Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning

Last View of Curiosity Mars Science Laboratory Rover before folding up for Martian Journey. The author visited with Curiosity inside the clean room at the Kennedy Space Center in the last day before she was folded up for the final time prior to encapsulation in the aeroshell for the long interplanetary journey to Mars. Credit: Ken Kremer. Meet Chief Engineer Rob Manning and other members of the Curiosity Mars Rover Engineering Team at NASA’s Jet Propulsion Laboratory in the video below titled - The Challenges of Getting to Mars. Read Rob Manning’s special greeting about Curiosity to readers of Universe Today - below

[/caption]

“We are ready and so is Curiosity !”

    • Says Rob Manning, Curiosity Chief Engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif – in an exclusive interview with Universe Today for all fans of Curiosity and the unprecedented voyage of Science and Discovery about to take flight to Mars on November 26. Manning was also the Chief Engineer for the Entry, Descent and Landing (EDL) of NASA’s phenomenally successful Spirit, Opportunity and Phoenix Mars robotic explorers.

Read Rob Manning’s special greeting about Curiosity to readers of Universe Today below.

Meet Rob and other JPL Mars engineers in the cool Video describing the ‘Challanges of Getting to Mars’ – below


Curiosity is NASA’s next Mars rover and her MMRTG nuclear power source has been installed at the launch pad through special access panels in the Atlas booster payload fairing and protective aeroshell on Nov. 17.

The huge 1-ton robot is now due to blastoff for the Red Planet on Saturday, November 26 at 10: 02 a.m. EST from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida. The launch window is open for one hour and 43 minutes.

Liftoff was postponed by one day to replace a battery in the on board flight termination system required in case the rocket were to veer off course.

Here is the very latest Curiosty update status from JPL’s Rob Manning as of Sunday evening – Nov. 20

“All seems well here at JPL in Pasadena,” Manning told me.

“We are having our last rehearsal at 1:30 a.m. on Monday, Nov 21.

“Weird ! As of a few hours ago the last human hands (in gloves) closed out the hatch door on the entry aeroshell and the two large doors in the rocket fairing have been closed. What is weird about it is that finally finally she is powered up and alone.”

“She has never been this alone before. Ironically all eyes are still upon her. Our team is monitoring her vitals 24-7,” Manning explained.


“The Challenges of Getting to Mars’ – Video caption: Meet Curiosity Chief Engineer Rob Manning and more members of the Curiosity Mars Rover Engineering Team at NASA’s Jet Propulsion Laboratory explain the final assembly of Curiosity at the Kennedy Space Center and how Curiosity will land use the rocket assisted Sky Crane.

“By this time next week, Curiosity will be heading for the home she was meant for.”

“Soon she will feel the cold walls of deep space on her radiators. The x-band transmitter and receiver will have an broken view of the sky (with Earth but a shiny blue dot off to her left). The penetrating rays of the sun will push electrons out of the solar panels and keep her battery charged. (And perhaps a few solar flares will pass by, just to keep things interesting.)”

“Earth can be a rough place for a rover not designed for our planet. Worse are those of us who have poked and prodded, tested beyond spec and pushed in ways that can only be done on Earth.”

“Sometimes we over-do it and push near the breaking point. We are not perfect after all but we need to know that she will do what needs to be done for her very own survival. Well she seems to have survived us.”

“Of course Curiosity will never really be alone. We are right there with her every step of the way. She is us.”

Curiosity Mars Science Laboratory (MSL)- all elements assembled into flight configuration in the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida. The top portion is the cruise stage attached to the aeroshell (containing the compact car-sized rover) with the heat shield on the bottom. MMRTG power source was installed through hatch door at right.
Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: NASA/Glenn Benson

Atlas V rocket at Space Launch Complex 41 at Cape Canaveral, Florida. An Atlas V rocket similar to this one utilized in August 2011 for NASAS’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 26, 2011 from Florida. Credit: Ken Kremer

“I will be at JPL during launch,” said Manning.

The JPL team is also working day and night to insure that the do or die Mars Insertion burn fires as planned.

“Once the Deep Space Network acquires the signal, I want to be there to make sure that we did not fail her and that the transition from being the Atlas’s payload to interplanetary cruise is as painless as possible.”

“It will be a bit of a surprise if we did not have a bit of a surprise – but we are ready and so is Curiosity”

Curiosity and the Atlas V booster that will propel her to Mars will roll out to Launch Pad 41 at the Florida Space Coast on Friday morning, Nov. 24, the day after the Thanksgiving holiday.

NASA TV will carry the MSL launch live

After a 10 month interplanetary journey to Mars, Curiosity will plummet through the atmosphere and fire up the rocket powered descent stage and ‘Sky Crane’ to safely touchdown astride a layered mountain at the Gale Crater landing site in August 2012.

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

NASA’s Curiosity Set to Search for Signs of Martian Life

Curiosity at work firing a laser on Mars. This artist's concept depicts the rover Curiosity, of NASA's Mars Science Laboratory mission, as it uses its Chemistry and Camera (ChemCam) instrument to investigate the composition of a rock surface. ChemCam fires laser pulses at a target and views the resulting spark with a telescope and spectrometers to identify chemical elements. The laser is actually in an invisible infrared wavelength, but is shown here as visible red light for purposes of illustration. Credit: NASA

[/caption]

Nov 19 Update: MSL launch delayed 24 h to Nov. 26 – details later

In just 7 days, Earth’s most advanced robotic roving emissary will liftoff from Florida on a fantastic journey to the Red Planet and the search for extraterrestrial life will take a quantum leap forward. Scientists are thrilled that the noble endeavor of the rover Curiosity is finally at hand after seven years of painstaking work.

NASA’s Curiosity Mars Science Laboratory (MSL) rover is vastly more capable than any other roving vehicle ever sent to the surface of another celestial body. Mars is the most Earth-like planet in our Solar System and a prime target to investigate for the genesis of life beyond our home planet.

Curiosity is all buttoned up inside an aeroshell at a seaside launch pad atop an Atlas V rocket and final preparations are underway at the Florida Space Coast leading to a morning liftoff at 10:25 a.m. EST on Nov. 25, the day after the Thanksgiving holiday.

MSL is ready to go,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington, at a media briefing. “It’s a momentous occasion. We’re just thrilled that we’re at this point.”

“Curiosity is ‘Seeking the Signs of Life’, but is not a life detection mission. It is equipped with state-of-the-art science instruments.”

This oblique view of Gale Crater shows the landing site and the mound of layered rocks that NASA's Mars Science Laboratory will investigate. The landing site is in the smooth area in front of the mound. Image credit: NASA/JPL-Caltech/ASU/UA

“It’s not your father’s rover. It’s a 2000 pound machine that’s over 6 feet tall – truly a wonder of engineering,” McCuistion stated.

“Curiosity is the best of US imagination and US innovation. And we have partners from France, Canada, Germany, Russia and Spain.”

“Curiosity sits squarely in the middle of our two decade long strategic plan of Mars exploration and will bridge the gap scientifically and technically from the past decade to the next decade.”

Mars Science Laboratory builds upon the improved understanding about Mars gained from current and recent missions,” said McCuistion. “This mission advances technologies and science that will move us toward missions to return samples from and eventually send humans to Mars.”

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

The car sized rover is due to arrive at Mars in August 2012 and land inside Gale Crater near the base of a towering and layered Martian mountain, some 5 kilometers (3 miles) high. Gale Crater is 154 km (96 mi) in diameter.

The landing site was chosen because it offers multiple locations with different types of geologic environments that are potentially habitable and may have preserved evidence about the development of microbial life, if it ever formed.

Gale Crater is believed to contain clays and hydrated minerals that formed in liquid water eons ago and over billions of years in time. Water is an essential prerequisite for the genesis of life as we know it.

NASA's most advanced mobile robotic laboratory, the Mars Science Laboratory carrying the Curiosity rover, is set to launch atop an Atlas V rocket at 10:25 a.m. EST on Nov. 25 on a mission to examine one of the most intriguing areas on Mars at Gale crater. Credit: NASA

The one ton robot is a behemoth, measuring 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as NASA’s prior set of twin rovers – Spirit and Opportunity.

Curiosity is equipped with a powerful array of 10 science instruments weighing 15 times as much as its predecessor’s science payloads. The rover can search for the ingredients of life including water and the organic molecules that we are all made of.

Curiosity will embark on a minimum two year expedition across the craters highly varied terrain, collecting and analyzing rock and soil samples in a way that’s never been done before beyond Earth.

Eventually our emissary will approach the foothills and climb the Martian mountain in search of hitherto untouched minerals and habitable environments that could potentially have supported life’s genesis.

With each science mission, NASA seeks to take a leap forward in capability and technology to vastly enhance the science return – not just to repeat past missions. MSL is no exception.

Watch a dramatic action packed animation of the landing and exploration here:

Curiosity was designed at the start to be vastly more capable than any prior surface robotic explorer, said Ashwin Vasavada, Curiosity’s Deputy Project Scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif

“This is a Mars scientist’s dream machine.”

Therefore this mission uses new technologies to enable the landing of a heavier science payload and is inherently risky. The one ton weight is far too heavy to employ the air-bag cushioned touchdown system used for Spirit and Opportunity and will use a new landing method instead.

Curiosity will pioneer an unprecedented new precision landing technique as it dives through the Martian atmosphere named the “sky-crane”. In the final stages of touchdown, a rocket-powered descent stage will fire thusters to slow the descent and then lower the rover on a tether like a kind of sky-crane and then safely set Curiosity down onto the ground.

NASA has about three weeks to get Curiosity off the ground from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida before the planetary alignments change and the launch window to Mars closes for another 26 months.

“Preparations are on track for launching at our first opportunity,” said Pete Theisinger, MSL project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “If weather or other factors prevent launching then, we have more opportunities through Dec. 18.”

Mars Science Laboratory Briefing. Doug McCuistion, Mars program director, left, Ashwin Vasavada, MSL deputy project scientist, and Pete Theisinger, MSL project manager, share a laugh during a news briefing, Nov. 10, 2011, at NASA Headquarters in Washington. Curiosity, NASA's most advanced mobile robotic laboratory, will examine one of the most intriguing areas on Mars. The Mars Science Laboratory (MSL) mission is set for launch from Florida's Space Coast on Nov. 25 and is scheduled to land on the Red Planet in August 2012 where it will examine the Gale Crater during a nearly two-year prime mission. Credit: NASA/Paul E. Alers

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 25 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Book Review: Martian Summer

Martian Summer is an outsider's inside perspective of the Mars Phoenix Lander mission to the red planet's North Pole. Photo Credit: Pegasus Books

[/caption]
The Mars Phoenix Lander has long since gone quiet on the frigid, dusty plains of Mars. Its legacy however remains. It will go down as the first mission to land in the Martian Polar Regions, the first to be led primarily by a University.

The University of Arizona took the lead on the mission with Peter Smith being the Mars Phoenix lander’s Principle Investigator or “PI.” Andrew Kessler was brought onto the Phoenix team to help promote Phoenix to the public. It was a controversial decision.

The media, by-and-large tends to focus on accidents, explosions or other failures. Given that Phoenix accomplished its objectives with nary a wrinkle – it is not hard to understand why the media paid it little attention. One need only look at the lander’s cousin, the Mars Exploration Rover Opportunity – who has been largely forgotten by the press – despite the fact that it has been working on the red planet for the past seven years (even though it was only slated to last 90 days).

The Mars Phoenix Lander thundered off of Cape Canaveral Air Force Station's Space Launch Complex 17 in the summer of 2007. About nine months later - it landed on the surface of Mars. Image Credit: NASA/JPL

One of the things that no media outlet wants to see is one of their employees repeatedly make what are known as “fact errors.” These can be as large as gross misrepresentations, or in this case, as small as not knowing the correcting spelling or pronunciation of an individual’s name. In this case, it was someone well-known in “space” circles, Keith Cowing — not “Cowling” as the author repeatedly states – even in the book’s index. Kessler could have easily verified the correct spelling by going to NASAWatch.com or by picking up a copy of New Moon Rising. Apparently he did neither.

The importance of this is simple. If he got something this simple wrong, what about the larger topics the book discusses? The author was sure to mention that his work has appeared on The Discovery Channel and The New York Times. One would think such respectable media outlets would ensure journalists made sure their work was free of fact-errors, especially since a portion of the book is spent assailing the work of other journalists.

Phoenix became the first spacecraft to be imaged in the process of landing on another world. This picture clearly captures the lander, still in its aeroshell, under parachute and on its way to the ground. This picture was taken by the Mars Reconnaissance Orbiter's HiRISE camera. Photo Credit: NASA/JPL/University of Arizona

One might ask, “Why so harsh?” Simply put, Kessler has massive potential. His writing style is easy to read and is perfectly suited for the general public. Kessler is a great writer and makes a complex subject accessible to all. He also makes it interesting, adding personal reflections and witticisms that other authors don’t. But glaring errors has the reader wondering about the author’s veracity.

But in Martian Summer, Kessler does provide a behind-the-scenes glimpse of what was going on during his time with the Mars Phoenix Lander project. It highlights the difficulties involved with mastering numerous skills required to reach another world. More importantly, it opens the door to the sheer wonder of it all.

Mars Phoenix Lander's landing site at the Martian North Pole. The inset image was taken by MRO some time after the lander fell silent. Image Credit: NASA/JPL/University of Arizona

Martian Summer is published by Pegasus Books and it weighs in at 352 pages (with 16 of them filled with color images). It details how Phoenix rose up out of the ashes that was the Mars Polar Lander and would go on to discover what may be an ocean of ice under the Martian North Pole. Phoenix was the first spacecraft to be imaged as it landed on the surface of another world. In all, it was an amazing mission that was supposed to last for 90 Martian “sols” – but went on to work for 155 sols.

Kessler works to remind us of the magic of spaceflight and exploration in a manner we can all understand. If you want an accurate scientific description – you won’t find it here (Kessler says so himself in the Author’s Note). What you will find is a peek behind the curtain at what makes a mission to Mars work – in all of its quirky glory.

NASA is currently planning to launch the next mission to Mars, the Mars Science Laboratory or MSL, next week on Nov. 25 at 10:21 a.m. EDT. Image Credit: NASA/JPL

Shenzhou-8 lands after China’s 1st Space Docking propelling Ambitious Human Spaceflight Agenda

The re-entry capsule of the Shenzhou-8 spacecraft is found at a landing site located

[/caption]

China’s historic first docking mission in space ended in a complete success today (Nov. 17) following the safe landing of the unmanned Shenzhou-8 in Inner Mongolia. Today’s landing will robustly propel China’s space program forward and sets the stage for an ambitious agenda of human spaceflight missions in 2012 to the Tiangong-1 Space Lab and eventually to a hefty 100 ton Earth orbiting Space Station to be assembled by 2020.

Shenzhou-8 was launched to low Earth orbit on Nov. 1 atop a Long March 2F booster from the Jiuquan Satellite Launch Center in the Gobi Desert and successfully conducted China’s first ever rendezvous and docking mission in space with the nation’s Tiangong-1 Space Lab module on Nov. 3 while orbiting some 343 kilometers in altitude above Earth.

Gen. Chang Wanquan, the Commander in Chief of China’s human spaceflight program said, “The Shenzhou-8 capsule has safely returned to the main landing site at Inner Mongolia and the Tiangong-1/Shenzhou-8 rendezvous and docking mission has achieved full success!”

The re-entry capsule of Shenzhou-8 spacecraft after landing in Inner Mongolia on Nov. 17,2011.

Chang leads the China Manned Space Engineering (CMSE) Project, the nation’s human spaceflight program. He is the Commanding Officer of the Tiangong-1/Shenzhou-8 Rendezvous and Docking Mission Headquarters, and director of the PLA (Peoples Liberation Army) General Armaments Department. The People Liberation Army directs China’s human spaceflight program.

Shenzhou-8 landed today at 7:30 pm. Beijing time in central Asia after flying nearly 17 days in earth orbit. Recovery crews reached the capsule within a few minutes of the parachute assisted touchdown.

Most of the flight was spent linked up to the Tiangong-1 Space Lab module – China’s first prototype space station.

Graphic shows the procedure of rendezvous and docking of Shenzhou-8 spacecraft and Tiangong-1 space lab module. Credit: Xinhua/Lu Zhe

After 12 days of joint orbital operations, Shenzhou-8 carried out a 2nd docking test to enable Chinese space engineers and mission controllers to gain further practice and experience in mastering the complex techniques involved in rendezvous and docking in space.

Shenzhou-8 disengaged from Tiangong-1 on Nov. 14, backed off to a distance of 140 meters (460 ft) and then carried out a re-docking about 30 minutes later. Controllers at the Beijing Aerospace Control Center monitored systems as Shenzhou-8 automatically re-approached Tiangong-1 for the second link up.

The main purpose of the second docking test was to confirm the performance of the rendezvous and docking procedures and hardware on Shenzhou-8 and Tiangong-1 under conditions of the glare of sunlight which are different compared to nighttime conditions of the first docking attempt.

Although the Shenzhou-8 flew unmanned during this flight, the capsule was fully human rated – even food and water are stored on board to simulate the presence of a human crew.

Today’s success sets the stage for possibly two Chinese manned missions to follow in 2012, namely Shenzhou-9 and Shenzhou-10.

Each Shenzhou can carry two or three astronauts. One of the missions is highly likely to include the first female Chinese astronaut.

China's unmanned spacecraft Shenzhou-8 landed by parachute in north China Thursday evening, Nov. 17

Read Ken’s features about Shenzhou-8 & Tiangong-1
China completes 2nd Docking to Space Lab and sets Path to Manned flights in 2012
China Technology Surges Forward with Spectacular First Docking in Space
China launches Shenzhou-8 bound for Historic 1st Docking in Space
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad

Dramatic Soyuz Docking Averts Potential Station Abandonment

View of ISS and Earth after successful docking of Soyuz TMA-22 on Nov 16 at 12:24 a.m. with crew of Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin and NASA astronaut Dan Burbank Credit: NASA TV

[/caption]

A Russian Soyuz capsule carrying the first crew of humans to fly to space in the post Space Shuttle Era has successfully docked at the International Space Station early this morning, Nov. 16 at 12:24 a.m. EST, averting the potential of having to at least temporarily abandon the massive Earth orbiting research complex.

After an 11 year stretch of continuous human occupation, the future residency of humans aboard the ISS swung in the balance in the wake of a Russian Soyuz rocket failure in August that temporarily grounded all Soyuz launches – manned and unmanned – until the root cause was determined and satisfactorily rectified with NASA’s consent.

The very survival of the ISS hinged on the successful launch of a trio of Russian and American space flyers just 2 days ago from the Baikonur Cosmodrome in Kazahkstan aboard the Soyuz TMA-22 capsule, which took place amidst an unprecedented blizzard and white out conditions with near zero visibility.

The three man crew of Russian rookie cosmonauts Anton Shkaplerov and Anatoly Ivanishin along with veteran NASA astronaut Dan Burbank arrived at the Poisk module of the orbiting outpost just in the nick of time – before the last three ISS crewmembers still aboard would have been forced to depart just 5 days from today leaving no humans aboard.

Soyuz TMA-22 approaches the International Space Station prior to docking at Poisk module on Nov 16 at 12:24 a.m. Credit: NASA TV

Luckily the Soyuz launch and automated rendezvous and linkup with the ISS flying some 400 km (248 miles) above the South Pacific proceeded flawlessly, announced Russian space officials at Mission Control in Moscow shortly after the successful docking. The event was carried live on NASA TV.

A full complement of 6 crew members was thus restored to the ISS, but the handover period will be exceedingly short because the Soyuz TMA-22 launch was postponed from September 22 due to the Soyuz rocket failure in August carrying the unmanned Progress cargo resupply vessel.

The new trio joins the current Expedition 29 residents comprising ISS Commander Mike Fossum (NASA) and Flight Engineers Satoshi Furukawa (Japan) and Sergei Volkov (Russia). But Fossum, Furukawa and Volkov will depart on Monday, Nov. 21, and thereby reduce the station crew population back down to three.

“The crew will have a very busy time during the short handover period,” said William Gerstenmaier, NASA Associate Administrator for the Human Exploration and Operation Directorate, who was present in Moscow.

“I want to thank our Russian colleagues for a tremendous job. It’s great to have six people back aboard the ISS,” Gerstenmaier said.

The newly arrived crew is expected to stay at the ISS for about five months and carry out a wide range of science experiments.

After closing the hooks and latches, removing the docking probe and conducting extensive pressure and leak checks, Shkaplerov, Ivanishin and Burbank opened the hatches and floated into the ISS to join their awaiting friends friends with a big round of bear hugs and greetings at about 2:39 a.m. EST today, Nov 16.

“Its great to see all six of you together up there,” radioed Gerstenmaier after the hatch opening.

“It’s was a great ride uphill and it will be a great stay up here,” Burbank replied.

The cosmonauts children exuberantly said “Hi , how are you. Kisses to you Daddy !” to their dads in space moments later !

Combined crews aboard the ISS after Nov 16 docking and hatch opening. NASA TV

The next three man Soyuz crew of US astronaut Don Pettit, Dutch astronaut André Kuipers, and Russian cosmonaut Oleg Kononenko, is set to arrive on December 23 and again restore the crew to a full complement of six.

Blastoff of Soyuz TMA-22 amidst swirling snowstorm at 11:14:03 p.m. Nov. 13 from Baikonur Cosmodrome, Kazakhstan. The three man crew comprised NASA astronaut Dan Burbank and Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin. Credit: NASA/Roscosmos

Read Ken’s continuing features about Russian Space Programs including Soyuz, Progress, Phobos-Grunt and Soyuz in South America starting here:
Soyuz Launches to Station amid Swirling Snowy Spectacular
Soyuz Poised for High Stakes November 13 Blastoff – Space Stations Fate Hinges on Success
Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track
Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Nov 16: Ken Kremer lectures about Mars and Vesta exploration at Gloucester County College, NJ

China completes 2nd Docking to Space Lab and sets Path to Manned flights in 2012

Photo taken on Nov. 14, 2011 shows the image of Shenzhou-8 spacecraft on the electronic screen in the Beijing Aerospace Flight Control Center, in Beijing, China. The image was shot by a video camera on Tiangong-1 just after Shenzhou-8's separation from Tiangong-1. China's Shenzhou-8 unmanned spacecraft successfully re-docked with the Tiangong-1, a module of the country's planned space lab on Monday, Nov. 14, 2011 Credit: Xinhua/Wang Jianmin

[/caption]

Chinese space prowess took another major leap forward today (Nov. 14) when the unmanned Shenzhou-8 capsule successfully re-docked with China’s Tiangong-1 space lab while speeding through space and orbiting some 343 km above Earth. Today’s events pave the way for China to rapidly ramp up their human space program and loft up to two manned flights to the space lab module in 2012.

The re-docking marked only the 2nd time that China had accomplished a successful space docking, a critical technical milestone that opens the door to China’s real ambition of assembling a 100 ton operational Space Station in low Earth orbit by 2020 – about the time when the ISS might be decommissioned.

China made space history on Nov. 3 by becoming only the 3rd country on Earth – after the US and the Russia – to accomplish a space link up when Shenzhou- 8 and Tiangong-1 rendezvoused and docked in earth orbit.

The graphics shows the procedure of the second docking between Shenzhou-8 spacecraft and Tiangong-1 space lab module on Nov. 14, 2011. Credit: Xinhua/Lu Zhe

Shenzhou-8 was launched to orbit on Nov. 1 atop a Long March 2F booster rocket from the Jiuquan Satellite Launch Center in the Gobi Desert in northwest China. The two Chinese built spacecraft have been joined together for 12 days.

China’s space re-docking exercise today came just hours after Russia successfully launched their Soyuz capsule with two Russians and one American bound for the ISS.

Views of Shenzhou-8 spacecraft docking with the space lab module Tiangong-1 for the second time on Nov. 14, 2011. Credit: CCTV/Beijing Aerospace Control Center

Today’s goal was to give Chinese engineers more practice and confidence in mastering the complex maneuvers required for rendezvous and docking two vehicles in space. It was carried out in daylight conditions as opposed to the nighttime conditions for the initial docking to expand the testing envelope under different scenarios.

Shenzhou-8 first disengaged from the prototype space station at about 6:37 a.m. EST and then withdrew to a distance of about 140 meters (460 ft). About 30 minutes later, mission controllers at the Beijing Aerospace Control Center monitored Shenzhou-8 as it automatically approached Tiangong-1 and completed the second docking – or “Space Kiss” as the Chinese media fondly say – at about 6:53 a.m. EST.

Photo taken on Nov. 14, 2011 show the live video of the outside view of Shenzhou-8 on a giant screen in the Beijing Aerospace Flight Control Center, in Beijing, capital of China, Nov. 14, 2011. China's Shenzhou-8 unmanned spacecraft successfully re-docked with the Tiangong-1, a module of the country's planned space lab on Monday. Credit: Xinhua/Wang Jianmin

The combined Shenzhou-8/Tiangong-1 orbiting complex is some 20 meter in length and weighs about 16 tons. Each vehicle weighs some 8 tons. Tiangong-1 is 10.4 m in length and 3.3. m in diameter. Shenzhou-8 is 9.2 m in length

Shenzhou is China’s manned space capsule but flew this flight with no humans aboard because Chinese space officials felt it was safer and prudent and did not want to expose astronauts to excessive risk during the unprecedented docking attempts.

Following today’s complete success, the China Manned Space Engineering (CMSE) Project is pushing ahead with plans to launch up to two manned missions to Tiangong-1 in 2012 – namely Shenzhou-9 and Shenzhou-10 which are already under construction.

Both 2012 missions would be short duration flights of a few days or weeks since the Tiangong-1 module is a prototype space station module and not outfitted for long duration flights.

CMSE is evaluating a pool of Chinese astronauts already in training – including two women – for the two flights. Both women candidates are married and about 30 years of age but have not been publically identified.

It seems highly likely that one of the Shenzhou missions will include the first female Chinese astronaut.

So far China has launched six astronauts on three manned Shenzhou capsules between 2003 and 2008.

The docking mechanism on Shenzhou-8 was developed and manufactured in China, says Wu Ping, spokeswoman for the CMSE.

In two days, Shenzhou-8 is due to undock from Tiangong-1 for the final time and initiate the fiery re-entry to Earth on Nov. 17. The descent capsule will land by parachute.

These historic feats prove that China’s manufacturing and technological capabilities are surging forward and rapidly matching the Western powers and Japan in a broad swath of scientific and technical fields.

Since the forced retirement of NASA’s functioning space shuttle orbiters, only China and Russia can launch people into space.


Video animation caption: Chinese spacecraft to ‘kiss’ in space. Credit: NMANewsDirect

Read Ken’s features about Shenzhou-8 & Tiangong-1
China Technology Surges Forward with Spectacular First Docking in Space
China launches Shenzhou-8 bound for Historic 1st Docking in Space
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad

Soyuz Launches to Station amid Swirling Snowy Spectacular

Blastoff of Soyuz TMA-22 amidst swirling snowstorm at 11:14:03 p.m. Nov. 13 from Baikonur Cosmodrome, Kazakhstan. The three man crew comprised NASA astronaut Dan Burbank and Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin. Credit: NASA/Roscosmos

[/caption]

The future survival and fate of the International Space Station was on the line and is now firmly back on track following today’s (Nov. 13) successful, high stakes liftoff of a Russian Soyuz rocket carrying a three man crew of two Russians and one American bound for the orbiting research platform, amidst the backdrop of a spectacular snowstorm swirling about the Baikonur Cosmodrome in Kazakhstan – rare even by Russian standards.

The international crew comprises Expedition 29 Flight Engineer Dan Burbank from NASA – veteran of two prior shuttle missions to the station in 2000 and 2006 – and Anton Shkaplerov and Anatoly Ivanishin from Russia. It’s the rookie flight for both Russian cosmonauts.

Soyuz TMA-22 lifts off under near blizzard conditions on Nov.13. Credit: NASA/Roscosmos

This is the first flight of a manned Soyuz-FG rocket – and of humans to space – since NASA’s Space Shuttle was forcibly retired in July and the subsequent failure of a virtually identical unmanned Soyuz-U booster in August which grounded all Russian flights to the ISS and threatened to potentially leave the station with no human presence aboard.

Snowy Soyuz TMA -22 blast off on Nov.13. Credit: Roscosmos

The trio of space flyers soared to the heavens at 11:14:03 p.m. EST Sunday Nov. 13 (11:14:03 a.m. Baikonur time Monday, Nov. 14) abroad their Soyuz TMA-22 capsule which was mounted atop the 50 meter tall Soyuz rocket.

Blastoff occurred precisely on time at about the time when the frigid, snow bedecked launch pad rotated into the plane of the orbit of the ISS. The launch was carried live on NASA TV and the ship quickly disappeared from view behind the nearly blinging blizzard.

The Soyuz TMA-22 achieved orbital insertion some nine minutes later into an initial 143 by 118 mile orbit, inclined 51 degrees to the equator.

The vehicles antennae’s and solar arrays were quickly deployed per plan and all spacecraft systems were functioning perfectly according to Russian Ground Control in Moscow.

Soyuz TMA-22 launches in spectacular snowstorm on Nov. 13 with Expedition 29 Flight Engineer Dan Burbank from NASA and Anton Shkaplerov and Anatoly Ivanishin from Russia. Credit: NASA/Joe Acaba

Following a two day orbital chase and three course correction burns the future ISS residents are due to dock at the Russian Poisk module at the complex at about 12:33 a.m. EST on Wednesday, Nov. 16.

In the hours prior to launch the crew received a religious blessing from the Russian Orthodox Church, took the bus for the 25 mile trip to the Cosmodrome, donned their white Sokol launch and entry suits and headed to the pad.

The crew boarded the capsule in the midst of an extremely heavy snow storm which struck the Baikonur region of Kazakhstan in the evening prior to launch. See photo from backup NASA astronaut Joe Acaba.

Soyuz TMA-22 crew boards capsule amidst snowstorm at Baikonur. Credit: NASA/Joe Acaba

Although snow is quite common at this time of year, the blizzard conditions at launch time were actually quite rare according to NASA spokesman Rob Navias at Baikonur.

American rockets would never blast off in such severe weather conditions – but it’s nothing for the Russians!

The temperature was about 24 F, roughly 6 inches (15 cm) of snow had accumulated on the ground at launch time and moderate wind gusts partially obscured the view.

For the first time ever, a Soyuz crew was dressed in parkas – See Joe Acaba twitpic below !

Gantry towers were retracted from the three stage Soyuz booster at about T minus 25 minutes. The umbilical’s retracted in the final seconds.

The three stage Soyuz-FG rocket lifted off from Launch Pad 1 (LC-1), the same pad from which Cosmonaut Yuri Gagarin flew as the first human to space 50 Years ago this year. The pad is named “Gagarin Start” in honor of Gagarin’s courageous achievement on April 12, 1961.

The rocket was fueled with kerosene (RP-1) and cryogenic liquid oxygen.

The ISS was flying some 248 miles above the Pacific Ocean and just west of Chile at launch time.

On the way to the Pad. Snow is falling. First time crew has had to wear these overcoats/parkas. All is go so far. Twitpic and comment from NASA astronaut Joe Acaba at Baikonur

The importance of the TMA-22 mission cannot be overstated because it restored confidence in Russian rockets which now serve as the world’s only pathway for providing human access to the $100 Billion earth orbiting outpost.

The cramped Soyuz capsule measures just 2.2 m wide by 2.1 m high and weighs 2200 kg.

Today’s critical launch had been delayed be nearly two months from September 22, following the failure of a nearly identical Soyuz-U booster in August which was carrying the Progress 44 cargo resupply spacecraft and crashed ignominiously in Siberia after the third stage shut down unexpectedly.

The Progress 44 was loaded with nearly 3 tons of supplies and was bound for the ISS.

The third stage is nearly identical for both the manned and unmanned versions of the normally highly reliable Soyuz booster rocket.

The launch came only after a thorough review of the causes of the accident by a special State Commision- which was traced to a clogged fuel line – introduction of new quality control measures and careful inspection of all the engines.

“We have no doubt in our minds both the rocket and the vehicle are ready, all the activities have been done at the appropriate level of quality and reliability,” said Vladimir Popovkin, Head of Roscosmos, the Russian Federal Space Agency, prior to liftoff.

Expedition 29 Flight Engineer Satoshi Furukawa, Commander Mike Fossum and Flight Engineer Sergei Volkov watch their new crew mates launch on time from inside the Destiny laboratory. Credit: NASA TV

The new crew will join the other half of Expedition 29 already in residence aboard the ISS; Expedition 29 Commander Mike Fossum (NASA) and Flight Engineers Satoshi Furukawa (Japan) and Sergei Volkov (Russia). This will temporarily restore the ISS to a full complement of 6 crewmembers – but only for a few days.

Fossum will hand over command of the station to the new crew within four days. His crew departs the ISS for Earth reentry on Nov. 21.

The successful launch means that the ISS will not have to be left unmanned for the first time since continuous manned occupation began over 11 years ago and which would have placed the station at risk in case of failures requiring human intervention.

Burbank, Shkaplerov and Ivanishin will spend 5 months aboard the station. They will be joined in December by the next trio to round out Expedition 30

Prelaunch photo of Soyuz-TMA-22/Expedition 29 crew - NASA astronaut Dan Burbank and Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin Credit: Roscosmos

Read Ken’s continuing features about Russian Space Programs including Soyuz, Progress, Phobos-Grunt and Soyuz in South America starting here:
Soyuz Poised for High Stakes November 13 Blastoff – Space Stations Fate Hinges on Success
Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track
Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Soyuz Poised for High Stakes November 13 Blastoff – Space Stations Fate Hinges on Success

The Soyuz TMA-22 spacecraft and its booster were moved to the launch pad at the Baikonur Cosmodrome in Kazakhstan on a railcar on November 11, 2011, for final preparations prior to launch to the International Space Station on November 14, Baikonur time. Credit: Roscosmos

[/caption]

The stakes could not be higher for the Russian Soyuz rocket now poised at the launch pad at Baikonur in Kazakhstan and which will loft the next trio of space flyers to the International Space Station on Sunday, Nov. 13. This is the first flight of a manned Soyuz rocket since the Space Shuttle was retired in July and the subsequent failure of an unmanned Soyuz booster in August of this year.

The booster was rolled out to the pad on Friday (Nov. 11) and the very fate of the Space Station and the partners $100 Billion investment hinges on a successful blastoff of the venerable Soyuz – which dates back to cosmonaut Yuri Gagarin and the inauguration of human spaceflight 50 years ago. This launch must succeed in order to keep a human presence aboard the ISS and comes in the wake of an upper stage failure days ago that left Russia’s ambitious Phobos-Grunt Mars mission stranded in Earth orbit and potentially doomed. See the Soyuz rollout video and pictures below

The Soyuz rocket and spacecraft were rolled out on a rail car at Baikonur


Video Caption – Rollout of Soyuz TMA-22 spacecraft and booster to Baikonur launch pad in Kazahkstan.

Following the August 24 launch failure and crash of a Soyuz rocket carrying the Progress 44 cargo resupply vehicle to the ISS, Russia’s manned space program was grounded because the third stage of the Soyuz rocket which malfunctioned is virtually identical for both the manned and unmanned versions.

Since NASA was forced to shut down the Space Shuttle program, the Russian Soyuz rocket and capsule are the sole method of transport to the ISS. Thus, American astronauts have no choice but to hitch a ride with the Russians.

No American replacement spacecraft will be ready for humans until 2014 at the very earliest. And significant NASA budget cuts are likely to delay the introduction of the proposed “space taxis” by several more years.

Soyuz TMA-22 rolls on railcar to the launch pad at the Baikonur Cosmodrome. Credit: Roscosmos

Liftoff off the three man crew aboard the Soyuz-TMA 22 capsule from the Baikonur Cosmodrome in Kazakhstan is slated for 11:14 p.m. EST Sunday Nov. 13 (11:14 a.m. Baikonur time Monday, Nov. 14) aboard the Soyuz TMA-22 spacecraft.

Originally, the launch of the Soyuz TMA-22 crew had been scheduled for September 22 but was immediately put on indefinite hold following the August 24 crash.

Russia promptly announced the formation of a special state commission to investigate the failure, which rapidly traced the malfunction to a clogged fuel line and instituted fixes and stricter quality control measures.

Fortunately, the program got back on track 10 days ago when the Soyuz rocket for the unmanned Progress 45 cargo ship successfully blasted off from the Baikonur Cosmodrome on Oct. 30, 2011 and docked two days later at the ISS.

Soyuz TMA-22 rolls on railcar to the launch pad at the Baikonur Cosmodrome. Credit: Roscosmos

Soyuz TMA-22 poised at Baikonur launch pad. Credit: Roscosmos

The international trio of new ISS residents consists of Expedition 29 Flight Engineer Dan Burbank from NASA and Anton Shkaplerov and Anatoly Ivanishin from Russia.

After a 2 day chase, they are due to link up with the ISS when their spacecraft docks to the Poisk mini-research module at 12:33 a.m. Wednesday.

When Burbank, Shkaplerov and Anatoly Ivanishin dock they will join the other trio of Expedition 29 crewmembers already aboard the ISS; Expedition 29 crewmates Commander Mike Fossum (NASA) and Flight Engineers Satoshi Furukawa (Japan) and Sergei Volkov (Russia) – and temporarily restore the ISS to a full complement of 6 crewmembers.

Soyuz TMA-22 crew meet journalists before blastoff. Credit: Roscosmos

But the full ISS staffing will be short-lived, because Fossum, Furukawa and Volkov will hand over all ISS duties to the new crew and undock their Soyuz TMA-02M capsule from the Rassvet research module on Nov. 21 and depart for Earth reentry and landing in Kazakhstan hours later.

The Soyuz TMA-22 poised at Baikonur launch pad will carry Soyuz Commander Anton Shkaplerov, Expedition 30 Commander Dan Burbank of NASA and Russian Flight Engineer Anatoly Ivanishin to the complex. The trio will spend almost five months on the station. Credit: Roscosmos

The new crew of three must reach the ISS before the current trio departs or the ISS would be left unmanned for the first time in over 11 years.

Read Ken’s continuing features about Russian Space Programs including Soyuz, Progress, Phobos-Grunt and Soyuz in South America starting here:
Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track
Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Was a Fifth Giant Planet Expelled from Our Solar System?

Artist’s impression of a fifth giant planet being ejected from the solar system. Image credit: Southwest Research Institute

[/caption]

Earth’s place in the “Goldilocks” zone of our solar system may be the result of the expulsion of a fifth giant planet from our solar system during its first 600 million years, according to a recent journal publication.

“We have all sorts of clues about the early evolution of the solar system,” said author Dr. David Nesvorny of the Southwest Research Institute. “They come from the analysis of the trans-Neptunian population of small bodies known as the Kuiper Belt, and from the lunar cratering record.”

Nesvorny and his team used the clues they had to build computer simulations of the early solar system and test their theories. What resulted was an early solar system model that has quite a different configuration than today, and a jumbling of planets that may have given Earth the “preferred” spot for life to evolve.


Researchers interpret the clues as evidence that the orbits of Jupiter, Saturn, Uranus and Neptune were affected by a dynamical instability when our solar system was only about half a billion years old. This instability is believed to have helped increase the distance between the giant planets, along with scattering smaller bodies. The scattering of small bodies pushed objects both inward, and outward with some objects ending up in the Kuiper Belt and others impacting the terrestrial planets and the Moon. Jupiter is believed to have scattered objects outward as it moved in towards the sun.

One problem with this interpretation is that slow changes to Jupiter’s orbit would most likely add too much momentum to the orbits of the terrestrial planets. The additional momentum would have possibly caused a collision of Earth with Venus or Mars.

“Colleagues suggested a clever way around this problem,” said Nesvorny. “They proposed that Jupiter’s orbit quickly changed when Jupiter scattered off of Uranus or Neptune during the dynamical instability in the outer solar system.”

Basically if Jupiter’s early migration “jumps,” the orbital coupling between the terrestrial planets and Jupiter is weaker, and less harmful to the inner solar system.

Animation showing the evolution of the planetary system from 20 million years before the ejection to 30 million years after. Five initial planets are shown by red circles, small bodies are in green.
After the fifth planet is ejected, the remaining four planets stabilize after a while, and looks like the outer solar system in the end, with giant planets at 5, 10, 20 and 30 astronomical units.
Click image to view animation. Image Credit: Southwest Research Institute

Nesvorny and his team performed thousands of computer simulations that attempted to model the early solar system in an effort to test the “jumping-Jupiter” theory. Nesvorny found that Jupiter did in fact jump due to gravitational interactions from Uranus or Neptune, but when Jupiter jumped, either Uranus or Neptune were expelled from the solar system. “Something was clearly wrong,” he said.

Based on his early results, Nesvorny added a fifth giant planet, similar to Uranus or Neptune to his simulations. Once he ran the reconfigured simulations, everything fell into place. The simulation showed the fifth planet ejected from the solar system by Jupiter, with four giant planets remaining, and the inner, terrestrial planets untouched.

Nesvorny concluded with, “The possibility that the solar system had more than four giant planets initially, and ejected some, appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, indicating the planet ejection process could be a common occurrence.”

If you’d like to read Nesvorny’s full paper, you can access it at: http://arxiv.org/pdf/1109.2949v1

Source: Southwest Research Institute Press Release