Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos

Phobos-Grunt spacecraft being encapsulated inside the nose cone for November 9 launch to Mars and its tiny moon Phobos. Credit: Roscosmos

[/caption]

Phobo-Grunt, Russia’s first interplanetary mission in nearly two decades, has now been encapsulated inside the payload fairing and sealed to the payload adapter for mating to the upper stage of the Zenit booster rocket that will propel the probe to Mars orbit and carry out history’s first ever landing on the petite Martian moon Phobos and eventually return pristine samples to Earth for high powered scientific analysis.

Phobos-Grunt will launch on November 9, 2011 at 00:16 a.m. Moscow time [Nov. 8 3:16 p.m. EST],” said Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interview with Universe Today. Roscosmos is the Russian Federal Space Agency, equivalent to NASA and ESA.

“The launch window extends until November 25.”

“At this moment we are preparing the “Zenit-2SB” launch vehicle, the cruise propulsion system and the “Phobos Grunt” automatic interplanetary station at the Baikonur Cosmodrome,” Kuznetzov told me. Phobos-Grunt translates as Phobos-Soil.

Phobos-Grunt spacecraft attached to payload adapter prior to encapsulation. Note folded solar panels, gold colored sample transfer tube leading to return capsule, landing legs, antennae and propulsion tanks. Credit: Roscosmos

China’s first ever mission to Mars, the Yinghuo-1 micro-satellite, is also encased inside the nose cone and is tucked in a truss segment between the lander and interplanetary propulsion stage.

Yinghuo-1 follows closely on the heels of China’s stunning success in demonstrating the nation’s first ever docking in space between two Chinese spacecraft earlier this week on November 3.

Sealing up Phobos-Grunt. Credit: Roscosmos

Technicians completed the two vehicles enclosure inside the protective fairing at Building 31 at the Baikonur Cosmodrome and have now transported the spaceships to Building 41 where the payload is now being stacked to the upgraded “Fregat-SB” upper stage atop the Zenit-2SB rocket.

Martian moon Phobos imaged by Mars Express Orbiter from ESA. Credits: ESA/DLR/FU Berlin (G. Neukum)

The payload fairing protects the Phobos-Grunt and Yinghuo-1 spacecraft during the first few minutes of flight from the intense frictional heating and buildup of aerodynamic pressures. After the rocket soars through the discernable atmosphere the fairing splits in half and is jettisoned and falls back to Earth.

The nose cone sports a beautiful mission logo painted on the side of the fairing along with the logos of various Russian and International partner agencies and science institutes.

Phobos-Grunt payload fairing. Credit: Roscosmos

Propellants have already been loaded aboard the cruise stage, Phobos-Grunt lander and Earth return vehicle.

“The Phobos Grunt automatic interplanetary station was built, prepared and tested at NPO Lavochkin [near Moscow]. They were also responsible for inspection of the devices, instruments and systems integration,” Kuzntezov explained.

“Significant improvements and modifications and been made to both the “Fregat-SB” upper stage and the “Zenit-2SB” rocket,” said Kuznetzov.

View inside nose cone and preparing to encapsulate Phobos-Grunt. Click to enlarge. Credit: Roscosmos

Phobos-Grunt will blastoff from Launch Pad 45 at Baikonur,

Following an 11 month journey, the spaceship will enter Mars orbit in October 2012, spend several months investigating Phobos and then land around February 2013.

The goal is to snatch up to 200 grams of soil and rock from Phobos and fly them back to Earth in a small capsule set to plummet through the atmosphere in August 2014.

ESA, the European Space Agency, is assisting Russia determine a safe landing site by targeting their Mars Express Orbiter to collect high resolution images of Phobos. Look at 2 D and 3 D images and an animation here.

The regolith samples will help teach volumes about the origin and evolution of Phobos, Mars and the Solar System. Scientists would be delighted if miniscule bits of Martian soil were mixed in with Phobos soil.

Phobos-Grunt , Earth’s next mission to Mars, is equipped with an advanced 50 kg payload array of some 20 science instruments.

NASA’s Curiosity Mars rover was also enclosed in her payload fairing a few days ago and is on course for liftoff on November 25.

The Phobos-Grunt spacecraft is scheduled to blastoff on November 9, 2011 from Baikonur Cosmodrome. It will reach Mars orbit in 2012 and eventually land on Phobos and return the first ever soil samples back to Earth in 2014. Credit Roscosmos

Read Ken’s continuing features about Phobos-Grunt here:
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Read Ken’s continuing features about Curiosity & Nov. 25 launch starting here:
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Looking For the City Lights of Alien Civilizations

Artist's conception of city lights on an alien planet. Credit: David A. Aguilar (CfA)

[/caption]

When most people think about the search for alien life, the first thing that usually pops into mind is SETI (Search for Extraterrestrial Intelligence). Primarily a search for extraterrestrial radio signals, another more recent facet of SETI is now looking for laser pulses as a conceivable means of communication across interstellar distances. But now, a third option has been presented: looking for sources of artificial light on the surfaces of exoplanets, like the lights of cities on Earth.

According to Avi Loeb at the Harvard-Smithsonian Center for Astrophysics, “Looking for alien cities would be a long shot, but wouldn’t require extra resources. And if we succeed, it would change our perception of our place in the universe.”

