This Is The Highest Resolution Image Of Europa We Have … For Now

Credit: NASA/JPL-Caltech
This is the highest resolution image taken by Galileo at Europa — Jupiter’s 4th largest moon — until our next mission to the planet. It was obtained at an original image scale of 19 feet (6 meters) per pixel. The gray line down the middle resulted from missing data that was not transmitted by Galileo. Credit: NASA/JPL-Caltech

In the movie 2010: The Year We Make Contact, the sequel to Stanley’s Kubrick’s 2001: A Space Odyssey, black Monoliths multiply, converge and transform Jupiter into a new star. We next hear astronaut David Bowman’s disembodied voice with this message: “All these worlds are yours except Europa. Attempt no landing there.” The newborn sun warms Europa, transforming the icy landscape into a primeval jungle. At the end, a single Monolith appears in the swamp, waiting once again to direct the evolution of intelligent life forms.

Europa’s cracked, icy surface imaged by NASA’s Galileo spacecraft in 1998. Credit: NASA/JPL-Caltech/SETI Institute

Stay away from Europa? No way. It’s just too fascinating a place with its jigsaw-puzzle ice sheets, crisscross valleys, miles of ice on top and a warm, salty ocean below. The movie was prescient — if you’re going to search for life elsewhere in the solar system, Europa’s one of the best candidates.

While we’ve sent spacecraft to photograph and study the icy moon during orbital flybys, no lander has yet to touch the surface. That may change soon. In early 2016, in response to a congressional directive, NASA’s Planetary Science Division began a pre-Phase A study to assess the science value and engineering design of a future Europa lander mission. In June 2016, NASA convened a 21-member team of scientists for the Science Definition Team (SDT). The team put together set of science objectives and measurements for the mission concept and submitted the report to NASA on Feb. 7.

This artist’s rendering illustrates a conceptual design for a potential future mission to land a robotic probe on the surface of Jupiter’s moon Europa. The lander is shown with a sampling arm extended, having previously excavated a small area on the surface. The circular dish on top is a combo high-gain antenna and camera mast, with stereo imaging cameras mounted on the back of the antenna. Three vertical shapes located around the top center of the lander are attachment points for cables that would lower the rover from a sky crane, the planned landing system for this mission concept. Credits: NASA/JPL-Caltech

The report lists three science goals for the mission. The primary goal is to search for evidence of life on Europa. The other goals are to determine the habitability of Europa by directly analyzing material from the surface, and to characterize the surface and subsurface to support future robotic exploration of Europa and its ocean.

This image from NASA’s Galileo spacecraft show the intricate detail of Europa’s icy surface. The red staining occurs in areas where briny waters from below — possibly mixed with sulfur — reach the surface. Radiation from Jupiter bombards the material, causing it to redden. Gravitational flexing of the moon as it orbits Jupiter fractures the icy crust into a chaotic landscape of snaking valleys and ice sheets. It also warms the ocean beneath the crust, potentially making it habitable. Credit: NASA/JPL-Caltech

The evidence is quite strong that Europa, with a diameter of 1,945 miles — slightly smaller than Earth’s moon —  has a global saltwater ocean beneath its icy crust. This ocean has at least twice as much water as Earth’s oceans. Two things make Europa’s ocean unique and give the moon a greater chance of supporting microbial life compared to say, Ganymede and Enceladus, which also hold water reservoirs beneath their crusts.

Astronomers hypothesize that chloride salts bubble up from the icy moon’s global liquid ocean and reach the frozen surface where they are bombarded with sulfur from volcanoes on Jupiter’s innermost large moon Io. Molecular signs of life may be transported where they could be detected by a spacecraft.  In this illustration, we see Europa (foreground), Jupiter (right) and Io (middle). Credit: NASA/JPL-Caltech

One: the ocean is relatively close to the surface, just 10-15 miles below the moon’s icy shell. Radiation from Jupiter (high-speed electrons and protons) bombards ice, sulfur and salts on the surface to create compounds that could trickle down into warmer regions and used by living things for growth and metabolism.

Broken plates and blocks of water ice now frozen in place in Europa’s crust suggest they floated freely for a time. Credit: NASA/JPL-Caltech

Two: While recent discoveries have shown that many bodies in the solar system either have subsurface oceans now, or may have in the past, Europa is one of only two places where the ocean appears to be in contact with a rocky seafloor (the other being Saturn’s moon Enceladus). This rare circumstance makes Europa one of the highest priority targets in the search for present-day life beyond Earth.

On Earth, chemical interactions between life and lifeless rock in deep oceans and within the outer crust provide the energy needed to power and sustain microbial life. For all we know, deep sea volcanoes belch essential elements into the salty waters spawned by the constant flexing and heating of the moon as it orbits Jupiter every 85 hours.

 

This mosaic of images includes the most detailed view of the surface of Jupiter’s moon Europa obtained by NASA’s Galileo mission. This observation was taken with the sun relatively high in the sky, so most of the brightness variations are due to color differences in the surface material rather than shadows. Ridge tops, brightened by frost, contrast with darker valleys, perhaps due to small temperature variations allow frost to accumulate in slightly colder, higher-elevation locations. Credit: NASA/JPL-Caltech

The SDT was tasked with developing a life-detection strategy, a first for a NASA mission since the Mars Viking mission era more than four decades ago. The report makes recommendations on the number and type of science instruments that would be required to confirm if signs of life are present in samples collected from the icy moon’s surface.

The team also worked closely with engineers to design a system capable of landing on a surface about which very little is known. Given that Europa has no atmosphere, the team developed a concept that could deliver its science payload to the icy surface without the benefit of technologies like a heat shield or parachutes.

This artist’s rendering shows NASA’s Europa mission spacecraft, which is being developed for a launch sometime in the 2020s. The spacecraft would orbit around Jupiter in order to perform a detailed investigation of Europa before a follow-up landing mission. The probe could look for “biosignatures” or molecular signs of life, such as the byproducts of metabolism, transported from the moon’s ocean to its surface. Credit: NASA/JPL-Caltech

The concept lander is separate from the solar-powered Europa multiple flyby mission, now in development for launch in the early 2020s. The spacecraft will arrive at Jupiter after a multi-year journey, orbiting the gas giant every two weeks for a series of 45 close flybys of Europa. The multiple flyby mission will investigate Europa’s habitability by mapping its composition, determining the characteristics of the ocean and ice shell, and increasing our understanding of its geology. The mission also will lay the foundation for a future landing by performing detailed reconnaissance using its powerful cameras.

We can’t help but be excited by the prospects of life-seeking missions to Europa. Sometimes wonderful things come in small packages.

See a Flirtatious Lunar Eclipse This Friday Night

Penumbral lunar eclipse Oct. 18-19, 2013. Credit: AstroTripper2000
This sequence of photos taken on October 18, 2013 nicely show the different phases of a penumbral lunar eclipse. The coming penumbral eclipse will likely appear even darker because Earth’s shadow will shade to the top (northern) half of the Moon rich in dark lunar “seas” at maximum. Credit: AstroTripper 2000

Not many people get excited about a penumbral eclipse, but when it’s a deep one and the only lunar eclipse visible in North America this year, it’s worth a closer look. What’s more, this Friday’s eclipse happens during convenient, early-evening viewing hours. No getting up in the raw hours before dawn.

Lunar eclipses — penumbral, partial and total — always occur at Full Moon, when the Moon, Earth and Sun line up squarely in a row in that order. Only then does the Moon pass through the shadow cast by our planet. Credit: Starry Night with additions by the author

During a partial or total lunar eclipse, the full moon passes first through the Earth’s outer shadow, called the penumbra, before entering the dark, interior shadow or umbra. The penumbra is nowhere near as dark as the inner shadow because varying amounts of direct sunlight filter into it, diluting its duskiness.

To better understand this, picture yourself watching the eclipse from the center of the Moon’s disk (latitude 0°, longitude 0°). As you look past the Earth toward the Sun, you would see the Sun gradually covered or eclipsed by the Earth. Less sunlight would be available to illuminate the Moon, so your friends back on Earth would notice a gradual dimming of the Moon, very subtle at first but becoming more noticeable as the eclipse progressed.

This diagram shows an approximation of the Sun’s position and size as viewed by an observer at the center of the lunar disk during Friday’s penumbral eclipse. More sunlight shines across the Moon early in the eclipse, making the penumbral shadow very pale, but by maximum (right), half the sun is covered and the Moon appears darker and duskier as seen from Earth. During a total lunar eclipse, the sun is hidden completely. Credit: Bob King with Earth image by NASA

As the Moon’s leading edge approached the penumbra-umbra border, the Sun would narrow to a glaring sliver along Earth’s limb for our lucky lunar observer. Back on Earth, we’d notice that the part of the Moon closest to the umbra looked strangely gray and dusky, but the entire lunar disk would still be plainly visible. That’s what we’ll see during Friday’s eclipse. The Moon will slide right up to the umbra and then roll by, never dipping its toes in its dark waters.

During a partial eclipse, the Moon keeps going into the umbra, where the Sun is completely blocked from view save for dash of red light refracted by the Earth’s atmosphere into what would otherwise be an inky black shadow. This eclipse, the Moon only flirts with the umbra.

The moon’s orbit is tilted 5.1 degrees in relation to Earth’s orbit, so most Full Moons, it passes above or below the shadow and no eclipse occurs. Credit: Bob King

Because the moon’s orbit is tilted about 5° from the plane of Earth’s orbit, it rarely lines up for a perfect bullseye total eclipse: Sun – Earth – Moon in a straight line in that order. Instead, the moon typically passes a little above or below (north or south) of the small, circle-shaped shadow cast by our planet, and no eclipse occurs. Or it clips the outer edge of the shadow and we see — you guessed it — a penumbral eclipse.

Earth’s shadow varies in size depending where you are in it. Standing on the ground during twilight, it can grow to cover the entire sky, but at the moon’s distance of 239,000 miles, the combined penumbra and umbra span just 2.5° of sky or about the width of your thumb held at arm’s length.

The moon passes through Earth’s outer shadow, the penumbra, on Feb. 10-11. In the umbra, the sun is blocked from view, but the outer shadow isn’t as dark because varying amounts of sunlight filter in to dilute the darkness. Times are Central Standard. Credit: F. Espenak, NASA’s GFSC with additions by the author

Because the Moon travels right up to the umbra during Friday’s eclipse, it will be well worth watching.The lower left  or eastern half of the moon will appear obviously gray and blunted especially around maximum eclipse as it rises in the eastern sky that Friday evening over North and South America. I should mention here that the event is also visible from Europe, Africa, S. America and much of Asia.

This map shows where the eclipse will be visible. Most of the U.S. will see at least part of the event. Credit: F. Espenak, NASA’s GFSC

For the U.S., the eastern half of the country gets the best views. Here are CST and UT times for the different stages. To convert from CST, add an hour for Eastern, subtract one hour for Mountain and two hours for Pacific times. UT stands for Universal Time, which is essentially the same as Greenwich or “London” Time except when Daylight Saving Time is in effect:

This is a simulated view of the Full Snow Moon at maximum eclipse Friday evening low in the eastern sky alongside the familiar asterism known as the Sickle of Leo. Created with Stellarium

Eclipse begins: 4:34 p.m. (22:34 p.m. UT)
Maximum eclipse (moon deepest in shadow): 6:44 p.m. (00:43 UT Feb. 11)
Eclipse ends: 8:53 p.m. (2:53 UT Feb. 11)

You can see that the eclipse plays out over more than 4 hours, though I don’t expect most of us will either be able or would want to devote that much time. Instead, give it an hour or so when the Moon is maximally in shadow from 6 to 7:30 p.m. CST; 7-8:30 EST; 5-6:30 p.m. MST and around moonrise Pacific time.

This should be a fine and obvious eclipse because around the time of maximum, the darkest part of the penumbra shades the dark, mare-rich northern hemisphere of the Moon. Dark plus dark equals extra dark! Good luck and clear skies!

Outstanding Opportunity Rover Making ‘Amazing New Discoveries’ 13 Years After Mars Touchdown – Scientist Tells UT

13 Years on Mars! On Christmas Day 2016, NASA’s Opportunity rover scans around vast Endeavour crater as she ascends steep rocky slopes on the way to reach a water carved gully along the eroded craters western rim. This navcam camera photo mosaic was assembled from raw images taken on Sol 4593 (25 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo
13 Years on Mars!
On Christmas Day 2016, NASA’s Opportunity rover scans around vast Endeavour crater as she ascends steep rocky slopes on the way to reach a water carved gully along the eroded craters western rim. This navcam camera photo mosaic was assembled from raw images taken on Sol 4593 (25 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

NASA’s truly outstanding Opportunity rover continues “making new discoveries about ancient Mars” as she commemorates 13 Years since bouncing to a touchdown on Mars, in a feat that is “truly amazing” – the deputy chief scientist Ray Arvidson told Universe Today exclusively.

Resilient Opportunity celebrated her 13th birthday on Sol 4623 on January 24, 2017 PST while driving south along the eroded rim of humongous Endeavour crater – and having netted an unfathomable record for longevity and ground breaking scientific discoveries about the watery environment of the ancient Red Planet.

“Reaching the 13th year anniversary with a functioning rover making new discoveries about ancient Mars on a continuing basis is truly amazing,” Ray Arvidson, Opportunity Deputy Principal Investigator of Washington University in St. Louis, told Universe Today.

Put another way Opportunity is 13 YEARS into her 3 MONTH mission! And still going strong!

During the past year the world famous rover discovered “more extensive aqueous alteration within fractures and more mild alteration within the bedrock outcrops” at Endeavour crater, Arvidson elaborated.

And now she is headed to her next target – an ancient water carved gully!

The gully is situated about 0. 6 mile (1.6 km) south of the robots current location.

But to get there she first has to heroically ascend steep rocky slopes inclined over 20 degrees along the eroded craters western rim – and it’s no easy task! Slipping and sliding along the way and all alone on difficult alien terrain.

Furthermore she is 51 times beyond her “warrantied” life expectancy of merely 90 Sols promised at the time of landing so long ago – roving the surface of the 4th rock from the Sun during her latest extended mission; EM #10.

How was this incredible accomplishment achieved?

“Simply a well-made and thoroughly tested American vehicle,” Arvidson responded.

NASA’s Opportunity rover scans around and across to vast Endeavour crater on Dec. 19, 2016, as she climbs steep slopes on the way to reach a water carved gully along the eroded craters western rim. Note rover wheel tracks at center. This navcam camera photo mosaic was assembled from raw images taken on Sol 4587 (19 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

The six wheeled rover landed on Mars on January 24, 2004 PST on the alien Martian plains at Meridiani Planum -as the second half of a stupendous sister act.

Her twin sister Spirit, had successfully touched down 3 weeks earlier on January 3, 2004 inside 100-mile-wide Gusev crater and survived more than six years.

NASA’s Opportunity explores Spirit Mound after descending down Marathon Valley and looks out across the floor of vast Endeavour crater. This navcam camera photo mosaic was assembled from raw images taken on Sol 4505 (25 Sept 2016) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

Opportunity concluded 2016 and starts 2017 marching relentlessly towards an ancient water carved gully along the eroded rim of vast Endeavour crater – the next science target on her heroic journey traversing across never before seen Red Planet terrains.

Huge Endeavour crater spans some 22 kilometers (14 miles) in diameter.

Throughout 2016 Opportunity was investigating the ancient, weathered slopes around the Marathon Valley location in Endeavour crater. The area became a top priority science destination after the slopes were found to hold a motherlode of ‘smectite’ clay minerals based on data from the CRISM spectrometer circling overhead aboard a NASA Mars orbiter.

The smectites were discovered via extensive, specially targeted Mars orbital measurements gathered by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) spectrometer on NASA’s Mars Reconnaissance Orbiter (MRO) – accomplished earlier at the direction of Arvidson.

Opportunity was descending down Marathon Valley the past year to investigate the clay minerals formed in water. They are key to helping determine the habitability of the Red Planet when it was warmer and wetter billions of years ago.

What did Opportunity accomplish scientifically at Marathon Valley during 2016?

“Key here is the more extensive aqueous alteration within fractures and more mild alteration within the bedrock outcrops,” Arvidson explained to me.

“Fractures have red pebbles enhanced in Al and Si (likely by leaching out more soluble elements), hematite, and in the case of our scuffed fracture, enhanced sulfate content with likely Mg sulfates and other phases. Also the bedrock is enriched in Mg and S relative to other Shoemaker rocks and these rocks are the smectite carrier as observed from CRISM ATO data.”

Marathon Valley measures about 300 yards or meters long. It cuts downhill through the west rim of Endeavour crater from west to east – the same direction in which Opportunity drove downhill from a mountain summit area atop the crater rim.

Opportunity has been exploring Endeavour since arriving at the humongous crater in 2011. Endeavour crater was formed when it was carved out of the Red Planet by a huge meteor impact billions of years ago.

“Endeavour crater dates from the earliest Martian geologic history, a time when water was abundant and erosion was relatively rapid and somewhat Earth-like,” explains Larry Crumpler, a science team member from the New Mexico Museum of Natural History & Science.

Opportunity has been climbing up very steep and challenging slopes to reach the top of the crater rim. Then she will drive south to Cape Byron and the gully system.

“We have had some mobility issues climbing steep, rocky slopes. Lots of slipping and skidding, but evaluating the performance of the rover on steep, rocky and soil-covered slopes was one of the approved extended mission objectives,” Arvidson explained.

“We are heading out of Cape Tribulation, driving uphill to the southwest to reach the Meridiani plains and then to drive to the western side of Cape Byron to the head of a gully system.”

What’s ahead for 2017? What’s the importance of exploring the gully?

“Finish up work on Cape Tribulation, traverse to the head of the gully system and head downhill into one or more of the gullies to characterize the morphology and search for evidence of deposits,” Arvidson elaborated.

“Hopefully test among dry mass movements, debris flow, and fluvial processes for gully formation. The importance is that this will be the first time we will acquire ground truth on a gully system that just might be formed by fluvial processes. Will search for cross bedding, gravel beds, fining or coarsening upward sequences, etc., to test among hypotheses.”

How long will it take to reach the gully?

“Months to the gully,” replied Arvidson. After arriving at the top of the crater rim, the rover will actually drive part of the way on the Martian plains again during the southward trek to the gully.

“And we will be driving on the plains to drive relatively long distances with an intent of getting to the gully well before the winter season.”

As of today, Jan 31, 2017, long lived Opportunity has survived 4630 Sols (or Martian days) roving the harsh environment of the Red Planet.

Opportunity has taken over 216,700 images and traversed over 27.26 miles (43.87 kilometers) – more than a marathon.

NASA’s Opportunity rover discovers a beautiful Martian dust devil moving across the floor of Endeavour crater as wheel tracks show robots path today exploring the steepest ever slopes of the 13 year long mission, in search of water altered minerals at Knudsen Ridge inside Marathon Valley on 1 April 2016. This navcam camera photo mosaic was assembled from raw images taken on Sol 4332 (1 April 2016) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

See our updated route map below. It shows the context of the rovers over 13 year long traverse spanning more than the 26 mile distance of a Marathon runners race.

The rover surpassed the 27 mile mark milestone on November 6, 2016 (Sol 4546).

The power output from solar array energy production is currently 416 watt-hours, before heading into another southern hemisphere Martian winter in 2017. It will count as Opportunities 8th winter on Mars.

Meanwhile Opportunity’s younger sister rover Curiosity traverses and drills into the lower sedimentary layers at the base of Mount Sharp.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

13 Year Traverse Map for NASA’s Opportunity rover from 2004 to 2017. This map shows the entire 43 kilometer (27 mi) path the rover has driven on the Red Planet during more than 13 years and more than a marathon runners distance for over 4614 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 – to current location at the western rim of Endeavour Crater. After descending down Marathon Valley and after studying Spirit Mound, the rover is now ascending back uphill on the way to a Martian water carved gully. Rover surpassed Marathon distance on Sol 3968 after reaching 11th Martian anniversary on Sol 3911. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone – and searched for more at Marathon Valley. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer/kenkremer.com

NASA Tribute Exhibit Honors Fallen Apollo 1 Crew 50 Years After Tragedy

The new tribute to Apollo 1 at NASA’s Kennedy Space Center was opened during a dedication ceremony on Jan. 27, 2017, 50 years after the crew was lost - with a keynote speech by Kennedy Space Center Director and former astronaut Bob Cabana. The entrance to the Apollo 1 tribute shows the three astronauts who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. The astronauts are, from left, Gus Grissom, Ed White II and Roger Chaffee. Credit: Ken Kremer/kenkremer.com
The new tribute to Apollo 1 at NASA’s Kennedy Space Center was opened during a dedication ceremony on Jan. 27, 2017, 50 years after the crew was lost – with a keynote speech by Kennedy Space Center Director and former astronaut Bob Cabana. The entrance to the Apollo 1 tribute shows the three astronauts who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. The astronauts are, from left, Gus Grissom, Ed White II and Roger Chaffee. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – NASA unveiled a new tribute exhibit honoring three fallen astronaut heroes 50 years to the day of the Apollo 1 tragedy on January 27, 1967 when the three man crew perished in a flash fire on the launch pad during a capsule test that was not considered to be dangerous.

The Apollo 1 prime crew comprising NASA astronauts Gus Grissom, Ed White II and Roger Chaffee were killed during routine practice countdown testing when a fire suddenly erupted inside the cockpit as they were strapped to their seats in their Apollo command module capsule, on a Friday evening at 6:31 p.m. on January 27, 1967.

“It’s been 50 years since the crew of Apollo 1 perished in a fire at the launch pad, but the lives, accomplishments and heroism of the three astronauts are celebrated in a dynamic, new tribute that is part museum, part memorial and part family scrapbook,” says a NASA narrative that aptly describes the exhibit and the memorial ceremony I attended at the Apollo/Saturn V Center at NASA’s Kennedy Space Center in Florida on Friday, Jan. 27, 2017 on behalf of Universe Today.

It was the first disaster with a human crew and the worst day in NASA’s storied history to that point.

The tribute is named called “Ad Astra Per Aspera – A Rough Road Leads to the Stars.”

A new tribute to the crew of Apollo 1, who perished in a fire at the launch pad on Jan. 27, 1967, opened at NASA’s Kennedy Space Center on the 50th anniversary of that fatal day that cost the lives of all three crewmembers. The tribute exhibit at the Apollo/Saturn Center highlights the lives and careers of NASA astronauts Gus Grissom, Ed White II and Roger Chaffee with artifacts and photos. Credit: Ken Kremer/kenkremer.com

At the tribute dedication ceremony Kennedy Space Center Director and former astronaut Bob Cabana said the families of the fallen crew gave their approvals and blessing to the efforts that would at last tell the story of Apollo 1 to all generations – those who recall it and many more to young or not yet born to remember the tragedy of the early days of America’s space program.

“It’s long overdue,” said KSC center director and former astronaut Bob Cabana at the KSC dedication ceremony to family, friends and invited guests colleagues. “I’m proud of the team that created this exhibit.”

“Ultimately, this is a story of hope, because these astronauts were dreaming of the future that is unfolding today,” said Cabana. Generations of people around the world will learn who these brave astronauts were and how their legacies live on through the Apollo successes and beyond.”

The exhibit “showcases clothing, tools and models that define the men as their parents, wives and children saw them as much as how the nation viewed them.”

The main focus was to introduce the astronauts to generations who never met them and may not know much about them or the early space program, says NASA.

“This lets you now meet Gus Grissom, Ed White and Roger Chaffee as members of special families and also as members of our own family,” said NASA’s Luis Berrios, who co-led the tribute design that would eventually involve more than 100 designers, planners and builders to realize.

“You get to know some of the things that they liked to do and were inspired by. You look at the things they did and if anyone does just one of those things, it’s a lifetime accomplishment and they did all of it and more.”

Apollo 1 astronauts Gus Grissom, Ed White II and Roger Chaffee stand near Cape Kennedy’s Launch Complex 34 during mission training in January 1967. On Jan. 27, 1967, the three astronauts were preparing for what was to be the first manned Apollo flight. The astronauts were sitting atop the launch pad for a pre-launch test when a fire broke out in their Apollo capsule and they perished. Credit: NASA

The crew and the Apollo 1 command module were stacked atop the Saturn 1B rocket at Launch Complex 34 on what is now Cape Canaveral Air Force Station in Florida.

During the “plugs out” test the Saturn 1B rocket was not fueled. But the fatal flaw was the atmosphere of pure oxygen for the astronauts to breath inside the sealed Apollo 1 command module which was pressurized to 16.7 psi.

The three-part hatch that was in place on the Apollo 1 spacecraft is shown in a tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. This is the first time any part of the Apollo 1 spacecraft has been displayed publicly and is part of the tribute exhibit at NASA’s Kennedy Space Center, Florida. A version of the hatch after it was redesigned is also showcased as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon. Credit: Ken Kremer/kenkremer.com

Another significantly contributing fatal flaw was the inward opening three layered hatch that took some 90 seconds to open under the best of conditions.

After working all afternoon through the practice countdown and encountering numerous problems, something went terribly awry. Without warning a flash fire erupted in the cockpit filled with 100 percent oxygen and swiftly spread uncontrollably creating huge flames licking up the side of the capsule, acrid smoke and a poisonous atmosphere that asphyxiated, burned and killed the crew.

With the scorching temperatures spiking and pressures rapidly rising in a closed system, the capsule exploded some 20 seconds after the fire started. And because of the pressure buildup inside with flames licking up the sides and the toxic atmosphere generated from burning materials, the crew succumbed and could not turn the latch to pull open the hatch against the pressure.

The pad crew tried bravely in vain to save them, fighting heavy smoke and fire and fearing that the attached launch abort system on top of the capsule would ignite and kill them all too.

An investigation would determine that the fire was likely caused by a spark from frayed wiring, perhaps originating under Grissom’s seat.

“An electrical short circuit inside the Apollo Command Module ignited the pure oxygen environment and within a matter of seconds all three Apollo 1 crewmembers perished,” NASA concluded.

NASA and contractor North American Aviation completely redesigned the capsule with major engineering changes including an atmosphere of 60 percent oxygen and 40 percent nitrogen at 5 psi blower pressure, new hatch that could open outwards in 5 seconds, removing flammable materials among many others that would make the Apollo spacecraft much safer for the upcoming journeys to the moon.

The multi-layed hatch serves as the centerpiece of the tribute exhibit. No piece of Apollo 1 has ever before been put on public display. Alongside the old hatch, the new hatch is displayed that was used on all the remaining Apollo missions.

The three-part hatch that was in place on the Apollo 1 spacecraft is shown in a tribute to the crew of Apollo 1 who perished in a fire at the launch pad on Jan. 27, 1967 during training for the mission. This is the first time any part of the Apollo 1 spacecraft has been displayed publicly and is part of the tribute exhibit at NASA’s Kennedy Space Center, Florida. A version of the hatch after it was redesigned is also showcased (right) as an example of improvements NASA made throughout the agency and to the Apollo spacecraft that would later carry astronauts to the moon. Credit: Ken Kremer/kenkremer.com

Display cases highlights the lives and careers of the three astronauts in these NASA descriptions.

Gus Grissom was “one of NASA’s Original Seven astronauts who flew the second Mercury mission, a hunting jacket and a pair of ski boots are on display, along with a small model of the Mercury spacecraft and a model of an F-86 Sabre jet like the one he flew in the Korean War. A slide rule and engineering drafts typify his dedication to detail.”

“The small handheld maneuvering thruster that Ed White II used to steer himself outside his Gemini capsule during the first American spacewalk features prominently in the display case for the West Point graduate whose athletic prowess nearly equaled his flying acumen. An electric drill stands alongside the “zip gun,” as he called the thruster.”

“It was great to juxtaposition it with a drill which was also a tool that Ed loved to use,” Berrios said. “He had a tremendous passion for making things for his family.”

“Roger Chaffee, for whom Apollo 1 would have been his first mission into space, was an esteemed Naval aviator who became a test pilot in his drive to qualify as an astronaut later. Displayed are board games he played with his wife and kids on rare evenings free of training.”

Grissom, White and Chaffee composed NASA’s first three person crew following the one man Mercury program and two man Gemini program, that had just concluded in November 1966 with Gemini 12.

The trio had been scheduled to blastoff on February 21, 1967 on a 14 day long mission in Earth orbit to thoroughly check out the Apollo command and service modules.

Apollo 1 was to be the first launch in NASA’s Apollo moon landing program initiated by President John F. Kennedy in 1961.

Apollo 1 was planned to pave the way to the Moon so that succeeding missions would eventually “land a man on the Moon and return him safely to Earth before this decade is out” as Kennedy eloquently challenged the nation to do.

Legendary Gemini and Apollo astronaut General Thomas Stafford speaks at dedication of new tribute exhibit at NASA’s Kennedy Space Center about the heroic Apollo 1 crew and their contributions to getting us to the Moon on the 50th anniversary of their deaths in the flash fire on Jan. 27, 1967. Stafford was the backup commander of Apollo 1. Credit: Ken Kremer/kenkremer.com

I remember seeing the first news flashes about the Apollo 1 fire on the TV as a child, as it unfolded on the then big three networks. It is indelibly marked in my mind. This new exhibit truly tells the story of these astronaut heroes vividly to those with distant memories and those with little or no knowledge of Apollo 1.

Exit walkway passing through misty projection of Apollo 1 mission patch and crossing over to mock capsule and crew of Grissom, White and Chaffee seated in Apollo 1 Command Module. Family member quotes at left. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A Proposal For Juno To Observe The Volcanoes Of Io

Io and volcanic plume. Credit: NASA/JPL-Caltech
To accomplish its science objectives, NASA’s Juno spacecraft orbits over Jupiter’s poles and passes repeatedly through hazardous radiation belts. Two Boston University researchers propose using Juno to probe the ever-changing flux of volcanic gases-turned-ions spewed by Io’s volcanoes. Credit: NASA/JPL-Caltech

Jupiter may be the largest planet in the Solar System with a diameter 11 times that of Earth, but it pales in comparison to its own magnetosphere. The planet’s magnetic domain extends sunward at least 3 million miles (5 million km) and on the back side all the way to Saturn for a total of 407 million miles or more than 400 times the size of the Sun.

Jupiter’s large magnetic field interacts with the solar wind to form an invisible magnetosphere. If we were able to see it, it would span at least several degrees of sky. It would show its greatest extent when viewing Jupiter from the side at quadrature, when the planet stands due south at sunrise or sunset.In the artist’s depiction, the planet would be located between the two “purple eyes” — too small to see at this scale. Credit: NASA.

If we had eyes adapted to see the Jovian magnetosphere at night, its teardrop-like shape would easily extend across several degrees of sky! No surprise then that Jove’s magnetic aura has been called one of the largest structures in the Solar System.

A 5-frame sequence taken by the New Horizons spacecraft in May 2007 shows a cloud of volcanic debris from Io’s Tvashtar volcano. The plume extends some 200 miles (330 km) above the moon’s surface. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Io, Jupiter’s innermost of the planet’s four large moons, orbits deep within this giant bubble. Despite its small size — about 200 miles smaller than our own Moon — it doesn’t lack in superlatives. With an estimated 400 volcanoes, many of them still active, Io is the most volcanically active body in the Solar System. In the moon’s low gravity, volcanoes spew sulfur, sulfur dioxide gas and fragments of basaltic rock up to 310 miles (500 km) into space in beautiful, umbrella-shaped plumes.

This schematic of Jupiter’s magnetic environments shows the planets looping magnetic field lines (similar to those generated by a simple bar magnet), Io and its plasma torus and flux tube. Credit: John Spencer / Wikipedia CC-BY-SA3.0 with labels by the author

Once aloft, electrons whipped around by Jupiter’s powerful magnetic field strike the neutral gases and ionize them (strips off their electrons). Ionized atoms and molecules (ions) are no longer neutral but possess a positive or negative electric charge. Astronomers refer to swarms of ionized atoms as plasma.

Jupiter rotates rapidly, spinning once every 9.8 hours, dragging the whole magnetosphere with it. As it spins past Io, those volcanic ions get caught up and dragged along for the ride, rotating around the planet in a ring called the Io plasma torus. You can picture it as a giant donut with Jupiter in the “hole” and the tasty, ~8,000-mile-thick ring centered on Io’s orbit.

That’s not all. Jupiter’s magnetic field also couples Io’s atmosphere to the planet’s polar regions, pumping Ionian ions through two “pipelines” to the magnetic poles and generating a powerful electric current known as the Io flux tube. Like firefighters on fire poles, the ions follow the planet’s magnetic field lines into the upper atmosphere, where they strike and excite atoms, spawning an ultraviolet-bright patch of aurora within the planet’s overall aurora. Astronomers call it Io’s magnetic footprint. The process works in reverse, too, spawning auroras in Io’s tenuous atmosphere.

The tilt of Juno’s orbit relative to Jupiter changes over the course of the mission, sending the spacecraft increasingly deeper into the planet’s intense radiation belts. Orbits are numbered from early in the mission to late. Credit: NASA/JPL-Caltech

Io is the main supplier of particles to Jupiter’s magnetosphere. Some of the same electrons stripped from sulfur and oxygen atoms during an earlier eruption return to strike atoms shot out by later blasts. Round and round they go in a great cycle of microscopic bombardment! The constant flow of high-speed, charged particles in Io’s vicinity make the region a lethal environment not only for humans but also for spacecraft electronics, the reason NASA’s Juno probe gets the heck outta there after each perijove or closest approach to Jupiter.

Io’s flux tube directs ions down Jupiter’s magnetic field lines to create magnetic footprints of enhanced aurora in Jupiter’s polar regions. An electric current of 5 million amps flows along Io’s flux tube.Credit: NASA/J.Clarke/HST

But there’s much to glean from those plasma streams.  Astronomy PhD student Phillip Phipps and assistant professor of astronomy Paul Withers of Boston University have hatched a plan to use the Juno spacecraft to probe Io’s plasma torus to indirectly study the timing and flow of material from Io’s volcanoes into Jupiter’s magnetosphere. In a paper published on Jan. 25, they propose using changes in the radio signal sent by Juno as it passes through different regions of the torus to measure how much stuff is there and how its density changes over time.

The technique is called a radio occultation. Radio waves are a form of light just like white light. And like white light, they get bent or refracted when passing through a medium like air (or plasma in the case of Io). Blue light is slowed more and experiences the most bending; red light is slowed less and refracted least, the reason red fringes a rainbow’s outer edge and blue its inner. In radio occultations, refraction results in changes in frequency caused by variations in the density of plasma in Io’s torus.

The best spacecraft for the attempt is one with a polar orbit around Jupiter, where it cuts a clean cross-section through different parts of the torus during each orbit. Guess what? With its polar orbit, Juno’s the probe for the job! Its main mission is to map Jupiter’s gravitational and magnetic fields, so an occultation experiment jives well with mission goals. Previous missions have netted just two radio occultations of the torus, but Juno could potentially slam dunk 24.

New Horizons took this photo of Io in infrared light. The Tvastar volcano is bright spot at top. At least 10 other volcanic hot spots dot the moon’s night side. Credit: NASA/JHUPL/SRI

Because the paper was intended to show that the method is a feasible one, it remains to be seen whether NASA will consider adding a little extra credit work to Juno’s homework. It seems a worthy and practical goal, one that will further enlighten our understanding of how volcanoes create aurorae in the bizarre electric and magnetic environment of the largest planet.

NASA Webb Telescope Resumes Rigorous Vibration Qualification Tests

NASA engineers and technicians position the James Webb Space Telescope (inside a large tent) onto the shaker table used for vibration testing. Credits: NASA/Chris Gunn
NASA engineers and technicians position the James Webb Space Telescope (inside a large tent) onto the shaker table used for vibration testing. Credits: NASA/Chris Gunn

Engineers have resumed a series of critical and rigorous vibration qualification tests on NASA’s mammoth James Webb Space Telescope (JWST) at NASA’s Goddard Space Flight Center, in Greenbelt, Maryland to confirm its safety, integrity and readiness for the unforgiving environment of space flight, after pausing due to a testing ‘anomaly’ detected in early December 2016.

The vibration tests are conducted by the team on a shaker table at Goddard to ensure Webb’s worthiness and that it will survive the rough and rumbling ride experienced during the thunderous rocket launch to the heavens slated for late 2018.

“Testing on the ground is critical to proving a spacecraft is safe to launch,” said Lee Feinberg, an engineer and James Webb Space Telescope Optical Telescope Element Manager at Goddard, in a statement.

“The Webb telescope is the most dynamically complicated article of space hardware that we’ve ever tested.”

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

Testing of the gargantuan Webb Telescope had ground to a halt after a brief scare in early December when technicians initially detected “anomalous readings” that raised potential concerns about the observatories structural integrity partway through a preplanned series of vibration tests.

“On December 3, 2016, vibration testing automatically shut down early due to some sensor readings that exceeded predicted levels,” officials said.

Thereafter, engineers and technicians carried out a new batch of intensive inspections of the observatory’s structure during December.

Shortly before Christmas, NASA announced on Dec. 23 that JWST was deemed “sound” and apparently unscathed after engineers conducted both “visual and ultrasonic examinations” at NASA’s Goddard Space Flight Center in Maryland. Officials said the telescope was found to be safe at this point with “no visible signs of damage.”

As it turned out the culprit of the sensor anomaly was the many “tie-down … restraint mechanisms ” that hold the telescope in place.

“After a thorough investigation, the James Webb Space Telescope team at NASA Goddard determined that the cause was extremely small motions of the numerous tie-downs or “launch restraint mechanisms” that keep one of the telescope’s mirror wings folded-up for launch,” NASA officials explained in a statement.

Furthermore engineers revealingly discovered that “the ground vibration test itself is more severe than the launch vibration environment.”

Technicians work on the James Webb Space Telescope in the massive clean room at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, on Nov. 2, 2016, as the completed golden primary mirror and observatory structure stands gloriously vertical on a work stand, reflecting incoming light from the area and observation deck. Credit: Ken Kremer/kenkremer.com

NASA reported today (Jan. 25) that the testing resumed last week at the point where it had been paused. Furthermore the testing was completed along the first of three axis.

“In-depth analysis of the test sensor data and detailed computer simulations confirmed that the input vibration was strong enough and the resonance of the telescope high enough at specific vibration frequencies to generate these tiny motions. Now that we understand how it happened, we have implemented changes to the test profile to prevent it from happening again,” explained Feinberg.

“We have learned valuable lessons that will be applied to the final pre-launch tests of Webb at the observatory level once it is fully assembled in 2018. Fortunately, by learning these lessons early, we’ve been able to add diagnostic tests that let us show how the ground vibration test itself is more severe than the launch vibration environment in a way that can give us confidence that the launch itself will be fully successful.”

The next step is to resume and complete shaking the telescope in the other two axis, or “two directions to show that it can withstand vibrations in all three dimensions.”

“This was a great team effort between the NASA Goddard team, Northrop Grumman, Orbital ATK, Ball Aerospace, the European Space Agency, and Arianespace,” Feinberg said. “We can now proceed with the rest of the planned tests of the telescope and instruments.”

NASA’s James Webb Space Telescope is the most powerful space telescope ever built and is the scientific successor to the phenomenally successful Hubble Space Telescope (HST). The mammoth 6.5 meter diameter primary mirror has enough light gathering capability to scan back over 13.5 billion years and see the formation of the first stars and galaxies in the early universe.

The Webb telescope will launch on an ESA Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

But Webb and its 18 segment “golden” primary mirror have to be carefully folded up to fit inside the nosecone of the Ariane V booster.

“Due to its immense size, Webb has to be folded-up for launch and then unfolded in space. Prior generations of telescopes relied on rigid, non-moving structures for their stability. Because our mirror is larger than the rocket fairing we needed structures folded for launch and moved once we’re out of Earth’s atmosphere. Webb is the first time we’re building for both stability and mobility.” Feinberg said.

“This means that JWST testing is very unique, complex, and challenging.”

View showing actual flight structure of mirror backplane unit for NASA’s James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

The environmental testing is being done at Goddard before shipping the huge structure to NASA’s Johnson Space Center in February 2017 for further ultra low temperature testing in the cryovac thermal vacuum chamber.

The 6.5 meter diameter ‘golden’ primary mirror is comprised of 18 hexagonal segments – looking honeycomb-like in appearance.

And it’s just mesmerizing to gaze at – as I had the opportunity to do on a few occasions at Goddard this past year – standing vertically in November and seated horizontally in May.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

Gold coated primary mirrors newly exposed on spacecraft structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

James Webb Space Telescope. Image credit: NASA/JPL

Gene Cernan, Last Man on the Moon, Honored at Kennedy Space Center Visitor Complex

Remembrance Ceremony honoring the life of astronaut Eugene Cernan, last Man to walk on the Moon during NASA’s Apollo 17 moon landing mission in Dec. 1972, was held at the Kennedy Space Center Visitor Complex, Florida, on Jan. 18, 2017. Cernan passed away on Jan. 16, 2017. Credit: Ken Kremer/kenkremer.com
Remembrance Ceremony honoring the life of astronaut Eugene Cernan, last Man to walk on the Moon during NASA’s Apollo 17 moon landing mission in Dec. 1972, was held at the Kennedy Space Center Visitor Complex, Florida, on Jan. 18, 2017. Cernan passed away on Jan. 16, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Gene Cernan, the last man to walk on the Moon, and one of America’s most famous and renowned astronauts, was honored in a ceremony held at Kennedy Space Center Visitor Complex, Florida, on Jan. 18. [Story/photos expanded]

Cernan passed away earlier this week on Monday, January 16, 2017 at age 82, after a long illness, surrounded by his family.

Cernan, a naval aviator, flew on three groundbreaking missions for NASA during the Gemini and Apollo programs that paved the way for America’s and humanity’s first moon landing missions.

His trio of historic space flights ultimately culminated with Cernan stepping foot on the moon in Dec. 1972 during the Apollo 17 mission- NASA final moon landing of the Apollo era.

No human has set foot on the Moon since Apollo 17 – an enduring disappointment to Cernan and all space fans worldwide.

Cernan also flew on the Gemini 9 and Apollo 10 missions, prior to Apollo 17.

The Gemini 9 capsule is on display at the KSC Visitor Complex. Cernan was the second NASA astronaut to perform an EVA – during Gemini 9.

The Cernan remembrance ceremony was held at the U.S. Astronaut Hall of Fame inside the newly opened ‘Heroes & Legends’ exhibit at the KSC Visitor Complex – two days after Cernan died. It included remarks from two of his fellow NASA astronauts from the Space Shuttle era, Kennedy Space Center Director Bob Cabana, and space shuttle astronaut Jon McBride, as well as Therrin Protze, chief operating officer, Kennedy Space Center Visitor Complex.

Robert Cabana, director of NASA’s Kennedy Space Center and space shuttle astronaut Jon McBride, following remarks at the Jan 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring the life of astronaut Eugene Cernan. Credit: Julian Leek

A NASA portrait and floral wreath were on display for visitors during the ceremony inside and outside of the ‘Heroes and Legends’ exhibit.

“He was an advocate for the space program and hero that will be greatly missed,” said Kennedy Space Center Director Bob Cabana during the ceremony inside.

“I don’t believe that Gene is going to be the last man on the moon. And one of the things that he was extremely passionate about was our exploring beyond our own planet, and developing that capability that would allow us to go back to the moon and go beyond.

“I feel badly that he wasn’t able to stay alive long enough to actually see this come to fruition,” Cabana said.

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com

NASA is now developing the SLS heavy lift rocket and Orion deep space capsule to send our astronauts to the Moon, Mars and Beyond. The maiden launch of SLS-1 on the uncrewed EM-1 mission to the Moon is slated for Fall 2018.

“We are saddened of the loss of our American hero, Astronaut Gene Cernan. As the last man to place footsteps on the surface of the moon, he was a truly inspiring icon who challenged the impossible,” said Therrin Protze, chief operating officer of Kennedy Space Center Visitor Complex.

“People throughout generations have been and will forever be inspired by his actions, and the underlying message that what we can achieve is limited only by our imaginations. He will forever be known as ‘The Last Man on the Moon,” and for the extraordinary impact he had on our country and the world.”

Cernan was one of only 12 astronauts to walk on the moon. Neil Armstong and Buzz Aldrin were the first during the Apollo 11 moon landing mission in 1969 that fulfilled President Kohn F. Kennedy’s promise to land on the Moon during the 1960’s.

Launch of Apollo 17 – NASA’s last lunar landing mission – on 7 December 1972 from Launch Complex-39A on the Kennedy Space Center, Florida. Credit: Julian Leek

Cernan retired from NASA and the U.S. Navy in 1976. He continued to advise NASA as a consultant and appeared frequently on TV news programs during NASA’s manned space missions as an popular guest explaining the details of space exploration and why we should explore.

He advocated for NASA, space exploration and science his entire adult life.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

“As an astronaut, Cernan left an indelible impression on the moon when he scratched his daughter’s initials in the lunar surface alongside the footprints he left as the last human to walk on the moon. Guests of Kennedy Space Center Visitor Complex can learn more about Cernan’s legacy at the new Heroes & Legends exhibit, where his spacewalk outside the actual Gemini IX space capsule is brought to life through holographic imagery.”

Actual Gemini 9 capsule piloted by Gene Cernan with Commander Thomas P. Stafford on a three-day flight in June 1966 on permanent display in the Heroes and Legends exhibit at the Kennedy Space Center Visitor Complex, Florida. Cernan logged more than two hours outside the orbiting capsule, as depicted in description. Credit: Ken Kremer/kenkremer.com

From NASA’s profile page:

“Cernan was born in Chicago on March 14, 1934. He graduated from Proviso Township High School in Maywood, Ill., and received a bachelor of science degree in electrical engineering from Purdue University in 1956. He earned a master of science degree in aeronautical engineering from the U.S. Naval Postgraduate School in Monterey, Calif.

Cernan is survived by his wife, Jan Nanna Cernan, his daughter and son-in-law, Tracy Cernan Woolie and Marion Woolie, step-daughters Kelly Nanna Taff and husband, Michael, and Danielle Nanna Ellis and nine grandchildren.”

The following is a statement released by NASA on the behalf of Gene Cernan’s family:

A funeral service for Capt. Eugene A. Cernan, who passed away Monday at the age of 82, will be conducted at 2:30 p.m. CST on Tuesday, Jan. 24, at St. Martin’s Episcopal Church, 717 Sage Road in Houston.

NASA Television will provide pool video coverage of the service.

The family will gather for a private interment at the Texas State Cemetery in Austin at a later date, where full military honors will be rendered.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Grand opening ceremony for the ‘Heroes and Legends’ attraction on Nov. 11, 2016 at the Kennedy Space Center Visitor Complex in Florida and attended by more than 25 veteran and current NASA astronauts. Credit: Ken Kremer/kenkremer.com

Mars Curiosity Rolls Up to Potential New Meteorite

This peculiar rock, photographed on Jan. 12 (Sol 1577) by NASA's Curiosity rover, appears to be a metal meteorite. When confirmed, this will be the rover's third meteorite find on the Red Planet. Click for the high resolution original. Credit: NASA/JPL-Caltech/MSSS
This peculiar rock, photographed on Jan. 12 (Sol 1577) by NASA’s Curiosity rover, appears to be a metal meteorite. When confirmed, this would be the rover’s third meteorite find on the Red Planet. Click for the high resolution original. Credit: NASA/JPL-Caltech/MSSS

Rolling up the slopes of Mt. Sharp recently, NASA’s Curiosity rover appears to have stumbled across yet another meteorite, its third since touching down nearly four and a half years ago. While not yet confirmed, the turkey-shaped object has a gray, metallic luster and a lightly-dimpled texture that hints of regmaglypts. Regmaglypts, indentations that resemble thumbprints in Play-Doh, are commonly seen in meteorites and caused by softer materials stripped from the rock’s surface during the brief but intense heat and pressure of its plunge through the atmosphere.

Closeup showing laser zap pits. Credit: NASA/JPL-Caltech/MSSS

Oddly, only one photo of the assumed meteorite shows up on the Mars raw image site. Curiosity snapped the image on Jan. 12 at 11:21 UT with its color mast camera. If you look closely at the photo a short distance above and to the right of the bright reflection a third of the way up from the bottom of the rock, you’ll spy three shiny spots in a row. Hmmm. Looks like it got zapped by Curiosity’s ChemCam laser. The rover fires a laser which vaporizes part of the meteorite’s surface while a spectrometer analyzes the resulting cloud of plasma to determine its composition. The mirror-like shimmer of the spots is further evidence that the gray lump is an iron-nickel meteorite.

Meet Egg Rock, another iron-nickel meteorite and Curiosity’s second meteorite find. The white spots/holes are where the object was zapped by the rover’s laser to determine its composition. The rover spotted Egg Rock (about the size of a golfball) on Oct. 27, 2016. Credit: NASA/JPL-Caltech

Curiosity has driven more than 9.3 miles (15 km) since landing inside Mars’ Gale Crater in August 2012. It spent last summer and part of fall in a New Mexican-like landscape of scenic mesas and buttes called “Murray Buttes.” It’s since departed and continues to climb to sequentially higher and younger layers of the lower part of Mt. Sharp to investigate additional rocks. Scientists hope to create a timeline of how the region’s climate changed from an ancient freshwater lake environment with conditions favorable for microbial life (if such ever evolved) to today’s windswept, frigid desert.

Assuming the examination of the rock proves a metallic composition, this new rock would be the eighth discovered by our roving machines. All of them have been irons despite the fact that at least on Earth, iron meteorites are rather rare. About 95% of all found or seen-to-fall meteorites are the stony variety (mostly chondrites), 4.4% are irons and 1% stony-irons.

Curiosity found this iron meteorite called “Lebanon” back in 2014. It’s about two yards or two meters wide (left to right). The smaller piece in the foreground is named “Lebanon B. This photo combines a series of high-resolution circular images across the middle taken by the Remote Micro-Imager (RMI) with a MastCam image. Credit: NASA/JPL-Caltech/LANL/CNES/IRAP/LPGNantes/CNRS/IAS/MSSS

NASA’s Opportunity rover found five metal meteorites, and Curiosity’s rumbled by its first find, a honking hunk of metallic gorgeousness named Lebanon, in May 2014. If this were Earth, the new meteorite’s smooth, shiny texture would indicate a relatively recent fall, but who’s to say how long it’s been sitting on Mars. The planet’s not without erosion from wind and temperature changes, but it lacks the oxygen and water that would really eat into an iron-nickel specimen like this one. Still, the new find looks polished to my eye, possibly smoothed by wind-whipped sand grains during the countless Martian dust storms that have raged over the eons.

Curiosity really knows how to put you on Mars. This view of exposed bedrock and dark sands was taken by the rover’s navigation camera on Friday, Jan. 13. Credit: NASA/JPL-Caltech/MSSS

Why no large stony meteorites have yet to be been found on Mars is puzzling. They should be far more common; like irons, stonies would also display beautiful thumprinting and dark fusion crust to boot. Maybe they simply blend in too well with all the other rocks littering the Martian landscape. Or perhaps they erode more quickly on Mars than the metal variety.

Every time a meteorite turns up on Mars in images taken by the rovers, I get a kick out of how our planet and the Red One not only share water, ice and wind but also getting whacked by space rocks.

Opportunity Celebrates Christmas/New Year on Mars Marching to Ancient Water Carved Gully

NASA’s Opportunity rover scans around and across to vast Endeavour crater on Dec. 19, 2016, as she climbs steep slopes on the way to reach a water carved gully along the eroded craters western rim. Note rover wheel tracks at center. This navcam camera photo mosaic was assembled from raw images taken on Sol 4587 (19 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo
NASA’s Opportunity rover scans around and across to vast Endeavour crater on Dec. 19, 2016, as she climbs steep slopes on the way to reach a water carved gully along the eroded craters western rim. Note rover wheel tracks at center. This navcam camera photo mosaic was assembled from raw images taken on Sol 4587 (19 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

On the brink of 4600 Sols of a profoundly impactful life, NASA’s long lived Opportunity rover celebrates the Christmas/New Year’s holiday season on Mars marching relentlessly towards an ancient water carved gully along the eroded rim of vast Endeavour crater – the next science target on her heroic journey traversing across never before seen Red Planet terrains.

“Opportunity is continuing its great 21st century natural history expedition on Mars, exploring the complex geology and record of past climate here on the rim of the 22-km Endeavour impact crater,” writes Larry Crumpler, a science team member from the New Mexico Museum of Natural History & Science, in a mission update.

Indeed, New Years Day 2017 equates to 4600 Sols, or Martian Days – of boundless exploration and epic discovery by the longest living Martian rover ever dispatched by humanity to survey the most Earth-like planet in our solar system.

One can easily imagine our beloved Princess Leia gazing quite proudly upon the feistiness and resourcefulness of this never-give-up Martian Princess rover – climbing steeply uphill no less – nearly 13 YEARS into her 3 MONTH mission!!

“Not a boring flat terrain, but heroically rugged terrain,” says Crumpler.

“Hopefully the brakes are good! For a rover that originally landed 12 years ago on what amounts to a flat parking lot, the current terrain is about as different and rugged as any mountain goat rover could handle.”

Indeed she is 51 times beyond her “warrantied” life expectancy of merely 90 Sols roving the surface of the 4th rock from the Sun during her latest extended mission. (And this time round, the clueless Washington bean counters did not even dare threaten to shut her down – lest they suffer the wrath of a light saber or sister Curiosity’s laser canon !!).

Check out the glorious view from Opportunity’s current Martian holiday season exploits in our newest photo mosaics created by the imaging team of Ken Kremer and Marco Di Lorenzo.

“Opportunity has begun the ascent of the steep slopes here in the inner wall of Endeavour impact crater after completion of a survey of outcrops close to the crater floor. The goal now is to climb back to the rim where the terrain is less hazardous, drive south quickly about 1 km south, and arrive at the next major mission target on the rim before the next Martian winter,” Crumpler elaborated.

On Christmas Day 2016, NASA’s Opportunity rover scans around vast Endeavour crater as she ascends steep rocky slopes on the way to reach a water carved gully along the eroded craters western rim. This navcam camera photo mosaic was assembled from raw images taken on Sol 4593 (25 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

After surviving the scorching ‘6 minutes of Terror’ plummet through the thin Martian atmosphere, Opportunity bounced to an airbag cushioned landing on the plains of Meridiani Planum on January 24, 2004 – nearly 13 years ago!

Opportunity was launched on a Delta II rocket from Cape Canaveral Air Force Station in Florida on July 7, 2003.

NASA’s Opportunity rover scans ahead to Spirit Mound and vast Endeavour crater as she celebrates 4500 sols on the Red Planet after descending down Marathon Valley. This navcam camera photo mosaic was assembled from raw images taken on Sol 4500 (20 Sept 2016) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

The newest 2 year extended mission phase just began on Oct. 1, 2016 as the six wheeled robot was stationed at the western rim of Endeavour crater at the bottom of Marathon Valley at a spot called “Bitterroot Valley” and completing investigation of nearby “Spirit Mound.”

She is now ascending back up to the top of the crater rim for the southward trek to ‘the gully’ in 2017.

“Opportunity is making progress towards the next science objective of the extended mission,” researchers leading the Mars Exploration Rover (MER) Opportunity mission wrote in a status update.

“The rover is headed toward an ancient water-carved gully about a kilometer south of the rover’s current location on the rim of Endeavour Crater.”

Endeavour crater spans some 22 kilometers (14 miles) in diameter.

Opportunity has been exploring Endeavour since arriving at the humongous crater in 2011. Endeavour crater was formed when it was carved out of the Red Planet by a huge meteor impact billions of years ago.

“Endeavour crater dates from the earliest Martian geologic history, a time when water was abundant and erosion was relatively rapid and somewhat Earth-like,” Crumpler explains.

“So in addition to exploring the geology of a large crater, a type of feature that no one has ever explored in its preserved state, the mission seeks to take a close look at the evidence in the rocks for the past environment. Thus we are trying to stick to the crater rim where the oldest rocks are.”

But the crater slopes ahead are steep! As much as 20 degrees and more – and thus potentially dangerous! So the team is commanding Opportunity to proceed ahead with caution to “the gully” which is the primary target of her latest extended mission.

The rover has even done “quite a bit of exploratory driving in an effort to attain a good vantage point for finding a path through a troubling area of boulder patch and steep slopes ahead. The concern was whether the available routes to avoid the boulders were all too steep to traverse, in which case we would have to forgo the current ‘Extended Mission 10’ (EM10) route and backtrack to find a different route to our main objective, the ‘gully.’”

“The slopes here exceed 20 degrees and the surface consists of flat outcrops of impact breccias covered with tiny rocks that act like ball bearings,” Crumpler writes. “Anyone who has attempted to walk on a 20 degree slope with a covering of fine pebbles on hard outcrop can attest to the difficulty. Opportunity has been operating at these extreme slope for several months. But going down hill is one thing, And going back up hill is another entirely.”

NASA’s Opportunity rover discovers a beautiful Martian dust devil moving across the floor of Endeavour crater as wheel tracks show robots path today exploring the steepest ever slopes of the 13 year long mission, in search of water altered minerals at Knudsen Ridge inside Marathon Valley on 1 April 2016. This navcam camera photo mosaic was assembled from raw images taken on Sol 4332 (1 April 2016) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

As of today, Sol 4598, Dec. 29, 2016, Opportunity has taken over 215,900 images and traversed over 27.12 miles (43.65 kilometers) – more than a marathon.

See our updated route map below.

The rover surpassed the 27 mile mark milestone early last month on November 6 (Sol 4546).

The power output from solar array energy production is currently 414 watt-hours, before heading into another southern hemisphere Martian winter in 2017.

Meanwhile Opportunity’s younger sister rover Curiosity traverses and drills into the lower sedimentary layers at the base of Mount Sharp.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

13 Year Traverse Map for NASA’s Opportunity rover from 2004 to 2016. This map shows the entire 43 kilometer (27 mi) path the rover has driven on the Red Planet during nearly 13 years and more than a marathon runners distance for some 4600 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 – to current location at the western rim of Endeavour Crater. After descending down Marathon Valley and after studying Spirit Mound, the rover is now ascending back uphill on the way to a Martian water carved gully. Rover surpassed Marathon distance on Sol 3968 after reaching 11th Martian anniversary on Sol 3911. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone – and searched for more at Marathon Valley. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Merry Christmas From Space 2016

All six members of the Expedition 50 crew aboard the International Space Station celebrated the holidays together with a festive meal on Christmas Day, Dec. 25, 2016 Image Credit: NASA
All six members of the Expedition 50 crew aboard the International Space Station celebrated the holidays together with a festive meal on Christmas Day, Dec. 25, 2016  Image Credit: NASA
All six members of the Expedition 50 crew aboard the International Space Station celebrated the holidays together with a festive meal on Christmas Day, Dec. 25, 2016. Image Credit: NASA

As we celebrate the Christmas tidings of 2016 here on Earth, a lucky multinational crew of astronauts and cosmonauts celebrate the festive season floating in Zero-G while living and working together in space aboard the Earth orbiting International Space Station (ISS) complex – peacefully cooperating to benefit all humanity.

Today, Dec. 25, 2016, the six person Expedition 50 crew of five men and one woman marked the joyous holiday of Christ’s birth by gathering for a festive meal in space – as billions of Earthlings celebrated this Christmas season of giving, remembrance and peace to all here on our home planet.

This year is an especially noteworthy Space Christmas because it counts as Expedition 50. This is the 50th crew to reside on board since the space station began operating with permanent occupancy by rotating crews all the way back to 1998.

The Expedition 50 crew currently comprises of people from three nations supporting the ISS – namely the US, Russia and France; Commander Shane Kimbrough from NASA and flight engineers Andrey Borisenko (Roscosmos), Sergey Ryzhikov (Roscosmos), Thomas Pesquet (ESA), Peggy Whitson (NASA), and Oleg Novitskiy (Roscosmos).

Here a short video of holiday greetings from a trio of crew members explaining what Christmas in Space means to them:

Video Caption: Space Station Crew Celebrates the Holidays Aboard the Orbital Lab. Aboard the International Space Station, Expedition 50 Commander Shane Kimbrough and Peggy Whitson of NASA and Thomas Pesquet of the European Space Agency discussed their thoughts about being in space during the holidays and how they plan to celebrate Christmas and New Year’s in a downlink. Credit: NASA

“Hello from the Expedition 50 Crew! We’d like to share what Christmas means to us,” said Expedition 50 Commander Shane Kimbrough.

“For me it’s a lot about family,” said Expedition 50 Commander Shane Kimbrough. “We always travel to meet up with our family which is dispersed across the country. And we go home to Georgia and Florida … quite abit to meet up. Always a great time to get together and share with each other.”

“Although its typically thought of a season to get things, we in our family think about the giving aspect. Giving of our many talents and resources. Especially to those less fortunate.”

Kimbrough arrived on the complex in October, followed a month later by Whitson and Pesquet in November.

They were all launched aboard Russian Soyuz capsules from the Baikonur Cosmodrome in Kazakhstan.

Aboard the International Space Station, Expedition 50 Flight Engineer Peggy Whitson of NASA sent holiday greetings and festive imagery from the cupola on Dec. 18, 2016. Credit: NASA.
Aboard the International Space Station, Expedition 50 Flight Engineer Peggy Whitson of NASA sent holiday greetings and festive imagery from the cupola on Dec. 18, 2016. Credit: NASA.

And Peggy Whitson especially has a lot to celebrate in space!

Because not only is Whitson currently enjoying her third long-duration flight aboard the station – as an Expedition 50 flight engineer. Soon she will become the first woman to command the station twice ! That momentous event happens when she assumes the role of Space Station Commander early in 2017 during the start of Expedition 51.

“In addition to family, there is another very important aspect to being on the ISS,” said Whitson.

“That is seeing the planet as a whole. It actually reinforces I think, that fact that we should live as one people and strive for peace.”

“I second the comments already made. I grew up in a family of 25 cousins,” said ESA’s Thomas Pesquet. “The only time we could catch up was around Christmas time…. So I always looked forward to that, although this year I can’t be with them of course … and will think of them.”

“I am making the most of this opportunity to look at the Earth. Reflect about what Christmas means to us as individuals and to the world in general. And we will have a good time on board the ISS and share a Christmas meal together.”

Aboard the International Space Station, Expedition 50 Flight Engineer Peggy Whitson of NASA sent holiday greetings and festive imagery from the Japanese Kibo laboratory module on Dec. 18, 2016. Credit: NASA
Aboard the International Space Station, Expedition 50 Flight Engineer Peggy Whitson of NASA sent holiday greetings and festive imagery from the Japanese Kibo laboratory module on Dec. 18, 2016. Credit: NASA

The crew is enjoying a light weekend of work and a day off tomorrow, Dec. 26.

After that they begin preparing for a pair of spacewalks in the new year by Kimbrough and Whitson – scheduled for Jan. 6 and 13. The crew is checking the spacesuits by testing the water among other activities.

The goal of the excursions is to “complete the replacement of old nickel-hydrogen batteries with new lithium-ion batteries on the station’s truss structure,” says NASA.

Research work also continues.

“Whitson, who is spending her second Christmas in space, and Pesquet drew blood, urine and saliva samples for the Fluid Shifts study. That experiment investigates the upward flow of body fluids in space potentially causing lasting vision changes in astronauts.”

NASA astronaut Peggy Whitson floats through the Unity module aboard the International Space Station. On her third long-duration flight aboard the station, Whitson will become the first woman to command the station twice when she assumes the role during Expedition 51. Credit: NASA

Among other activities, the crew is also unloading 4.5 tons of internal and external cargo, gear and fresh food – including six lithium-ion batteries – from Japan’s sixth H-II Transfer Vehicle (HTV-6), which recently arrived at the ISS on Dec 13.

The next regular US cargo delivery is likely to be in March 2017, when an unmanned Orbital ATK Cygnus cargo freighter is slated to launch on a ULA Atlas V from Cape Canaveral. A Cygnus was also launched on a ULA Atlas V in March 2016.

A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

SpaceX also hopes to resume Dragon cargo launches sometime in the new year after they resolve the issues that led to the destruction of a SpaceX Falcon 9 on Sept. 1 during fueling operations at pad 40 on the Cape.

Meanwhile Roscosmos continues to investigate the causes of the failed launch of the unmanned Russian Progress 65 resupply ship on Dec. 1 due to a 3rd stage anomaly.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer