All the worlds may be ours except Europa but that only makes the ice-covered moon of Jupiter all the more intriguing. Beneath Europa’s thin crust of ice lies a tantalizing global ocean of liquid water somewhere in the neighborhood of 100 kilometers deep—which adds up to more liquid water than is on the entire surface of the Earth. Liquid water plus a heat source(s) to keep it liquid plus the organic compounds necessary for life and…well, you know where the thought process naturally goes from there.
And now it turns out Europa may have even more of a heat source than we thought. Yes, a big component of Europa’s water-liquefying warmth comes from tidal stresses enacted by the massive gravity of Jupiter as well as from the other large Galilean moons. But exactly how much heat is created within the moon’s icy crust as it flexes has so far only been loosely estimated. Now, researchers from Brown University in Providence, RI and Columbia University in New York City have modeled how friction creates heat within ice under stress, and the results were surprising.
The U.S. SpaceX Dragon cargo craft arrived at the ISS following a carefully choreographed orbital chase inaugurated by a spectacular launch atop an upgraded SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station, Florida, on Friday, April 8.
As the massive Earth orbiting outpost was soaring some 250 miles (400 kilometers) over the Pacific Ocean west of Hawaii, British astronaut Tim Peake of ESA (European Space Agency), with the able assistance of NASA’s Jeff Williams, successfully captured the SpaceX Dragon CRS-8 resupply ship with the station’s Canadian-built robotic arm.
Peake painstakingly maneuvered and deftly grappled Dragon with the snares at the terminus of the 57 foot long (19 meter long) Canadarm2 at 7:23 a.m. EDT for installation on the million pound orbital lab complex.
“Looks like we’ve caught a Dragon,” Peake radioed back to Mission Control. The orbital operational was webcast live on NASA TV.
“Awesome capture by crewmate Tim Peake,” said fellow NASA crewmate Tim Kopra who snapped a series of breathtaking images of the approach and capture.
Ground controllers at Mission Control in Houston then issued commands to carefully guide the robotic arm holding the Dragon freighter to the Earth-facing port on the bottom side of the Harmony module for its month long stay at the space station.
The ship was finally bolted into place at 9:57 a.m. EDT as the station flew 250 miles (400 km) over southern Algeria.
Watch this NASA video compiling all the highlights of the arrival and mating of the SpaceX Dragon on April 10, 2016 carrying the BEAM habitat module and 3.5 tons of science and supplies. Credit: NASA
Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.
In a historic first, the arrival of the SpaceX Dragon cargo spacecraft marks the first time that two American cargo ships are simultaneously docked to the ISS. The Orbital ATK Cygnus CRS-6 cargo freighter only just arrived on March 26 and is now installed at a neighboring docking port on the Unity module.
Cygnus was launched to the ISS atop a ULA Atlas V barely two weeks earlier on March 22 – as I reported on and witnessed from the Kennedy Space Center press site.
“With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six,” say NASA officials.
The Dragon spacecraft is delivering almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory which was carried to orbit inside the Dragon’s unpressurized truck section.
BEAM is a prototype inflatable habitat that the crew will soon pluck from the Dragon’s truck with the robotic arm for installation on a side port of the Harmony module.
CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.
Friday’s launch marks the first for a Dragon since the catastrophic failure of the SpaceX Falcon 9 last June.
Dragon will remain at the station until it returns for Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the west coast of Baja California. It will be packed with almost 3,500 pounds off cargo and numerous science samples, including those biological samples collected by 1 year ISS crew member Scott Kelly, for return to investigators, hardware and spacewalking tools, some additional broken hardware for repair and some items of trash for disposal.
Video caption: 5 camera views of the SpaceX Falcon 9 launch of the CRS-8 mission to the ISS on 04/08/2016. Credit: Jeff Seibert/AmericaSpace
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
Anybody with an ounce of intellectual curiosity (and an internet connection) has seen the images of Pluto and its system taken by the New Horizons probe. The images and data from New Horizons have opened the door to Pluto’s atmosphere, geology, and composition. But New Horizons wasn’t entirely dormant during its 9 year, billion-plus mile journey to Pluto.
New Horizons returned 3 years worth of data on the solar wind that sweeps through the near-emptiness of space. The solar wind is the stream of particles that is released from the upper atmosphere of the Sun, called the corona. The Sun’s solar wind is what creates space weather in our solar system, and the wind itself varies in temperature, speed, and density.
The solar wind data from New Horizons, which NASA calls an “unprecedented set of observations,” is filling in a gap in our knowledge. Observatories like the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) are studying the Sun up close, and the Voyager probes have sampled the solar wind near the edge of the heliosphere, where the solar wind meets interstellar space, but New Horizons is giving us our first look at the solar wind in Pluto’s region of space.
This solar wind data should shed some light on a number of things, including the dangerous radiation astronauts face when in space. There is a type of particle with extreme energy levels called anomalous cosmic rays. When travelling close to Earth, these high-velocity rays can be a serious radiation hazard to astronauts.
The data from New Horizons reveals particles that pick up an acceleration boost, which makes them exceed their initial speed. It’s thought that these particles could be the precursors to anomalous cosmic rays. A better understanding of this might lead to a better way to protect astronauts.
These same rays have other effects further out in space. It looks like they are partly responsible for shaping the edge of the heliosphere; the region in space where the solar wind meets the interstellar medium.
New Horizons has also told us something about the structure of the solar wind the further it travels from the Sun. Close to the Sun, phenomena like coronal mass ejections (CMEs) have a clearly discernible structure. And the differences in the solar wind, in terms of velocity, density, and temperature, are also discernible. They’re determined by the region of the Sun they came from. New Horizons found that far out in the solar system, these structures have changed.
“At this distance, the scale size of discernible structures increases, since smaller structures are worn down or merge together,” said Heather Elliott, a space scientist at the Southwest Research Institute in San Antonio, Texas, and the lead author of a paper to be published in the Astrophysical Journal. “It’s hard to predict if the interaction between smaller structures will create a bigger structure, or if they will flatten out completely.”
The Voyager probes measured the solar wind as they travelled through our Solar System into the interstellar medium. They’ve told us a lot about the solar wind in the more distant parts of our system, but their instruments aren’t as sensitive and advanced as New Horizons’. This second data set from New Horizons is helping to fill in the blanks in our knowledge.
Finding a ninth planet in our Solar System this late in the game would be fascinating. It would also be somewhat of a surprise, considering our observational capabilities. But new evidence, in the form of small perturbations in the orbit of the Cassini probe, points to the existence of an as-yet undetected planet in our solar system.
Back in January, Konstantin Batygin and Mike Brown, two planetary scientists from the California Institute of Technology, presented evidence supporting the existence of a ninth planet. Their paper showed that some Kuiper Belt Objects (KBOs) display unexpected behaviour. It appears that 6 KBOs are affected by their relationship to a large object, but the KBOs in question are too distant from the known gas giants for them to be responsible. They think that a large, distant planet, in the distant reaches of our Solar System, could be responsible for the unexpected orbital clustering of these KBOs.
Now, the Ninth Planet idea is gaining steam, and another team of researchers have presented evidence that small perturbations in the orbit of the Cassini spacecraft are caused by the new planet. Agnès Fienga at the Côte d’Azur Observatory in France, and her colleagues, have been working on a detailed model of the Solar System for over a decade. They plugged the hypothetical orbit and size of Planet Nine into their model, to see if it fit.
Planet Nine is calculated to be about 4 times as large as Earth, and 10 times as massive. It’s orbit takes between 10,000 and 20,000 years. A planet that large can only be hiding in so many places, and those places are a long way from Earth. Fienga found a potential home for Planet Nine, some 600 astronomical units (AU) from here. That much mass at that location could account for the perturbations in Cassini’s orbit.
There’s more good news when it comes to Planet Nine. By happy accident, it’s predicted location in the sky is towards the constellation Cetus, in the southern hemisphere. This means that it is in the view of the Dark Energy Survey, a southern hemisphere project that is studying the acceleration of the universe. The Dark Energy Survey is not designed to search for planetary objects, but it has successfully found at least one icy object.
There are other ways that the existence of Planet Nine could be confirmed. If it’s as large as thought, then it will radiate enough internal heat to be detected by instruments designed to study the Cosmic Microwave Background (CMB). There is also an enormous amount of data from multiple experiments and observations done over the years that might contain an inadvertent clue. But looking through it is an enormous task.
As for Brown and Batygin, who initially proposed the existence of Planet Nine based on the behaviour of KBOs, they are already proposing a more specific hunt for the elusive planet. They have asked for a substantial amount of observing time at the Subaru Telescope on Mauna Kea in Hawaii, in order to examine closely the location that Fienga’s solar system model predicts Planet Nine to be at.
For a more detailed look at Batygin’s and Brown’s work analyzing KBOs, read Matt Williams’ article here.
It’s time to whip out your 3-D glasses to enjoy and scrutinize the remarkable detail of spectacular terrain revealed in a new high resolution stereo image of Pluto – King of the Kuiper Belt! – taken by NASA’s New Horizons spacecraft.
The amazing new stereo Plutonian image focuses on an area dominated by a mysterious feature that geologists call ‘bladed’ terrain – seen above – and its unlike anything seen elsewhere in our solar system.
Its located in a broad region of rough highlands informally known as Tartarus Dorsa – situated to the east of the Pluto’s huge heart shaped feature called Tombaugh Regio. The best resolution is approximately 1,000 feet (310 meters).
The stereo view combines a pair of images captured by New Horizons Ralph/Multispectral Visible Imaging Camera (MVIC) science instruments. They were taken about 14 minutes apart on during history making first ever flyby of the Pluto planetary system on July 14, 2015.
The first was taken when New Horizons was 16,000 miles (25,000 kilometers) away from Pluto, the second when the spacecraft was 10,000 miles (about 17,000 kilometers) away.
The blades align from north to south, typically reach up to about 550 yards (500 meters) high and are spaced about 2-4 miles (3-5 kilometers). Thus they are among the planets steepest features. They are “perched on a much broader set of rounded ridges that are separated by flat valley floors,” according to descriptions from the New Horizons science team.
Mission scientists have also noted that the bladed terrain has the texture of “snakeskin” owing to their “scaly raised relief.”
In the companion global image from NASA (below), the bladed terrain is outlined in red and shown to extend quite far to the east of Tombaugh Regio.
The composite image was taken on July 13, 2015, the day before the closest approach flyby, when the probe was farther away thus shows lower resolution. It combines a pair of images from two of the science instruments – a Ralph/Multispectral Visible Imaging Camera (MVIC) color scan and an image from the Long Range Reconnaissance Imager (LORRI).
The MVIC scan was taken from a range of 1 million miles (1.6 million kilometers), at a resolution of 20 miles (32 kilometers) per pixel. The corresponding LORRI image was obtained from roughly the same range, but has a higher spatial resolution of 5 miles (8 kilometers) per pixel, say officials.
Scientists have developed several possible theories about the origins of the bladed terrain, including erosion from evaporating ices or deposition of methane ices.
Measurements from the Linear Etalon Imaging Spectral Array (LEISA) instrument reveal that that this region “is composed of methane (CH4) ice with a smattering of water,” reports New Horizons researcher Orkan Umurhan.
He speculates that “the material making up the bladed terrain is a methane clathrate. A clathrate is a structure in which a primary molecular species (say water, or H2O) forms a crystalline ‘cage’ to contain a guest molecule (methane or CH4, for example).”
But the question of whether that methane ice is strong enough to maintain the steep walled snakeskin features, will take much more research to determine a conclusive answer.
Umurhan suggests that more research could help determine if the “methane clathrates in the icy moons of the outer solar system and also in the Kuiper Belt were formed way back before the solar system formed – i.e., within the protosolar nebula – potentially making them probably some of the oldest materials in our solar system.”
Pluto continues to amaze and surprise us as the data streams back to eagerly waiting scientists on Earth over many more months to come – followed by years and decades of painstaking analysis.
During New Horizons flyby on July 14, 2015, it discovered that Pluto is the biggest object in the outer solar system and thus the ‘King of the Kuiper Belt.”
The Kuiper Belt comprises the third and outermost region of worlds in our solar system.
Pluto is the last planet in our solar system to be visited in the initial reconnaissance of planets by spacecraft from Earth since the dawn of the Space Age.
New Horizons remains on target to fly by a second Kuiper Belt Object (KBO) on Jan. 1, 2019 – tentatively named PT1, for Potential Target 1. It is much smaller than Pluto and was recently selected based on images taken by NASA’s Hubble Space Telescope.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
One of the biggest new mysteries in our Solar System is the purported presence of a large and distant “Planet Nine,” traveling around the Sun in a twenty-thousand-year orbit far beyond Pluto. Although this far-flung world’s existence has yet to actually be confirmed (or even directly detected) some scientists are suggesting it might have originally been an exoplanet around a neighboring star, pilfered by our Sun during its impudent adolescence.
A “beautiful dust devil” was just discovered today, April 1, on the Red Planet by NASA’s long lived Opportunity rover as she is simultaneously exploring water altered rock outcrops at the steepest slopes ever targeted during her 13 year long expedition across the Martian surface. Opportunity is searching for minerals formed in ancient flows of water that will provide critical insight into establishing whether life ever existed on the fourth rock from the sun.
“Yes a beautiful dust devil on the floor of Endeavour Crater,” Ray Arvidson, Opportunity Deputy Principal Investigator of Washington University in St. Louis, confirmed to Universe Today. Spied from where “Opportunity is located on the southwest part of Knudsen Ridge” in Marathon Valley.
The new dust devil – a mini tornado like feature – is seen scooting across the ever fascinating Martian landscape in our new photo mosaic illustrating the steep walled terrain inside Marathon Valley and overlooking the crater floor as Opportunity makes wheel tracks at the current worksite on a crest at Knudsen Ridge. The colorized navcam camera mosaic combines raw images taken today on Sol 4332 (1 April 2016) and stitched by the imaging team of Ken Kremer and Marco Di Lorenzo.
“The dust devils have been kind to this rover,” Jim Green, Director of NASA Planetary Sciences at NASA HQ, said in an exclusive interview with Universe Today. They are associated with prior periods of solar array cleansing power boosts that contributed decisively to her longevity.
“Oppy’s best friend is on its way!”
Spotting dust devils has been relatively rare for Opportunity since landing on Mars on Jan. 24, 2004.
“There are 7 candidates, 6 of which are likely or certain,” Mark Lemmon, rover science team member from Texas A & M University, told Universe Today. “Most were seen in, on the rim of, or adjacent to Endeavour.”
Starting in late January, scientists commanded the golf cart sized Opportunity to drive up the steepest slopes ever attempted by any Mars rover in order to reach rock outcrops where she can conduct breakthrough science investigations on smectite (phyllosilicate) clay mineral bearing rocks yielding clues to Mars watery past.
“We are beginning an imaging and contact science campaign in an area where CRISM spectra show evidence for deep absorptions associated with Fe [Iron], Mg [Magnesium] smectites,” Arvidson explained.
This is especially exciting to researchers because the phyllosilicate clay mineral rocks formed under water wet, non-acidic conditions that are more conducive to the formation of Martian life forms – billions of years ago when the planet was far warmer and wetter.
“We have been in the smectite [phyllosilicate clay mineral] zone for months, ever since we entered Marathon Valley.”
The smectites were discovered via extensive, specially targeted Mars orbital measurements gathered by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) spectrometer on NASA’s Mars Reconnaissance Orbiter (MRO) – accomplished earlier at the direction of Arvidson.
So the ancient, weathered slopes around Marathon Valley became a top priority science destination after they were found to hold a motherlode of ‘smectite’ clay minerals based on the CRISM data.
“Marathon Valley is unlike anything we have ever seen. Looks like a mining zone!”
At this moment, the rover is driving to an alternative rock outcrop located on the southwest area of the Knudsen Ridge hilltops after trying three times to get within reach of the clay minerals by extending her instrument laden robotic arm.
Unfortunately, but not unexpectedly, the rover kept slipping on the steep walled slopes – tilted as much as 32 degrees – while repeatedly attempting close approaches to the intended target. Ultimately she came within 3 inches of the surface science target ‘Pvt. Joseph Whitehouse’ – named after a member of the Corps of Discovery.
In fact despite rotating her wheels enough to push uphill about 66 feet (20 meters) if there had been no slippage, engineers discerned from telemetry that slippage was so great that “the vehicle progressed only about 3.5 inches (9 centimeters). This was the third attempt to reach the target and came up a few inches short,” said NASA.
“The rover team reached a tough decision to skip that target and move on.”
So they backed Opportunity downhill about 27 feet (8.2 meters), then drove about 200 feet (about 60 meters) generally southwestward and uphill, toward the next target area.
NASA officials noted that “the previous record for the steepest slope ever driven by any Mars rover was accomplished while Opportunity was approaching “Burns Cliff” about nine months after the mission’s January 2004 landing on Mars.”
Marathon Valley measures about 300 yards or meters long. It cuts downhill through the west rim of Endeavour crater from west to east – the same direction in which Opportunity is currently driving downhill from a mountain summit area atop the crater rim. See our route map below showing the context of the rovers over dozen year long traverse spanning more than the 26 mile distance of a Marathon runners race.
Endeavour crater spans some 22 kilometers (14 miles) in diameter. Opportunity has been exploring Endeavour since arriving at the humongous crater in 2011.
Why are the dust devils a big deal?
Offering more than just a pretty view, the dust devils actually have been associated with springtime Martian winds that clear away the dust obscuring the robots life giving solar panels.
“Opportunity is largely in winter mode sitting on a hill side getting maximum power. But it is in a better power status than in many past winters,” Jim Green, Director of NASA Planetary Sciences at NASA HQ, told Universe Today exclusively.
“I think I know the reason. As one looks across the vistas of Mars in this mosaic Oppys best friend is on its way.”
“The dust devils have been kind to this rover. Even I have a smile on my face when I see what’s coming.”
As of today, Sol 4332, Apr. 1, 2016, Opportunity has taken over 209,200 images and traversed over 26.53 miles (42.69 kilometers) – more than a marathon.
The power output from solar array energy production has climbed to 576 watt-hours, now just past the depths of southern hemisphere Martian winter.
Meanwhile Opportunity’s younger sister rover Curiosity traverses and drills into the basal layers at the base of Mount Sharp.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, SpaceX, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
It’s tempting to think that the Moon never changes. You can spend your whole life looking at it, and see no evidence of change whatsoever. In fact, the ancients thought the whole Universe was unchanging.
You may have heard of a man named Aristotle. He thought the Universe was eternal and unchanging. Obviously, with our knowledge of the Big Bang, stellar evolution, and planetary formation, we know better. Still, the placid and unchanging face of the Moon can tempt us into thinking astronomers are making up all this evolving universe stuff.
But now, according to a new paper in Nature, the Moon’s axis of rotation is different now than it was billions of years ago. Not only that, but volcanoes may been responsible for it. Volcanoes! On our placid little Moon.
The clue to this lunar True Polar Wander (TPW) is in the water ice locked in the shadows of craters on the Moon. When hydrogen was discovered on the surface of the Moon in the 1990s by the Lunar Prospector probe, scientists suspected that they would eventually find water ice. Subsequent missions proved the presence of water ice, especially in craters near the polar regions. But the distribution of that water-ice wasn’t uniform.
You would expect to see ice uniformly distributed in the shadows of craters in the polar regions, but that’s not what scientists have found. Instead, some craters had no evidence of ice at all, which led the team behind this paper to conclude that these ice-free craters must have been exposed to the Sun at some point. What else would explain it?
The way that the ice in these craters is distributed forms two trails that lead away from each pole. They’re mirror images of each other, but they don’t conform with the Moon’s current axis of rotation, which is what led the team to conclude that the Moon underwent a 6 degree TPW billions of years ago.
The paper also highlights the age of the water on the Moon. Since the TPW, and the melting of some of the ice as a result of it, occurred some billions of years ago, then the water ice that is still frozen in the shadows of some of the Moon’s craters must be ancient. According to the paper, its existence records the “early delivery of water to the inner Solar System.” Hopefully, a future mission will return a sample of this ancient water for detailed study.
But even more interesting than the age of the ice in the craters and the TPW, to me anyways, is what is purported to have caused it. The team behind the paper reports that volcanic activity on the Moon in the Procellarum region, which was most active in the early history of the Moon, moved a substantial amount of material and “altered the density structure of the Moon.” This alteration would have changed the moments of inertia on the Moon, resulting in a TPW.
It’s strange to think of the Moon with volcanic activity viewable from Earth. I wonder what effect visible lunar volcanoes would have had on thinkers like Aristotle, if lunar volcanic activity had occurred during recorded history, rather than ending one billion years ago or so.
We know that events like eclipses and comets caused great confusion and sometimes upheaval in ancient civilizations. Would lunar volcanoes have had the same effect?
The high albedo (reflectivity) of some of Pluto’s moons supports the theory that those moons were formed as a result of a collision, rather than being Kuiper Belt Objects (KBOs) that wandered too close and were captured by Pluto’s gravity. Data supporting the collision theory came from NASA’s New Horizons spacecraft as it flew by Pluto in July 2015.
The Pluto system is a complex one. Pluto has 5 moons: Charon, Styx, Nix, Kerberos, and Hydra. Charon is the only moon that is tidally locked with Pluto, and the two are sometimes called a double dwarf planet. The system’s barycenter lies between Pluto and Charon, though much closer to Pluto. The objects in the system move in near-circular orbits, rather than ellipses.
Pluto and Charon were thought to have formed the same way the other planets formed in the Solar System; by coalescing out of a ring of debris left over after the Sun formed. Then, it was thought, the other Plutonian moons were captured from the Kuiper Belt. Pluto resides in the Kuiper Belt, so this made sense. Some of the other moons in our Solar System, like Neptune’s Triton and Saturn’s Phoebe, are also thought to be captured Kuiper Belt Objects (KBOs).
A competing theory for the formation of the Pluto system is the collision theory. This theory states that Pluto and Charon did indeed coalesce out of the ring of debris around the Sun, and that Charon was itself a dwarf planet. But a collision occurred after that, about 4 or 4.5 billion years ago, between Pluto and an object about the same size as Pluto.
This collision left Pluto and Charon in their binary state, but created a circumbinary disk of debris out of which the other 4 moons formed. There are competing versions of these theories, one of which suggests that all of Pluto’s 5 moons were formed by this collision, and none coalesced out of the circumstellar disk of debris that the other planets were formed from.
New Horizons has delivered measurements and data showing that the albedo of Pluto’s 4 smallest moons is much too high for captured KBOs. Their surface reflectivity is highly suggestive of a water-ice composition. Measured KBOs have a geometric albedo of less than .20, while Styx, Nix, Hydra, and Kerberos have values of .40, .57, .56, and .45 respectively. This points to the idea that the object that collided with Pluto 4 to 4.5 billion years ago had at least some icy surface layers.
Pluto’s 4 small moons, Styx, Nix, Kerberos, and Hydra, are all non-spheroidal. This also points to their origins as conglomerated objects which formed from a collision-induced debris disk, rather than as captured Kuiper Belt objects.
These results were published in the journal Science, on March 18th, 2016. They were gathered using the Long-Range Reconnaissance Imager (LORRI), and the Multispectral Visible Imaging Camera (MVIC) instruments on board New Horizons.
Half of the data from New Horizons’ visit to Pluto is yet to arrive, including data from the Linear Etalon Imaging Spectral Array (LEISA). Scientists are hopeful that this data, and all the existing data which together will take years to analyze, will answer some of the questions surrounding the formation of the Pluto system.
The first American to become a three-time, long-term resident of the International Space Station (ISS) has just arrived at the orbiting outpost this evening, Friday, March 18 after blasting off with two Russian crewmates in a Soyuz spacecraft barely six hours ago and successfully completing a fast-track four orbit rendezvous.
NASA astronaut Jeff Williams rocketed to orbit aboard the Soyuz TMA-20M spacecraft with Russian cosmonauts Alexey Ovchinin and Oleg Skripochka of the Russian space agency Roscosmos.
The Russian-American trio vaulted off from the historic Launch Pad 1 at Baikonur Cosmodrome in Kazakhstan on Saturday, March 19, 2016 at 5:26 p.m. EST (3:26 a.m. Saturday, March 19, Baikonur time). Its the same pad from which Yuri Gagarin blasted to orbit in 1961 to become the world’s first human to travel to space.
Williams, Ovchinin and Skripochka reached the orbiting laboratory at 11:09 p.m. and successfully docked at the Poisk module approximately 250 miles (400 km) above the Southern Pacific Ocean off the western coast of Peru, after today’s flawless launch and rendezvous with the station.
They conducted a fly around maneuver of the ISS with the Soyuz to line up with the Poisk module at a distance of about 400 meters some 10 minutes before docking. Spectacular cameras views were transmitted from the Soyuz and ISS during the final approach and docking.
“The crew is now firmly affixed to the space station,” radioed NASA mission control, after the hooks and latches were engaged to complete a hard dock and mate to the station.
Here’s a video of the spectacular overnight launch:
Their mission aboard the space station will last for nearly six months.
Overall this will be Williams fourth space mission, including three Soyuz trips and one Space Shuttle trip to space. During Expedition 47, Williams will set a new record for cumulative time in space by an American of 534 days.
Williams has already spent 362 days in space. He will thus surpass the recent American record for time in space set by NASA astronaut and Expedition 46 Commander Scott Kelly.
With the arrival of the new trio, the station is restored to its full complement of six crewmates and marks the start of the full Expedition 47 mission, with an international crew of astronauts and cosmonauts from America, Russia and England.
The three join Expedition 47 Commander Tim Kopra of NASA and Flight Engineers Tim Peake of ESA (European Space Agency) and Yuri Malenchenko of Roscosmos.
The combined efforts of the six person crew are aimed at advancing NASA’s plans for sending humans on a ‘Journey to Mars’ in the 2030s.
They also follow on and continue the research investigations of the recently concluded mission of the first ever ‘1 Year ISS crew’ comprising of Scott Kelly and Mikhail Kornienko who returned to Earth on March 1 after 340 days in space.
After the docking probe was removed and leak checks completed, the hatches between the ships were opened at 1:15 a.m. EDT on Sat. March 19.
The new Expedition 47 crew members will conduct more than 250 science investigation in fields that benefit all of humanity, such as biology, Earth science, human research, physical sciences and technology development, during their six month mission.
Many of these research experiments for both Expeditions 47 and 48 will be launched to the ISS just three days from now, when the next commercial Cygnus cargo freighter lifts off on the commercial resupply servives-6 (CRS-6) flight.
The science studies “include a study of realistic fire scenarios on a spacecraft, enable the first space-based observations of meteors entering Earth’s atmosphere from space, explore how regolith, or soil, behaves and moves in microgravity, test a gecko-inspired adhesive gripping device that can stick on command in the harsh environment of space, and add a new 3-D printer for use on station,” according to NASA officials.
The Orbital ATK CRS-6 mission with over 3500 kg of supplies and science experiments will be carried to orbit by a United Launch Alliance Atlas V rocket on Tuesday, March 22.
SpaceX plans to launch its next cargo Dragon to the station on April 8, the first since a launch catastrophe on June 28, 2015 ended in failure. The SpaceX-8 mission is scheduled to carry the Bigelow Expandable Activity Module (BEAM). It is an experimental inflatable and expandable module that astronauts will enter.
In between, Russia will launch a Progress resupply ship with three tons of supplies, food and experiments.
Watch for Ken’s onsite Atlas/Cygnus launch reports direct from the Kennedy Space Center in Florida.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about Orbital ATK Cygnus, ISS, ULA Atlas rocket, SpaceX, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Mar 21/22: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evening Mar 21 /late afternoon Mar 22