Like the other SETI initiatives, it relies on an assumption that an alien civilization would use technologies that are similar to ours or at least recognizable. That assumption itself has been the subject of contentious debate over the years. If an alien society was thousands or millions of years more advanced than us, would any of its technology even be recognizable to us?

That aside, how easy (or not) would it be to spot the signs of artificial lighting on an alien planet light-years away from us? The suggestion is to look at the changes in light from an exoplanet as it orbits its star. Artificial light would increase in brightness on the dark side of a planet as it orbits the star (as the planet goes through its phases, like our Moon or other planets in our own solar system), becoming more visible than any light that is reflected from the day side.

That type of discovery will require the next generation of telescopes, but today’s telescopes could test the idea, being able to find something similar as far out as the Kuiper Belt in our solar system, where Pluto and thousands of other small icy bodies reside. As noted by Edwin Turner at Princeton University, “It’s very unlikely that there are alien cities on the edge of our solar system, but the principle of science is to find a method to check. Before Galileo, it was conventional wisdom that heavier objects fall faster than light objects, but he tested the belief and found they actually fall at the same rate.”

The paper has been submitted to the journal Astrobiology and is available here.

Did A Supernova Shape Our Solar System?

The time evolution of case I. Color coded is the density at t = 0 kyr, t = 4.16 kyr and t = 8.33 kyr. The length scale is given in units of the radius of the initial cold core (R0 = 0.21 pc). Credit: M. Gritschneder (et al)

[/caption]

Away in space some 4.57 billion years ago, in a galaxy yet to be called the Milky Way, a hydrogen molecular cloud collapsed. From it was born a G-type main sequence star and around it swirled a solar nebula which eventually gelled into a solar system. But just what caused the collapse of the molecular cloud? Astronomers have theorized it may have been triggered by a nearby supernova event… And now new computer modeling confirms that our Solar System was born from the ashes a dead star.

While this may seem like a cold case file, there are still some very active clues – one of which is the study of isoptopes contained within the structure of meteorites. As we are well aware, many meteorites could very well be bits of our primordial solar nebula, left virtually untouched since they formed. This means their isotopic signature could spell out the conditions that existed within the molecular cloud at the time of its collapse. One strong factor in this composition is the amount of aluminium-26 – an element with a radioactive half-life of 700,000 years. In effect, this means it only takes a relatively minor period of time for the ratio between Al-26 and Al-24 to change.

“The time-scale for the formation events of our Solar System can be derived from the decay products of radioactive elements found in meteorites. Short lived radionuclides (SLRs) such as 26Al , 41Ca, 53Mn and 60Fe can be employed as high-precision and high-resolution chronometers due to their short half-lives.” says M. Gritschneder (et al). “These SLRs are found in a wide variety of Solar System materials, including calcium-aluminium-rich inclusions (CAIs) in primitive chondrites.”

However, it would seem that a class of carbonaceous chondrite meteorites known CV-chondrites, have a bit more than their fair share of Al-26 in their structure. Is it the smoking gun of an event which may have enriched the cloud that formed it? Isotope measurements are also indicative of time – and here we have two examples of meteorites which formed within 20,000 years of each other – yet are significantly different. What could have caused the abundance of Al-26 and caused fast formation?

“The general picture we adopt here is that a certain amount of Al-26 is injected in the nascent solar nebula and then gets incorporated into the earliest formed CAIs as soon as the temperature drops below the condensation temperature of CAI minerals. Therefore, the CAIs found in chondrites represent the first known solid objects that crystalized within our Solar System and can be used as an anchor point to determine the formation time-scale of our Solar System.” explains Gritschneder. “The extremely small time-span together with the highly homogeneous mixing of isotopes poses a severe challenge for theoretical models on the formation of our Solar System. Various theoretical scenarios for the formation of the Solar System have been discussed. Shortly after the discovery of SLRs, it was proposed that they were injected by a nearby massive star. This can happen either via a supernova explosion or by the strong winds of a Wolf-Rayet star.”

While these two theories are great, only one problem remains… Distinguishing the difference between the two events. So Matthias Gritschneder of Peking University in Beijing and his colleagues set to work designing a computer simulation. Biased towards the supernova event, the model demonstrates what happens when a shockwave encounters a molecular cloud. The results are an appropriate proportion of Al-26 – and a resultant solar system formation.

“After discussing various scenarios including X-winds, AGB stars and Wolf-Rayet stars, we come to the conclusion that triggering the collapse of a cold cloud core by a nearby supernova is the most promising scenario. We then narrow down the vast parameter space by considering the pre-explosion survivability of such a clump as well as the cross-section necessary for sufficient enrichment.” says Gritschneder. “We employ numerical simulations to address the mixing of the radioactively enriched SN gas with the pre-existing gas and the forced collapse within 20 kyr. We show that a cold clump at a distance of 5 pc can be sufficiently enriched in Al-26 and triggered into collapse fast enough – within 18 kyr after encountering the supernova shock – for a range of different metallicities and progenitor masses, even if the enriched material is assumed to be distributed homogeneously in the entire supernova bubble. In summary, we show that the triggered collapse and formation of the Solar System as well as the required enrichment with radioactive 26Al are possible in this scenario.”

While there are still other isotope ratios yet to be explained and further modeling done, it’s a step toward the future understanding of how solar systems form.

Original Story Source: MIT Technology Review News Release. For Further Reading: The Supernova Triggered Formation And Enrichment Of Our Solar System.

NASA Robot seeks Goldmine of Science and Sun at Martian Hill along vast Crater

Opportunity - Panoramic view inside vast Endeavour Crater snapped ascending Cape York crater ridge on Sol 2754, October 23, 2011. Opportunity wheel tracks at right. Cape Tribulation and distant, far side Endeavour crater rim in background. Opportunity is now driving to the northern tip of Cape York in search of a winter haven to survive upcoming brutal Martian Antarctic winter temperatures. Credit: NASA/JPL/Cornell. See the entire panorama in 2 D and 3 D and route maps below.

[/caption]

NASA’s intrepid robogirl Opportunity is now swiftly scouting out locations at a Martian hill along gigantic Endeavour crater that would simultaneously proffer a goldmine of sun and science as her power level drops significantly in these waning days of Martian autumn ahead of the absolutely brutal and potentially deadly 6 month long Antarctic winter that’s fast approaching. Opportunity has just discovered a geologic vein possibly formed as a result of flowing water eons ago.

But, search time for a sunny exposure at the Martian hill known as Cape York is running out says the Mars rover team in new interviews with Universe Today. Recall that lack of power and utterly frigid temperatures killed her twin sister Spirit last winter.

Martian winter in the southern hemisphere starts on March 29, 2012 or Sol 2908. But, Solar power levels already begin dropping dramatically months before Martian winter starts,” said Alfonso Herrera to Universe Today, Herrera is a Mars rover mission manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

“Orbital imagery indicates that the northern-most tip of Cape York might have north facing slopes which Opportunity will need in order to generate enough solar power to sustain her comfortably throughout the winter,” Herrera explained to me.

The team is very excited about the science implications of the vein detection.

“The importance of veins is that often they occur from the deposition of material that was dissolved and transported by hot water in cracks deep underground,” said Bruce Banerdt to Universe Today. Banerdt is the Project Scientist for the Mars rover mission at JPL.

Traverse map showing the 7 Year Journey of Opportunity from Eagle Crater landing site Sol 1 (Jan. 24, 2004) to current location around Homestake on Sol 2763 (November 2011) at Cape York ridge at Endeavour Crater rim. Endeavour Crater is 14 miles or 22 kilometers in diameter. Opportunity has driven more than 21 miles (34 km). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

Segments of Endeavour’s rim at Cape York and Cape Tribulation about 6 kilometers further south offers scientifically rich motherlodes of phyllosilicate clay minerals and other water bearing minerals that formed Billions of years ago on Mars and that could possibly point to habitats favorable for the genesis and support of Martian microbial life forms if they ever existed in the past or present.

Opportunity is currently traversing about the hilltops and slopes of Cape York where she recently made landfall after an epic three year trek across the plains of the Meridiani Planum region of Mars.

Initial reconnaissance around the southern tip and then climbing on top of the central ridge of Cape York have already yielded a bonanza of new science data at rock types never seen before on Mars, according to Steve Squyres, the Mars Rover Principal Investigator of Cornell University.

The rover is now driving north and back down around the base while searching for a “winter haven” with more potential for great science and a northerly inclined slope to more efficiently catch the sun’s rays.

“Opportunity is heading north to find the best winter site,” Ray Arvidson told Universe Today. Arvidson is the rover’s deputy principal investigator, of Washington University in St. Louis.

“We are more than halfway toward the northern part of Cape York where there are slopes steep enough to provide an energy-valid winter site and where science can take place. Now we are driving away from the predicted outcrops [of smectite clay minerals] on Cape York and onto the bench on the western side because we have run out of time to investigate these outcrops.”

Opportunity - Wide panoramic view inside vast Endeavour Crater snapped ascending Cape York crater ridge on Sol 2754, October 23, 2011. Opportunity wheel tracks at center. Cape Tribulation and distant, far side Endeavour crater rim in background. Opportunity is now driving to the northern tip of Cape York in search of a winter haven to survive upcoming brutal Martian Antarctic winter temperatures. Credit: NASA/JPL/Cornell

However, the rover team was still hoping to catch a break for science opportunities along the way north and just chanced upon geologic veins potentially indicative of past flow of liquid water.

“The bench around the edge of Cape York looks like sedimentary rock that’s been cut and filled with veins of material possibly delivered by water,” says Arvidson.

3 D Opportunity Panorama - 3 D Wide panoramic view inside vast Endeavour Crater snapped ascending Cape York crater ridge on Sol 2754, October 23, 2011. Opportunity wheel tracks at center. Cape Tribulation and distant, far side Endeavour crater rim in background. Opportunity is now driving to the northern tip of Cape York in search of a winter haven to survive upcoming brutal Martian Antarctic winter temperatures. Credit: NASA/JPL/Cornell

Opportunity has just driven to a light toned vein at a spot dubbed “Homestake” and will spend a few sols (martian days) investigating with all the tools on the terminus of the robotic arm – including some Microscopic Imager (MI) images of the vein and placing the Alpha Particle X-ray Spectrometer (APXS) on top for overnight integrations.

“Opportunity will then continue traveling on the outboard side of Cape York (i.e. facing the plains),” Herrera told Universe Today.

“Plans are subject to change, but currently, Opportunity will travel to the north end of Cape York and stay there for the winter if suitable north facing slopes are found.”

“Our hope is that once a winter haven is identified, Opportunity will have enough power to make brief forays for science gathering in the vicinity of the winter haven,” Herrera informed me.

Homestake vein close up on Sol 2765- November 3, 2011. RAT (Rock Abrasion Tool) at lower left will target Homestake. Credit: NASA/JPL/Cornell
Opportunity Panorama at Cape York Ridge at Endeavour Crater - November 2011
Opportunity rover is exploring around the base of Cape York hill at the bench and vein features which may hold clues to the ancient flow of liquid water here on Mars. Opportunity drives North (ahead) from here in search of a sunny winter haven. Mosaic Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo

Opportunity’s power levels have dropped by nearly 25 percent in the past few months – as Martian dust builds up – and are hovering around 300 watts-hours , which is less than a third of the maximum output possible from her life giving solar arrays.

Her sparkling wing-like solar panels boasted an output of some 950 watt-hours upon landing on Mars nearly 8 years ago – for a mission warrentied to last a mere 90 Martian Days, or Sols. That equates to 31 times beyond the design lifetime !

Endeavour Crater Panorama from Opportunity, Sol 2681, August 2011
Opportunity arrived at the rim of Endeavour on Sol 2681, August 9, 2011 and climbed up the ridge known as Cape York. Odyssey crater is visible at left. Opportunity is now driving to the northern tip of Cape York (to the left) and is investigating a geologic vein that indicates flow of liquid water. Opportunity was photographed from Mars orbit on Sept. 10, 2011.
Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

Cape York is a low ridge that belongs to the rim of humongous Endeavour crater, some 14 miles or 22 kilometers in diameter that offers spectacular panoramic vistas peering into the vast and beautiful crater sporting a huge central mound and mountainous rim segments both near and far.

Opportunity arrived at Cape York and Endeavour Crater in August 2011 after an overland expedition of more than 21 miles (34 km).

NASA’s Curiosity rover is on course to liftoff for Mars on Nov. 25

Traverse map showing the 7 Year Journey of Opportunity from Eagle Crater landing site to current location at Cape York ridge at Endeavour Crater rim. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

Read Ken’s continuing features about Opportunity starting here:
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars Rover
NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater

Read Ken’s continuing features about Curiosity & Nov. 25 launch starting here:
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near

3 D view of the rare Phobos–Jupiter conjunction taken on 1 June 2011 by the High Resolution Stereo Camera on Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Video Caption: Phobos and Jupiter in Conjunction – taken from Mars orbit !
A movie of the 1 June 2011 Phobos–Jupiter conjunction made by combining a sequence of 100 images of the encounter taken by the High Resolution Stereo Camera on ESA’s Mars Express orbiter. Mars Express is searching for safe landing zones on Phobos for Russia’s Phobos-Grunt lander blasting off on November 9. Credits: ESA/DLR/FU Berlin (G. Neukum)
3 D images of Phobos-Jupiter conjuction below
Update – Phobos-Grunt launch processing photo below

In just 7 days, Russia’s Phobos-Grunt sample return mission will blast off for Mars on November 9 on a daring mission to grab soil samples from the surface of the miniscule martian moon Phobos and return them back to Earth for analysis to give us breathtaking new insights into the formation and evolution of Mars, Phobos and our Solar System.

So, check out the amazing animation and 3 D stereo images of fish-like Phobos and banded Jupiter snapped by Europe’s Mars Express orbiter to get a bird’s eye feel for the battered terrain, inherent risks and outright beauty that’s in store for the Phobos -Grunt spaceship when it arrives in the Red Planet’s vicinity around October 2012. Whip out your red-cyan 3 D glasses – Now !

[/caption]

ESA’s Mars Express orbiter (MEX) was tasked to help Russia locate suitable and safe landing sites on Phobos’ pockmarked terrain. MEX was built by ESA, the European Space Agency and has been in Mars orbit since 2003.

To capture this impressive series of rare photos of Jupiter and Phobos in conjunction, Mars Express performed a special maneuver to observe an unusual alignment of Jupiter and Phobos on 1 June 2011.

Mars Express High Resolution Stereo Camera (HRSC) snapped a total of 104 images over 68 seconds when the distance from the spacecraft to Phobos was 11,389 km and the distance to Jupiter was 529 million km.

Phobos- Jupiter Conjunction: before, during and after on 1 June 2011 from Mars Express. Credits: ESA/DLR/FU Berlin (G. Neukum)

Enjoy the exquisite views of the bands of Jupiter and imagine exploring the deep pockets and mysterious grooves on Phobos – which may be a captured asteroid.

The camera was kept fixed on Jupiter, to ensure it remained static as Phobos passed in front and which afforded an improvement in our knowledge of the orbital position of Phobos.

Phobos in 3 D during flyby of 10 March 2010. Image taken from a distance of 278 km. Russia’s Phobos-Grunt will retrieve rogolith and rock for return to Earth. Credit: ESA/DLR/FU Berlin (G. Neukum)

NASA’s twin Mars rovers Spirit and Opportunity have also occasionally photographed both of Mars’ moons to further refine their orbital parameters.

NASA’s Curiosity rover remains on track to liftoff for Mars on Nov. 25

Orbital Paths of Phobos and Mars Express. The trajectories of Phobos and Mars Express at the time of the conjunction with Jupiter on 1 June 2011. The letter ‘S’ denotes the South Pole of Mars.
Technicians at Baikonur Cosmodrome prepare Phobos-Grunt for upper stage attachment. Credit: Roscosmos

Read Ken’s continuing features about Phobos-Grunt here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

China Technology Surges Forward with Spectacular First Docking in Space

Photos of Shenzhou-8 and Tiangong-1 docking in Earth orbit. Credit: CMSE

Video Caption: Live Video of Shenzhou-8 and Tiangong-1 docking in Earth orbit. Photos below. Credit: CCTV commentary/CMSE

China’s technological capabilities took a major surge forward with the successful docking in space today for the first time ever of two Chinese built and launched spaceships – orbiting some 343 kilometers in the heavens above at 1:37 a.m. Beijing time Nov. 3(1:37 p.m. EDT, Nov. 2). China’s goal is to build a fully operational space station in Earth orbit by 2020 – about the time when the ISS may be retired.

Today’s space spectacular joining together the Shenzhou-8 unmanned spacecraft and the Tiangong-1 prototype space station was an historic feat for China, which now becomes only the 3rd country to accomplish a rendezvous and docking of spacecraft in Earth orbit.

Shenzhou is China’s manned spaceflight capsule but is flying without a crew for this particular test flight. The prowess demonstrated with this triumph paves the way for further manned Shenzhou’s launches soon.
[/caption]

The remarkable space milestone follows in the footsteps of what the United States and Russia accomplished decades ago but this was carried out with 21st century science, technology and manufacturing abilities developed by China during the nation’s rapid rise over the past few decades to become the world’s 2nd most powerful economy.

Schematic of Shenzhou-8 and Tiangong-1 docking in Earth orbit. Credit: CMSE

Shenzhou 8 has been chasing Tiangong-1 in orbit for two days since it was launched on Nov. 1 atop a Long March 2F booster rocket from the Gobi desert in northwest China.

The Commander-in-chief of China´s manned space program Gen. Chang Wanquan, announced “China’s first rendezvous and docking in space joining together the spacecraft Shenzhou-8 and Tiangong-1 space lab module was a complete success.” Chang leads the China Manned Space Engineering (CMSE) Project and pronounced the achievement at the Beijing Aerospace Control Center.

Chinese President Hu Jintao sent a congratulatory message from the G-20 summit in Cannes, France. “I am very pleased to hear the news and I send congratulations to all who made this possible. This will push China’s manned space program forward.”

Graphic shows the procedure of Shenzhou-8 spacecraft docking with Tiangong-1 space lab module on Nov. 3, 2011. (Xinhua/Lu Zhe)

The landmark rendezvous and docking was carried live by state run CCTV for all the world to watch. The impressive 2 hour long TV broadcast showed simultaneous and breathtaking camera videos from both the unpiloted Shenzhou-8 capsule and the Tiangong-1 space station module as they viewed one another in the cameras field of view and slowly approached together with the lovely Earth as a backdrop.

Mission controllers carefully monitored all spacecraft systems on both Shenzhou-8 and Tiangong-1 as they sped closer at about 20 cm/sec and stopped at several parking points along the way (400 m, 140 m, 30 m) to confirm everything was nominal.

Chinese engineers and on board systems precisely guided the two spaceships and watched for any deviations. In case of any failures they had the capability to radio the vehicles to separate. But no deviations occurred and the autonomous docking proceeded to completion.

The two vehicles will remain docked for 12 days, then unhook and back off about 150 meters and then conduct another practice docking. The second practice docking is being done to gain more expertise and confidence and will be carried out under different conditions and in daylight.

The combined Shenzhou-8/Tiangong-1 orbiting complex weighs about 16 tons, some 8 tons each. Tiangong-1 is 10.4 m in length and 3.3. m in diameter. Shenzhou 8 is 9.2 m in length.

China plans two crewed flights to Tiangong-1 starting in 2012. The multi-person crews aboard Shenzhou 9 & Shenzhou 10 are almost certain to include China’s first female astronaut. The astronauts would float into Tiangong 1 from their Shenzhou capsules and remain on board for a few days or weeks. They will check out the spacecraft systems and conduct medical, space science and technology tests and experiments.

Meanwhile, since the premature retirement of the space shuttle with no successor in place, the US has absolutely no capability to launch astronauts to earth orbit. Therefore the ISS is totally reliant on Russian Soyuz rockets and capsules. US astronauts must hitch a ride to space with the Russians.

The US Senate just passed a NASA budget for 2012 that cuts NASA funding and will delay a replacement manned vehicle even further, likely into 2017. The US House seeks even deeper NASA budget cuts.

Thus China surges powerfully forward in space and science while the US political establishment has directed NASA to delay and retrench and layoff still more workers.

China's unmanned spacecraft Shenzhou-8 blasted off at 5:58 a.m. Beijing Time Nov 1 from the Jiuquan Satellite Launch Center in northwestern desert area. Credit: CMSE

Read Ken’s related features about China’s Shenzhou-8, Tiangong-1 and Yinghou-1
China launches Shenzhou-8 bound for Historic 1st Docking in Space
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline

China launches Shenzhou-8 bound for Historic 1st Docking in Space

China's unmanned spacecraft Shenzhou-8 blasted off at 5:58 a.m. Beijing Time Nov 1 from the Jiuquan Satellite Launch Center in northwestern desert area. Credit: CMSE

[/caption]

China today launched the Shenzhou-8 capsule on a historic mission to accomplish the nation’s first ever docking in space with another vehicle, already in orbit, and pave the way toward’s China’s true ambition – constructing a multi-module space station by 2020.

The unpiloted Shenzhou-8 streaked skywards today in a blinding flash atop a powerful and upgraded Long March 2F/Y8 carrier rocket in the early morning darkness and precisely on time at 5:58 a.m. Beijing time (5:58 p.m. EDT) from the Jiuquan Satellite Launch Center in the Gobi Desert in northwest China. Viewers could watch a live CCTV broadcast from state media broadcast in English.

The Long March first stage is augmented with four liquid fueled strap on boosters. Spectacular TV views show the boosters and payload fairings being jettisoned.

The goal of the mission is for China to master critical and complex rendezvous and docking technologies and link up with China’s 1st orbiting prototype space station module dubbed Tiangong-1, or Heavenly Palace-1.

A modified model of the Long March CZ-2F rocket carrying the unmanned spacecraft. Shenzhou-8 blasts off from the launch pad at the Jiuquan Satellite Launch Center in northwest China's Gansu Province, Nov. 1, 2011. Credit: Xinhua/Li Gang

The historic docking of Shenzhou-8 with Tiangong-1 will be a highly significant achievement and is set to take place after the capsule catches up with the module in two days time. Tiangong-1 has been orbiting Earth since it was launched a month ago from the same launch site.

“The Launch of Shenzhou 8 has been a great success !”, announced Gen. Chang Wanquan, the Commander in Chief of China’s manned space program known as the China Manned Space Engineering (CMSE) Project. Chang, dressed in his military uniform, is Commanding Officer of Tiangong 1/Shenzhou 8 Rendezvous and Docking Mission Headquarters, and director of the PLA (Peoples Liberation Army) General Armaments Department.

Shenzhou-8 blasted off on Nov.1 from Jiuquan Satellite Launch Center. Credit: CMSE

“The Shenzhou 8 spaceship has entered at 6:07:53 its operating orbit with a perigee height of 200 km and apogee height of 329 km.”

The unmanned Shenzhou capsule entered orbit 585 seconds after liftoff while flying over the Pacific Ocean and placed the spacecraft into an initial elliptical orbit.

Shenzhou-8 will conduct five orbital maneuvers by firing its on board thrusters to match orbits and close in Tiangong-1 over the next two days and is on course for the linkup. Each vehicle weighs about 8 tons.

The two vehicles will remain docked for 12 days. Shenzhou-8 will then undock and separate and attempt another practice docking.

After several more days of joint operations the Shenzhou-8 capsule will depart and reenter the earth as though it had a crew.

Shenzhou-8 is fully equipped to carry an astronaut crew and even food and water are stored on board.

Today’s success sets the stage for two Chinese manned missions to follow in 2012, namely Shenzhou 9 and Shenzhou 10. They will each carry two or three astronauts.

Schematic of Shenzhou-8 (left) and Tiangong-1 space station module (right) accomplishing historic first Chinese docking in Earth orbit. Credit: CMSE

The Tiangong-1 target module was launched from Jiuquan on September 29 and is functioning perfectly. Its orbit was already lowered and the ship was rotated 180 degrees in anticipation of today’s liftoff.

The Long March 2F booster is the tallest, heaviest and most powerful in China’s rocket arsenal.

China’s state run CCTV carried the launch live and provided excellent and informative commentary that harkened back to the glory days of NASA’s Apollo moon landing project. The Chinese government and people take great pride in the accomplishments of their space program which is vaulting China to the forefront of mastering technologically difficult achievements.

Long range tracking cameras and on board cameras captured exquisite views of Shenzhou-8 maneuver all the way to orbit, including separation of the first stage booster, jettison of the payload fairing, firing of the 2nd stage engines, deployment of the twin solar arrays, live shots inside the capsule and beautiful views of mother Earth some 200 kilometers below.

Read Ken’s related features about China’s Shenzhou-8, Tiangong-1 and Yinghou-1
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline

Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1

Shenzhou 8 spaceship and its launch vehicle Long March 2F/Y8 were transferred to the Jiuquan launch pad. Liftoff is scheduled for Nov. 1. China’s VAB in the background. Credit: CMSE

[/caption]

China’s Shenzhou-8 capsule and the Long March booster rocket have been rolled out to the Gobi desert launch pad and will blast off early on November 1 bound for the 1st orbiting Chinese prototype space station – named Tiangong-1 (which translates as Heavenly Palace-1).

If successful, the Shenzhou -8/Tiangong -1 combined orbital complex will certainly be a ‘great leap forward’ for China’s space program ambitions and technological prowess while NASA’s current and future ambitions are being significantly curtailed by relentless budget cuts directed by politicians in Washington, D.C. – a fact noted by Chinese media.

Shenzhou-8, an unmanned spacecraft, and its carrier, Long March 2-F, are transported to the launch pad at the Jiuquan Satellite Launch Center in Northwest China's Gansu province. It is expected to perform China's first space docking with Tiangong-1, a lab module that went up in September from the same facility. Credit: Su Dong/China Daily

The unmanned Shenzhou- 8 capsule will lift off at 5:58 a.m. local time from the Jiuquan Satellite Launch Center located in Gansu province in northwest China.

Propellants are being loaded into the upgraded Long March 2F/Y8 carrier rocket today (Oct. 31). All launch preparations and tests are proceeding on schedule according to to the China Manned Space Engineering (CMSE) office – the state run government agency responsible for China’s human spaceflight program.

Prelaunch exercises are being coordinated by the Beijing Aerospace Flight Control Center, the command center for the Chinese space program.

The fully assembled vehicles were vertically transported some 1500 meters over about 2 hours along rail tracks from China’s version of NASA’s VAB, or the Vehicle Assembly Building.

The 8 ton Tiangong-1 target module was launched from Jiuquan on September 29 and is functioning perfectly

The Shenzhou VIII spacecraft is assembled with the Long-March II-F rocket at the Jiuquan Satellite Launch Center in Northwest China's Gansu province on Oct 23, 2011. Credit: CFP

The Long March 2F booster is the tallest, heaviest and most powerful in China’s arsenal of rockets.

Tiangong-1 has been maneuvered to rotate 180 degrees in orbit in anticipation of the upcoming launch according to CMSE.

The emergency escape tower is hoisted to Shenzhou-8 at the Jiuquan Satellite Launch Center on Oct 23, 2011. Credit: CFP

Shenzhou is China’s human rated capsule but is flying in an unmanned configuration for this flight – #8 – which will be China’s first ever attempt at critical Rendezvous & Docking maneuvers in earth orbit that are required to construct a Space Station- China’s long term goal by 2020 .

Shenzhou-8 will conduct at least two docking practice tests. After the first docking, the two ships will remain joined for about 12 days and then separate to carry out another docking.

So far China has conducted 3 manned flights, the first in 2003. Currently the US has no capability to launch astronauts to earth orbit and the ISS and is totally reliant on Russian Soyuz rockets and capsules to hitch a ride to space.

Two crewed flights to Tiangiong-1 are planned for 2012. The multi-person crews aboard Shenzhou 9 & Shenzhou 10 are likely to include China’s first woman astronaut. The chinese crews would float into Tiangong 1 from their capsules and remain on board for short duration missions of a few days or weeks. They will check out the space systems and conduct medical, space science and technology tests and experiments.

Read Ken’s related features about China’s Shenzhou-8, Tiangong-1 and Yinghou-1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline

Closing the Clamshell on a Martian Curiosity

In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, sections of an Atlas V rocket payload fairing engulf NASA's Mars Science Laboratory (MSL) as they close in around it. The blocks on the interior of the fairing are components of the fairing acoustic protection (FAP) system, designed to protect the payload by dampening the sound created by the rocket during liftoff. Launch of MSL aboard a United Launch Alliance Atlas V rocket is planned for Nov. 25 from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: NASA/Jim Grossmann

[/caption]

Curiosity’s clamshell has been closed.

And it won’t open up again until a few minutes after she blasts off for the Red Planet in just a little more than 3 weeks from now on Nov. 25, 2011 – the day after Thanksgiving celebrations in America.

The two halves of the payload fairing serve to protect NASA’s next Mars rover during the thunderous ascent through Earth’s atmosphere atop the powerful Atlas V booster rocket that will propel her on a fantastic voyage of hundreds of millions of miles through interplanetary space.

Spacecraft technicians working inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center (KSC) in Florida have now sealed Curiosity and her aeroshell inside the payload fairing shroud. The fairing insulates the car sized robot from the intense impact of aerodynamic pressure and heating during ascent. At just the right moment it will peal open and be jettisoned like excess baggage after the rocket punches through the discernable atmosphere.

Clamshell-like payload fairing about to be closed around Curiosity at KSC. Credit: NASA/Jim Grossmann

The next trip Curiosity takes will be a few miles to the Launch Pad at Space Launch Complex 41 at adjacent Cape Canaveral Air Force Station. She will be gingerly loaded onto a truck for a sojourn in the dead of night.

Curiosity in front of one payload fairing shell. Credit: NASA/Jim Grossmann

“Curiosity will be placed onto the payload transporter on Tuesday and goes to Complex 41 on Wednesday, Nov. 2,” KSC spokesman George Diller told Universe Today. “The logo was applied to the fairing this weekend.”

At Pad 41, the payload will then be hoisted atop the United Launch Alliance Atlas V rocket and be bolted to the Centaur upper stage.

Installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source is one of the very last jobs and occurs at the pad just in the very final days before liftoff for Mars.

The MMRTG will be installed through a small porthole in the payload fairing and the aeroshell (see photo below).

MMRTG power source will be installed on Curiosity through the porthole at right just days before Nov. 25 launch. Credit: NASA/Jim Grossmann

The plutonium dioxide based power source has more than 40 years of heritage in interplanetary exploration and will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to the solar powered rovers Spirit and Opportunity.

After a 10 month voyage, Curiosity is due to land at Gale Crater in August 2012 using the revolutionary sky crane powered descent vehicle for the first time on Mars.

Camera captures one last look at Curiosity before an Atlas V rocket payload fairing is secured around it. Credit: NASA/Jim Grossmann

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Technicians monitor Curiosity about to be engulfed by the two halves of the payload fairing. Credit: NASA/Jim Grossmann
Payload fairing sealed around Curiosity at the Payload Hazardous Servicing Facility at KSC. Credit: NASA/Jim Grossmann
Atlas V rocket at Launch Complex 41 at Cape Canaveral, Florida
An Atlas V rocket similar to this one utilized in August 2011 for NASA’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 25, 2011 from Florida. Credit: Ken Kremer

Phobos-Grunt, Earth’s other mission to Mars courtesy of Russia is due to blast off first from the Baikonur Cosmodrome on November 9, 2011.

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here:
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track

The unpiloted ISS Progress 45 cargo craft launches from the Baikonur Cosmodrome in Kazakhstan. Credit: NASA TV

Video caption: Liftoff of unmanned Russian Progress craft atop Soyuz booster on Oct. 30, 2011 from Baikonur Cosmodrome. Credit: NASA TV/Roscosmos.
Photos and rocket rollout video below

The very future of the International Space Station was on the line this morning as the Russian Progress 45 cargo ship successfully launched this morning from the Baikonur Cosmodrome in Kazakhstan at 6:11 a.m. EDT (4:11 p.m. Baikonur time) on Oct. 30, 2011, bound for the ISS.

Today’s (Oct. 30) blastoff of the Soyuz rocket booster that is used for both the Progress cargo resupply missions and the Soyuz manned capsules was the first since the failure of the third stage of the prior Progress 44 mission on August 24 which crashed in Siberia.

[/caption]
The third stage is nearly identical for both the manned and unmanned versions of the normally highly reliable Soyuz booster rocket.

Today’s success therefore opens up the door to resumption of crewed flights to the ISS, which were grounded by Russia after the unexpected loss of the Progress 44 mission.

If this Progress flight had failed, the ISS would have had to be left in an uncrewed state for the first time since continuous manned occupation began more than 10 years ago and would have significantly increased the risk for survival of the ISS in the event of a major malfunction and no human presence on board to take swift corrective action.

Liftoff of Soyuz rocket with Progress 45 to ISS from Baikonur Cosmodrome in Kazakhstan.
Credit:RIA Novosti

NASA issued the following statement from Bill Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington, about the launch of the Progress 45 spacecraft.

“We congratulate our Russian colleagues on Sunday’s successful launch of ISS Progress 45, and the spacecraft is on its way to the International Space Station. Pending the outcome of a series of flight readiness meetings in the coming weeks, this successful flight sets the stage for the next Soyuz launch, planned for mid-November. The December Soyuz mission will restore the space station crew size to six and continue normal crew rotations.”

Progress 45 is carrying nearly 3 tons of supplies to the ISS, including food, water, clothing, spare parts, fuel, oxygen and science experiments for use by the resident crews.

The resupply vehicle achieved the desired preliminary orbit after the eight and one half minute climb to space and deployed its solar arrays and communications antennae’s.

After a two day chase, Progress 45 will automatically link up with the ISS at the Pirs Docking Compartment on Nov. 2 at 7:40 a.m (EDT) and deliver 1,653 pounds of propellant, 110 pounds of oxygen and air, 926 pounds of water and 3,108 pounds of spare parts, experiment hardware and other supplies for the Expedition 29 crew.

Progress 45 atop Soyuz-U booster awaits liftoff from Baikonur Cosmodrome in Kazakhstan.
Credit: Roscosmos

The successful launch sets the stage for the launch of the station’s next three residents on Nov. 13. NASA’s Dan Burbank and Russia’s Anton Shkaplerov and Anatoly Ivanishin will arrive at the station Nov. 16, joining NASA’s Mike Fossum, Russia’s Sergei Volkov and Japan’s Satoshi Furukawa for about six days before Fossum, Volkov and Furukawa return home.

Liftoff of Burbank’s crew was delayad from the original date on September 22 following the Progress failure in August. Because of the delayed Soyuz crew launch, the handover period from one crew to the next had to be cut short.

Since the forced retirement of the Space Shuttle, the US has absolutely no way to send human crews to orbit for several years to come at a minimum and is totally reliant on Russia.

The survival of the ISS with humans crews on board is therefore totally dependent on a fully functioning and reliable Soyuz rocket.


Video caption: Rollout of Soyuz rocket and Progress cargo craft to Baikonur launch pad.

Read Ken’s continuing features about Soyuz from South America here:
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport