initial trajectory to miss Mars by about 35,000 miles (56,400 kilometers) so that the Centaur upper stage does not hit Mars by accident. Both Centaur and Curiosity are currently following the same trajectory through the vast void of space and the actual trajectory puts them on course to miss Mars by about 38,000 miles (61,200 kilometers).
The Centaur has not been thoroughly cleaned of earthly microbes in the same way as Curiosity – and therefore cannot be permitted to impact the Martian surface and potentially contaminate the very studies Curiosity seeks to carry out in searching for the “Signs of Life”.
For the 8.5 month voyage to Mars, Curiosity and the rocket powered descent stage are tucked inside an aeroshell and are attached to the huge solar powered cruise stage.
The cruise stage is rotating at 2.05 rounds per minutes and is continuously generating electric power – currently about 800 watts – from the gleaming solar arrays. It also houses eight miniature hydrazine fueled thrusters. The propellant is stored inside titanium tanks.
The historic voyage of the largest and most sophisticated Martian rover ever built by humans seeks to determine if Mars ever offered conditions favorable for the genesis of microbial life.
Curiosity is packed to the gills with 10 state of the art science instruments that are seeking to detect the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.
The car sized robot is equipped with a drill and scoop at the end of its 7 ft long robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into two distinct analytical laboratory instruments inside the rover.
It may not have noticed anything different as it continued its high-speed trek through interplanetary space, but today New Horizons passed a new milestone: it is now (and will be for quite some time) the closest spacecraft ever to Pluto!
This breaks the previous record held by Voyager 1, which came within 983 million miles (1.58 billion km) of the dwarf planet on January 29, 1986.
New Horizons has been traveling through the solar system since its launch on January 19, 2006 and is now speeding toward Pluto at around 34,500 mph (55,500 km/hr). It has thus far traveled for 2,143 days and is just over halfway to the distant icy world.
“Although we’re still a long way — 1.5 billion kilometers from Pluto — we’re now in new territory as the closest any spacecraft has ever gotten to Pluto, and getting closer every day by over a million kilometers.”
– Alan Stern, New Horizons Principal Investigator
A gravity boost obtained by a close pass of Jupiter in 2007 gave the spacecraft the extra speed needed to make it to Pluto by 2015. (Without that, it wouldn’t have been reaching Pluto until 2036!)
Achievements like this are wonderful indicators that New Horizons is alive and well and that its historic goal is getting increasingly closer every day.
“We’ve come a long way across the solar system,” said Glen Fountain, New Horizons project manager at the Johns Hopkins University Applied Physics Laboratory (APL). “When we launched it seemed like our 10-year journey would take forever, but those years have been passing us quickly. We’re almost six years in flight, and it’s just about three years until our encounter begins.”
See answers to some FAQs about Pluto
New Horizons will pass by Pluto and its moons on July 14, 2015, becoming the first spacecraft ever to visit the distant system. It will image Pluto’s surface in unprecedented detail, resolving features as small as 200 feet (60 meters) across.
New Horizons will not land or enter orbit around Pluto but instead quickly pass by and continue on into the Kuiper Belt, where even more distant frozen worlds await. The New Horizons team is currently investigating further exploration targets should its mission be extended.
It’s time to put on your 3-D glasses and go soaring all over the giant asteroid Vesta – thanks to the superlative efforts of Dawn’s international science team.
Now you can enjoy vivid ‘Vestan Vistas’ like you’ve never ever seen before in a vibrant 3 D video newly created by Dawn team member Ralf Jaumann, of the German Aerospace Center (DLR) in Berlin, Germany – see below.
To fully appreciate the rough and tumble of the totally foreign and matchless world that is Vesta, you’ll absolutely have to haul out your trusty red-cyan (or red-blue) 3 D anaglyph glasses.
Then hold on, as you glide along for a global gaze of mysteriously gorgeous equatorial groves ground out by a gargantuan gong, eons ago.
Along the way you’ll see an alien ‘Snowman’ and the remnants of the missing South Pole, including the impressive Rheasilvia impact basin – named after a Vestal virgin – and the massive mountain some 16 miles (25 kilometers) high, or more than twice the height of Mt. Everest.
Video Caption: This 3-D video incorporates images from the framing camera instrument aboard NASA’s Dawn spacecraft from July to August 2011. The images were obtained as Dawn approached Vesta and circled the giant asteroid during the mission’s survey orbit phase at an altitude of about 1,700 miles (2,700 kilometers). To view this video in 3-D use red-green, or red-blue, glasses (left eye: red; right eye: green/blue). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
“If you want to know what it’s like to explore a new world like Vesta, this new video gives everyone a chance to see it for themselves,” Jaumann said. “Scientists are poring over these images to learn more about how the craters, hills, grooves and troughs we see were created.”
NASA’s Dawn spacecraft is humanity’s first probe to investigate Vesta, the second most massive body in the main Asteroid Belt between Mars and Jupiter.
Video caption: 2 D rotation movie of Vesta. Compare the 2 D movie to the new 3 D movie. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.
Indeed Dawn was just honored by Popular Science magazine and recognized as one of three NASA Planetary Science missions to earn a ‘Best of What’s New in 2011’ for innovation in the aviation and space category – along with the Curiosity Mars Science Laboratory (MSL) and MESSENGER Mercury orbiter.
The images in the 3 D video were snapped between July and August 2011 as Dawn completed the final approach to Vesta, achieved orbit in July 2011 and circled overhead during the mission’s initial survey orbit phase at an altitude of about 1,700 miles (2,700 kilometers) in August.
How was the 3 D movie created?
“The Dawn team consists of a bunch of talented people. One of those talented people is Ralf Jaumann, Dawn co-Investigator from the DLR in Berlin,” Prof. Chris Russell, Dawn Principal Investigator, of UCLA, told Universe Today.
“Jaumann and the team behind him have stitched together the mosaics we see and they have made shape models of the surface. They are also skilled communicators and have been heroes in getting the Dawn Image of the Day together. I owe them much thanks and recognition for their efforts.”
“They wanted to make and release to the public an anaglyph of the rotating Vesta to share with everyone the virtual thrill of flying over this alien world.”
“I hope everyone who follows the progress of Dawn will enjoy this movie as much as I do.”
“It is just amazing to an old-time space explorer as myself that we can now make planetary exploration so accessible to people all over our globe in their own homes and so soon after we have received the images,” Russell told me.
Dawn is now spiraling down to her lowest mapping orbit known as LAMO (Low Altitude Mapping Orbit), barely 130 miles (210 kilometers) above Vesta’s surface.
“Dawn remains on course and on schedule to begin its scientific observations in LAMO on December 12,” says Dr. Marc Rayman, Dawn’s Chief Engineer from the Jet Propulsion Lab (JPL), Pasadena, Calif.
“The focus of LAMO investigations will be on making a census of the atomic constituents with its gamma ray and neutron sensors and on mapping the gravity field in order to determine the interior structure of this protoplanet.”
“Today, Dawn is at about 245 km altitude,” Rayman told Universe Today.
The 3 D video is narrated by Carol Raymond, Dawn’s deputy principal investigator at JPL.
“Dawn’s data thus far have revealed the rugged topography and complex textures of the surface of Vesta, as can be seen in this video”.
“Soon, we’ll add other pieces of the puzzle such as the chemical composition, interior structure, and geologic age to be able to write the history of this remnant protoplanet and its place in the early solar system.”
Read continuing features about Dawn by Ken Kremer starting here:
A trio of NASA’s Planetary Science mission’s – Mars Science Laboratory (MSL), Dawn and MESSENGER – has been honored by Popular Science magazine and selected as ‘Best of What’s New’ in innovation in 2011 in the aviation and space category.
The Curiosity Mars Science Laboratory was just launched to the Red Planet on Saturday, Nov. 26 and will search for signs of life while traversing around layered terrain at Gale Crater. Dawn just arrived in orbit around Asteroid Vesta in July 2011. MESSENGER achieved orbit around Planet Mercury in March 2011.
Several of the top mission scientists and engineers provided exclusive comments about the Popular Science recognitions to Universe Today – below.
“Of course we are all very pleased by this selection,” Prof. Chris Russell, Dawn Principal Investigator, of UCLA, told Universe Today.
Dawn is the first mission ever to specifically investigate the main Asteroid Belt between Mars and Jupiter and will orbit both Vesta and Ceres – a feat enabled solely thanks to the revolutionary ion propulsion system.
“At the same time I must admit we are also not humble about it. Dawn is truly an amazing mission. A low cost mission, using NASA’s advanced technology to enormous scientific advantage. It is really, really a great mission,” Russell told me.
Vesta is the second most massive asteroid and Dawn’s discoveries of a surprisingly dichotomous and battered world has vastly exceeded the team’s expectations.
“Dawn is NASA at its best: ambitious, exciting, innovative, and productive,” Dr. Marc Rayman, Dawn’s Chief Engineer from the Jet Propulsion Lab (JPL), Pasadena, Calif., told Universe Today.
“This interplanetary spaceship is exploring uncharted worlds. I’m delighted Popular Science recognizes what a marvelous undertaking this is.”
JPL manages both Dawn and Mars Science Laboratory for NASA’s Science Mission Directorate in Washington, D.C.
Dawn is an international science mission. The partners include the German Aerospace Center (DLR), the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute.
“Very cool!”, John Grotzinger, the Mars Science Laboratory Project Scientist of the California Institute of Technology, told Universe Today.
“MSL packs the most bang for the buck yet sent to Mars.”
Curiosity is using an unprecedented precision landing system to touch down inside the 154 km (96 miile) wide Gale Crater on Aug. 6, 2012. The crater exhibits exposures of phyllosilicates and other minerals that may have preserved evidence of ancient or extant Martian life and is dominated by a towering mountain.
“10 instruments all aimed at a mountain higher than any in the lower 48 states, whose stratigraphic layering records the major breakpoints in the history of Mars’ environments over likely hundreds of millions of years, including those that may have been habitable for life.”
“It’s like a trip down the Grand Canyon 150 years ago, with the same sense of adventure, but with a lot of high tech equipment,” Grotzinger told me.
MSL also has an international team of over 250 science investigators and instruments spread across the US, Europe and Russia.
MESSENGER is the first probe to orbit Mercury and the one year primary mission was recently extended by NASA.
Sean Solomon, of the Carnegie Institution of Washington, leads the MESSENGER mission as principal investigator. The Johns Hopkins University Applied Physics Laboratory built and operates the MESSENGER spacecraft for NASA.
“Planetary has 3 missions there… Dawn, MESSENGER, and MSL,” Jim Green proudly said to Universe Today regarding the Popular Science magazine awards. Green is the director, Planetary Science Division, NASA Headquarters, Washington
“Three out of 10 [awards] is a tremendous recognition of the fact that each one of our planetary missions goes to a different environment and takes on new and unique measurements providing us new discoveries and constantly changes how we view nature, ourselves, and our place in the universe.”
Read more about the Popular Science citations and awards here
.
Read continuing features about Curiosity, Dawn and MESSENGER by Ken Kremer starting here:
Launch video provided courtesy of United Launch Alliance
CAPE CANAVERAL, Fla – It is a mission years in the making. However, it would not be possible without the hard work of an army’s worth of engineers – and the systems that they built. How many different systems and engines are required to get the Mars Science Laboratory (MSL) rover named Curiosity to the surface of the Red Planet? The answer might surprise you.
Including the two engines that are part of the Atlas V 541 launch vehicle, it will take 50 different engines and thrusters in total to work perfectly to successfully deliver Curiosity to the dusty plains of Mars.
Starting with the launch vehicle itself, there are six separate engines that power the six-wheeled rover, safely ensconced in its fairing, out of Earth’s gravity well. For the first leg of the journey four powerful Solid Rocket Boosters (SRBs) provided by Aerojet (each of these provides 400,000 lbs of thrust) will launch the rover out of Earth’s atmosphere.
The United Launch Alliance (ULA) Atlas launch vehicle has two rocket engines that provide the remaining amount of thrust required to get MSL to orbit and send the rover on its way to Mars. The first is the Russian-built RD-180 engine (whose thrust is split between two engine bells) the second is the Centaur second stage. There are four Aerojet solid rocket motors that help the booster and Centaur upper stage to separate.
The Centaur’s trajectory is controlled by both thrust vector control of the main engine as well as a Reaction Control System or RCS comprised of liquid hydrazine propulsion systems (there are twelve roll control thrusters on the Centaur upper stage).
MSL’s cruise stage separates entirely from the Centaur upper stage and is on the long road to the Red Planet. The cruise stage has eight one-pound-thrust hydrazine thrusters that are used for trajectory maneuvers for the nine-month journey to Mars. These are used for minor corrections to keep the spacecraft on the correct course.
Curiosity’s first physical encounter with the Martian environment is referred to as Entry, Descent and Landing (EDL) – more commonly known as “six minutes of terror” – the point when mission control, back on Earth, loses contact with the spacecraft as it enters the Martian atmosphere.
Video courtesy of Lockheed Martin
Even though Mars only has roughly one percent of Earth’s atmosphere, the friction of the atmosphere caused by a spacecraft impacting it at 13,200 miles per hour (about 5,900 meters per second) – is enough to melt Curiosity if it were exposed to these extremes. The heat shield, located at the base of the cruise stage, prevents this from happening.
The heat shield, provided by Lockheed-Martin, on MSL’s cruise stage is 14.8 feet (4.5 meters) in diameter. By comparison, the heat shields that were used on the Apollo manned missions to the Moon were 13 feet (4 meters) in diameter and the ones that allowed the Mars Exploration Rovers Spirit and Opportunity to safely reach the surface of Mars were 8.7 feet (2.65 meters) in diameter.
[/caption]
At this point in the mission eight engines, each providing 68 pounds of thrust come into play. These engines provide all of the trajectory control during EDL – meaning they will fire almost continuously.
Shortly thereafter – BOOM – the parachute deploy. Then the heat shield is ejected. After the parachute slow the spacecraft down to a sufficient degree, both they and the back aeroshell depart leaving just the rover and its jet pack.
During the landing phase the “SkyCrane” comes alive with eight powerful hydrazine engines, each of which give Curiosity 800 pounds of thrust. Aerojet’s Redmond Site Executive, Roger Myers, talked a bit about this segment of the landing, considered by many to be the most dramatic method of getting a vehicle to the surface of Mars.
“Because of the control requirements for the SkyCrane these engines had to be very throttleable,” Myers said. “Keeping the SkyCrane level is a must, you must have very fine control of those engines to ensure stability.”
If all has gone well up to this point, the Curiosity rover will be lowered the remaining distance to the ground via cables. Once contact with the Martian surface is detected, the cables are cut, the SkyCrane’s engines throttle up and the jet pack flies off to conduct a controlled crash (approximately a mile or so away from where Curiosity is located).
Every powered landing on Mars conducted in the U.S. unmanned space program has utilized Aerojet’s thrusters. The reliability of these small engines was recently proven – in a mission that is now almost three-and-a-half decades old.
Voyager recently conducted a course correction some 34 years after it was launched – highlighting the capability of these thrusters to perform well after launch.
“Our engines have allowed missions to fly to every planet in the solar system and we are currently on our way to Mercury and Pluto,” Myers said. “When NASA explores the solar system – Aerojet provides the propulsion components.”
NASA’s Curiosity Mars Science Lab (MSL) rover is speeding away from Earth on a 352-million-mile (567-million-kilometer) journey to Mars following a gorgeous liftoff from Cape Canaveral Air Force Station, Florida aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. EST on Nov. 26.
Enjoy the gallery of Curiosity launch images collected here from the Universe Today team and local photographers as well as NASA and United Launch Alliance.
The historic voyage of the largest and most sophisticated Martian rover ever built by humans seeks to determine if Mars ever offered conditions favorable for the genesis of microbial life.
“We are very excited about sending the world’s most advanced scientific laboratory to Mars,” NASA Administrator Charles Bolden said. “MSL will tell us critical things we need to know about Mars, and while it advances science, we’ll be working on the capabilities for a human mission to the Red Planet and to other destinations where we’ve never been.”
The mission will pioneer a first of its kind precision landing technology and a sky- crane touchdown to deliver the car sized rover to the foothills of a towering and layered mountain inside Gale Crater on Aug. 6, 2012.
Curiosity is packed to the gills with 10 state of the art science instruments that are seeking the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.
The robot is equipped with a drill and scoop at the end of its robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover.
The 1 ton Curiosity rover sports a science payload that’s 15 times heavier than NASA’s previous set of rovers – Spirit and Opportunity – which landed on Mars in 2004. Some of the tools are the first of their kind on Mars, such as a laser-firing instrument for checking the elemental composition of rocks from a distance, and an X-ray diffraction instrument for definitive identification of minerals in powdered samples.
Launch Video – Credit: Matthew Travis/Spacearium
Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
Atop a towering inferno of sparkling flames and billowing ash, Humankinds millennial long quest to ascertain “Are We Alone ?” soared skywards today (Nov. 26) with a sophisticated spaceship named ‘Curiosity’ – NASA’s newest, biggest and most up to date robotic surveyor that’s specifically tasked to hunt for the ‘Ingredients of Life’ on Mars, the most ‘Earth-like’ planet in our Solar System.
Curiosity’s noble goal is to meticulously gather and sift through samples of Martian soil and rocks in pursuit of the tell-tale signatures of life in the form of organic molecules – the carbon based building blocks of life as we know it – as well as clays and sulfate minerals that may preserve evidence of habitats and environments that could support the genesis of Martian microbial life forms, past or present.
The Atlas V booster carrying Curiosity to the Red Planet vaulted off the launch pad on 2 million pounds of thrust and put on a spectacular sky show for the throngs of spectators who journeyed to the Kennedy Space Center from across the globe, crowded around the Florida Space Coast’s beaches, waterways and roadways and came to witness firsthand the liftoff of the $2.5 Billion Curiosity Mars Science Lab (MSL) rover.
The car sized Curiosity rover is the most ambitious, important and far reaching science probe ever sent to the Red Planet – and the likes of which we have never seen or attempted before.
“Science fiction is now science fact,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the post launch briefing for reporters at KSC. “We’re flying to Mars. We’ll get it on the ground… and see what we find.”
“’Ecstatic’ – in a word, NASA is Ecstatic. We have started a new Era in the Exploration of Mars with this mission – technologically and scientifically. MSL is enormous, the equivalent of 3 missions frankly.”
“We’re exactly where we want to be, moving fast and cruising to Mars.”
NASA is utilizing an unprecedented, rocket powered precision descent system to guide Curiosity to a pinpoint touch down inside the Gale Crater landing site, with all six wheels deployed.
Gale Crater is 154 km (96 mi) wide. It is dominated by layered terrain and an enormous mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of ancient or extant Martian life.
“I hope we have more work than the scientists can actually handle. I expect them all to be overrun with data that they’ve never seen before.”
“The first images from the bottom of Gale Crater should be stunning. The public will see vistas we’ve never seen before. It will be like sitting at the bottom of the Grand Canyon,” said McCuistion.
The 197 ft tall Atlas booster’s powerful liquid and solid fueled engines ignited precisely on time with a flash and thunderous roar that grew more intense as the expanding plume of smoke and fire trailed behind the rapidly ascending rockets tail.
The Atlas rockets first stage is comprised of twin Russian built RD-180 liquid fueled engines and four US built solid rocket motors.
The engines powered the accelerating climb to space and propelled the booster away from the US East Coast as it majestically arced over in between broken layers of clouds. The four solids jettisoned 1 minute and 55 seconds later. The liquid fueled core continued firing until its propellants were expended and dropped away at T plus four and one half minutes.
The hydrogen fueled Centaur second stage successfully fired twice and placed the probe on an Earth escape trajectory at 22,500 MPH.
The Atlas V initially lofted the spacecraft into Earth orbit and then, with a second burst from the Centaur, pushed it out of Earth orbit into a 352-million-mile (567-million-kilometer) journey to Mars.
MSL spacecraft separation of the solar powered cruise stage stack from the Centaur upper stage occurred at T plus 44 minutes and was beautifully captured on a live NASA TV streaming video feed.
“Our spacecraft is in excellent health and it’s on its way to Mars,” said Pete Theisinger, Mars Science Laboratory Project Manager from the Jet Propulsion Laboratory in California at the briefing. “I want to thank the launch team, United Launch Alliance, NASA’s Launch Services Program and NASA’s Kennedy Space Center for their help getting MSL into space.”
“The launch vehicle has given us a first rate injection into our trajectory and we’re in cruise mode. The spacecraft is in communication, thermally stable and power positive.”
“I’m very happy.”
“Our first trajectory correction maneuver will be in about two weeks,” Theisinger added.
“We’ll do instrument checkouts in the next several weeks and continue with thorough preparations for the landing on Mars and operations on the surface.”
Curiosity is a 900 kg (2000 pound) behemoth. She measures 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as Spirit and Opportunity, NASA’s prior set of twin Martian robots.
NASA was only given enough money to build 1 rover this time.
“We are ready to go for landing on the surface of Mars, and we couldn’t be happier,” said John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology at the briefing. “I think this mission will be a great one. It is an important next step in NASA’s overall goal to address the issue of life in the universe.”
Curiosity is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times more than its predecessor’s science payloads.
A drill and scoop located at the end of the robotic arm will gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover. A laser will zap rocks to determine elemental composition.
“We are not a life detection mission.”
“It is important to distinguish that as an intermediate mission between the Mars Exploration Rovers, which was the search for water, and future missions, which may undertake life detection.”
“Our mission is about looking for ancient habitable environments – a time on Mars which is very different from the conditions on Mars today.”
“The promise of Mars Science Laboratory, assuming that all things behave nominally, is we can deliver to you a history of formerly, potentially habitable environments on Mars,” Grotzinger said at the briefing. “But the expectation that we’re going to find organic carbon, that’s the hope of Mars Science Laboratory. It’s a long shot, but we’re going to try.”
Today’s liftoff was the culmination of about 10 years of efforts by the more than 250 science team members and the diligent work of thousands more researchers, engineers and technicians spread around numerous locations across the United States and NASA’s international partners including Canada, Germany, Russia, Spain and France.
“Scientists chose the site they wanted to go to for the first time in history, because of the precision engineering landing system. We are going to the very best place we could find, exactly where we want to go.”
“I can’t wait to get on the ground,” said Grotzinger.
Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
NASA’s Curiosity Mars rover, the most technologically complex and scientifically capable robot built by humans to explore the surface of another celestial body, is poised to liftoff on Nov. 26 and will enable a quantum leap in mankind’s pursuit of Martian microbes and signatures of life beyond Earth.
“The Mars Science Lab and the rover Curiosity is ‘locked and loaded’, ready for final countdown on Saturday’s launch to Mars,” said Colleen Hartman, assistant associate administrator in NASA’s Science Mission Directorate, at a pre-launch media briefing at the Kennedy Space Center (KSC).
The $2.5 Billion robotic explorer remains on track for an on time liftoff aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. on Nov. 26 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.
NASA managers and spacecraft contractors gave the “Go-Ahead” for proceeding towards Saturday’s launch at the Launch Readiness Review on Wednesday, Nov. 23. The next milestone is to move the Atlas V rocket 1800 ft. from its preparation and assembly gantry inside the Vertical Integration Facility at the Cape.
“We plan on rolling the vehicle out of the Vertical Integration Facility on Friday morning [Nov. 25] ,” said NASA Launch Director Omar Baez at the briefing. “We should be on the way to the pad by 8 a.m.”
The launch window on Nov. 26 is open until 11:14 a.m. and the current weather prognosis is favorable with chances rated at 70 percent “GO”.
“The final launch rehearsal – using the real vehicle ! – went perfectly, said NASA Mars manager Rob Manning, in an exclusive interview with Universe Today. Manning is the Curiosity Chief Engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.
“I was happy.”
“The folks at KSCs Payload Handling Facility and at JPL’s cruise mission support area (CMSA) – normally a boisterous bunch – worked quietly and professionally thru to T-4 minutes and a simulated fake hold followed by a restart and a recycle (shut down) due to a sail boat floating too close to the range,” Manning told me.
Readers may recall that NASA’s JUNO Jupiter orbiter launch in August was delayed by an hour when an errant boat sailed into the Atlantic Ocean exclusion zone.
“This rover, Curiosity rover, is really a rover on steroids. It’s an order of magnitude more capable than anything we have ever launched to any planet in the solar system,” said Hartman.
“It will go longer, it will discover more than we can possibly imagine.”
Curiosity is locked atop the powerful Alliance Atlas V rocket that will propel the 1 ton behemoth on an eight and one half month interplanetary cruise from the alligator filled swamps of the Florida Space Coast to a layered mountain inside Gale Crater on Mars where liquid water once flowed and Martian microbes may once have thrived.
Curiosity is loaded inside the largest aeroshell ever built and that will shield her from the extreme temperatures and intense buffeting friction she’ll suffer while plummeting into the Martian atmosphere at 13,000 MPH (5,900 m/s) upon arrival at the Red Planet in August 2012.
The Curiosity Mars Science Lab (MSL) rover is the most ambitious mission ever sent to Mars and is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times as much as its predecessor’s science payloads.
Curiosity measures 3 meters (10 ft) in length and weighs 900 kg (2000 pounds), nearly twice the size and five times as heavy as NASA’s prior set of twin robogirls – Spirit and Opportunity.
The science team selected Gale crater as the landing site because it exhibits exposures of clays and hydrated sulfate minerals that formed in the presence of liquid water billions of years ago, indicating a wet history on ancient Mars that could potentially support the genesis of microbial life forms. Water is an essential prerequisite for life as we know it.
Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor.
The car sized rover is being targeted with a first of its kind precision rocket powered descent system to touchdown inside a landing ellipse some 20 by 25 kilometers (12.4 miles by 15.5 miles) wide and astride the towering mountain at a location in the northern region of Gale.
Curiosity’s goal is to search the crater floor and nearby mountain – half the height of Mt. Everest – for the ingredients of life, including water and the organic molecules that we are all composed of.
The robot will deploy its 7 foot long arm to collect soil and rock samples to assess their composition and determine if any organic materials are present – organics have not previously been detected on Mars.
Curiosity will also vaporize rocks with a laser to determine which elements are present, look for subsurface water in the form of hydrogen, and assess the weather and radiation environments
“After the rocket powered descent, the Sky-Crane maneuver deploys the rover and we land on the mobility system, said Pete Theisinger, MSL project manager from the Jet Propulsion Laboratory in Pasadena, Calif., at the briefing.
The rover will rover about 20 kilometers in the first year. Curiosity has no life limiting constraints. The longevity depends on the health of the rovers components and instruments.
“We’ve had our normal challenges and hiccups that we have in these kinds of major operations, but things have gone extremely smoothly and we’re fully prepared to go on Saturday morning. We hope that the weather cooperates, said Theisinger
Missions to Mars are exceedingly difficult and have been a death trap for many orbiters and landers.
“Mars really is the Bermuda Triangle of the solar system,” said Hartman. “It’s the ‘death planet,’ and the United States of America is the only nation in the world that has ever landed and driven robotic explorers on the surface of Mars. And now we’re set to do it again.”
Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
In recent years, it has become surprisingly apparent that, contrary to previous belief, Earth is not the only place in the solar system with liquid water. Jupiter’s moon Europa, and possibly others, are now thought to have a deep ocean below the icy crust and even subsurface lakes within the crust itself, between the ocean below and the surface. Saturn’s moon Titan may also have a subsurface ocean of ammonia-enriched water in addition to its surface lakes and seas of liquid methane. Then of course there is another Saturnian moon, Enceladus, which seems to not only have liquid water below its surface, but huge geysers of water vapour and ice particles erupting from long fissures at its south pole, which have been sampled directly by the Cassini spacecraft. Even some asteroids may have liquid water layers beneath their surfaces. There is also still a chance that Mars might have subsurface aquifers.
But now there is another contender which at first thought might seem to be the most unlikely place to find water – Pluto.
Inhabiting the bitterly cold, lonely outer reaches of the solar system, this dwarf planet would hardly seem to be a good place to look for liquid water, but new research is indicating that, like the other moons already mentioned, it may yet surprise us. It is now being suggested that a subsurface ocean is not only possible, but likely.
The New Horizons spacecraft is scheduled to fly by Pluto in 2015, and it may be able to confirm the existence of the ocean if it is actually there. As it is understood right now, Pluto has a thin shell of nitrogen ice covering a thicker shell of water ice. But is there a layer of liquid water below that? The way for New Horizons to help to determine that is to study the surface features and shape of Pluto as it passes. If there is a noticeable bulge toward the equator, then that means that any primordial ocean or liquid layer probably froze a long time ago, since a liquid layer would tend to cause the surface ice to flow, reducing any bulge. This is based on the fact that a spherical body, as it rotates, will push material toward the equator by angular momentum. If there is no bulge, then any liquid layer is probably still liquid today.
The surface itself can also provide clues about what lies beneath. If there are large fractures, as there are on Europa and Enceladus, their characteristics can be an indication of whether there is an ocean down below. The fractures are caused by surface stresses; tensional stresses would result from icy water beneath the outer ice shell while compressional stresses would indicate a solid layer instead. The long fractures on Europa are particularly reminiscent of the cracked ice floes in Antarctica on Earth where an ice layer covers the sea water beneath it. If geysers similar to those on Enceladus were to be seen on Pluto, that would also of course be good evidence for an ocean.
There is also, inevitably, the question of life. If Pluto’s rocky interior contains radioactive isotopes such as potassium, as seems likely, they could provide enough heat to maintain an ocean. “I think there is a good chance that Pluto has enough potassium to maintain an ocean,” said planetary scientist Francis Nimmo from the University of California at Santa Cruz, who is involved with the new studies. And if you have liquid water and heat… Pluto, however, is thought to lack organics, which would be necessary as a starting point for life.
A Plutonian ocean? Who would have ever thought? When New Horizons finally reaches Pluto in 2015, we should hopefully have a better idea one way or the other regarding this intriguing possibility.
Curiosity, NASA’s next Mars rover is on target to launch this Saturday, Nov 26 from the Florida Space Coast in less than four days at 10:02 a.m. NASA is utilizing a first-of- its- kind pinpoint landing system for targeting Curiosity to touchdown inside Gale Crater – one of the most scientifically interesting locations on the Red Planet because it exhibits exposures of clay minerals that formed in the presence of neutral liquid water that could be conducive to the genesis of life.
For a dramatic glimpse of the ragged and richly varied terrain of the 154 kilometer (96 mile) wide Gale Crater check out the glorious 3 D stereo image above. Another 3 D image, below, shows Curiosity being tested at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena. Calif., earlier this year.
“From NASA’s prior missions we’ve learned that Mars is a dynamic planet,” said Michael Meyer, lead scientist for NASA’s Mars exploration program, at a pre-launch briefing for reporters at the Kennedy Space Center.
“We’ve learned that it has a history where it was warm and wet at the same time that life started here on Earth. And we know it’s undergone a massive transition from that more benign time to what it is today.”
“Mars is worth exploring because of the potential for its having been habitable, at least in its past,” said Meyer.
Gale crater is dominated by a layered mountain rising some 5 km (3 mi) above the crater floor, readily apparent in the images above and below.
“Liquid water was not short term in the past on ancient Mars. It has a role in carving out channels and depositing sediments in the past within craters that were carried by the water,” said Bethany Ehlmann of NASA’s Jet Propulsion Laboratory in Pasadena, Calif, at the briefing.
“Clays and carbonates are minerals that form in the presence of liquid water. The presence of clays in particular indicate the long-term presence of water interacting with the rocks and causing alteration of minerals. Clays also have water in their chemical structure as hydrates.”
NASA is targeting a landing ellipse – 20 by 25 kilometers (12.4 miles by 15.5 miles) – located in the northern portion of Gale and visible in the foreground.
The landing site was selected from some 60 candidates by the science team and NASA because it features an alluvial fan likely formed by water-carried sediments containing the clay minerals and is highlighted in another image below.
The lower layers of the nearby mountain — within driving distance for Curiosity — contain clay minerals and sulfates indicating a wet history on ancient Mars.
“Gale Crater is about as big as the Los Angeles basin,” said MSL project scientist John Grotzinger of JPL and Caltech, at the briefing. The mountain in the middle is as high as Mt Whitney, the tallest mountain in the lower 48 US states.”
“Over the course of the mission me might be about to go to the top of the nearby mound. At the base of the mound we see strata that are composed of clays.
“In one location, we can drive the rover through all these successive different environments and sample these different periods in Martian history,” explained Grotzinger.
All systems are “GO” at this time and the weather outlook currently looks favorable for an on time liftoff of Curiosity atop an Atlas V rocket from Space Launch Complex 41.
Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here: