For a nail-biting hour and 20 minutes, NASA lost contact yesterday afternoon July 4 with the New Horizons spacecraft just 9 days before its encounter with Pluto. Communication has since been reestablished and the spacecraft is healthy.
(UPDATE July 6: Great news! The mission will return to normal science operations July 7 – more details below.)
At 1:54 p.m. EDT, communications suddenly stopped and weren’t reestablished until 3:15 p.m. through NASA’s Deep Space Network. During the time it was out of contact with mission control, the spacecraft’s autonomous autopilot recognized the problem and did what it was programmed to do, switching from the main to the backup computer, according to NASA officials. The autopilot then commanded the backup computer to put New Horizons in “safe mode” — where all non-essential functions are shut down — and reinitiate communications with Earth.
Success! We’re now back in touch with the spacecraft and engineers are monitoring telemetry to figure out what went wrong. New Horizons is presently almost 3 billion miles (4.9 billion km) from Earth. Due to the 8.8 hour, round trip communication delay, full recovery is expected to take from one to several days. During that time New Horizons will be unable to collect science data.
If there’s any upside to this, it’s that it happened now instead of 9 days from now. On July 14 at 7:49:57 a.m. EDT the spacecraft will pass closest to Pluto.
Check back for updates. In the meantime, you can watch a live connection between New Horizons and the Deep Space Network. The probe is labeled NHPC and the dish 63 (first entry).
UPDATE: July 6. NASA announced earlier this morning that has concluded the glitch that caused the New Horizons spacecraft to go into safe mode was not due to a software or hardware fault.
“The underlying cause of the incident was a hard-to-detect timing flaw in the spacecraft command sequence that occurred during an operation to prepare for the close flyby. No similar operations are planned for the remainder of the Pluto encounter,” according to a NASA release.
No primary science will be lost and secondary goals were only slightly compromised. Mission control expects science operations to resume on July 7 and to conduct the entire close flyby sequence as planned.
“In terms of science, it won’t change an A-plus even into an A,” said New Horizons Principal Investigator Alan Stern.
An iconic section of the fuselage recovered from space shuttle Challenger with the American flag (left) and the flight deck windows recovered from space shuttle Columbia (right) are part of a new, permanent memorial, “Forever Remembered,” that opened on June 27, 2015 in the Space Shuttle Atlantis exhibit at the Kennedy Space Center Visitor Complex in Florida – featuring shuttle hardware and personal crew items never before on display for viewing by the public. Credit: Ken Kremer/kenkremer.com
Story/photos updated[/caption]
NASA’s two lost Shuttle crews from the searing Challenger and Columbia accidents are now memorialized in the newly opened, permanent and highly emotional “Forever Remembered” tribute display at the Kennedy Space Center Visitor Complex in Florida.
The “Forever Remembered” memorial tribute was officially opened by NASA Administrator Charles Bolden and Kennedy Space Center Director Bob Cabana, both veteran shuttle astronauts, at a very special and moving small private NASA ceremony attended by families of the 14 fallen crew members and invited members of the media including Universe Today on June 27, 2015.
“I believe that it’s important to share this story with everyone, and not just push it aside, or try to hide it,” Cabana said at the ceremony, as tears welled up in everyone present.
The shuttle tribute is located on the ground floor of the Space Shuttle Atlantis pavilion at the Kennedy Space Center Visitor Complex and features shuttle orbiter hardware recovered from both the Challenger STS-51L and Columbia STS-107 accidents, as well as personal crew items from all 14 courageous astronauts who lost their lives – items never before on display for viewing by the public.
The 2000 square foot exhibit features an iconic section of the fuselage recovered from space shuttle Challenger emblazoned with the American flag and the flight deck windows recovered from space shuttle Columbia, that are part of the permanent “Forever Remembered” memorial that opened on June 27, 2015 – see photo above.
It also holds the largest collection of personal items of both flight crews in individual displays about the 14 crew members in a hallway that leads to a plaque with a quote from U.S. President Ronald Reagan.
“The future doesn’t belong to the fainthearted, it belongs to the brave,” said President Ronald Reagan in remarks to the nation in mourning shortly after the explosion of Space Shuttle Challenger on Jan. 28, 1986.
The “Forever Remembered” display was conceived in private by a very small circle spearheaded by Cabana and unknown by outsiders until the day it was formally opened. It completes the display inside the Atlantis pavilion, which commemorates NASA’s three decade long Space Shuttle Program that flew 135 missions from 1981 to 2011 with the reusable delta-winged vehicles that “captivated a generation.”
It is intended to be an emotional experience and “designed to honor the crews, pay tribute to the spacecraft and emphasize the importance of learning from the past” and the tragic consequences. This will enable safer flights in the future and fortify the spirit of never giving up on the exploration of space.
“The tragedies galvanized the agency to learn from these painful events, not only to safely return the shuttle fleet to flight, but to help assure the safety of future explorers,” NASA said in a statement.
Several dozen family members attended the tearful, heartfelt opening ceremony of “Forever Remembered” with very emotional remarks from Cabana and Bolden.
“These crews and these vehicles are part of who we are as an agency, and a nation. They tell the story of our never ending quest to explore, and our undying spirit to never give up,” Cabana stated at the ceremony.
Columbia and Challenger were the nation’s first two orbiters to be built. Columbia launched on the maiden space shuttle flight on April 12, 1981 on what is revered by many as the “boldest test flight in history” with NASA astronauts John Young and Bob Crippen.
“When I look into those windows, I see John Young and Bob Crippen preparing to launch on the boldest test flight in history, the first flight of America’s space shuttle, Columbia,” Cabana added.
“I see a much younger Bob Cabana launching to space on his first command, and I see Rick and Willie and the rest of the 107 crew smiling and experiencing the wonders of space on the final flight of Columbia.”
The idea to create a permanent memorial originated with a team led by Bob Cabana, and approved by Charlie Bolden only after every one of the astronauts families were in complete and unqualified agreement that this tribute display was the right thing to do in memory of their loved ones, tragically lost during the in flight accidents in 1986 and 2003.
“The crews of Challenger and Columbia are forever a part of a story that is ongoing,” Bolden said at the ceremony.
“It is the story of humankind’s evolving journey into space, the unknown, and the outer-reaches of knowledge, discovery and possibility. It is a story of hope.”
The wives of the two shuttle commanders, shared their thoughts on the new exhibit:
“It’s a beautiful remembrance of all the shuttles, with the marvelous display of Atlantis. Nothing compares to it in the world,” said June Scobee Rodgers, whose husband, Dick Scobee, commanded Challenger on STS-51L, in a statement.
“But Challenger and Columbia are not forgotten, and they’re well represented.”
“I knew it would be very emotional to see, but honestly, I didn’t expect to be so impacted by it. I just can’t stop thinking about it. As you walk in, you know you’re in a special place,” Evelyn Husband Thompson said of the memorial. Her husband, Rick, commanded Columbia on STS-107.
Here is a NASA description of both the Columbia and Challenger accidents and crews:
“Temperatures at Kennedy Space Center were just a few degrees above freezing on the morning of Jan. 28, 1986, as Challenger lifted off on its 10th mission, STS-51L. One minute and 13 seconds into the flight, a booster failure caused an explosion that destroyed the vehicle, resulting in the loss of the crew of seven astronauts: Commander Francis Scobee, Pilot Michael J. Smith, Mission Specialists Judith Resnik, Ellison Onizuka and Ronald McNair, and Payload Specialists Gregory Jarvis and Christa McAuliffe, a New Hampshire schoolteacher.”
“Seventeen years later, on Jan. 16, 2003, NASA’s flagship orbiter Columbia thundered into orbit on STS-107, a 16-day science mission. On board were Commander Rick Husband, Pilot Willie McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla, David Brown and Laurel Clark, and Payload Specialist Ilan Ramon, Israel’s first astronaut. On Feb. 1, 2003, the orbiter broke apart in the skies above east Texas as it re-entered Earth’s atmosphere on the way to a planned landing at Kennedy. Seven more lives were lost.”
Today the fallen astronauts legacy of human spaceflight lives on at NASA with the International Space Station, the development of Commercial Crew manned capsules for low Earth orbit, and the development of the Orion deep space crew exploration vehicle and SLS rocket for NASA’s ambitious plans to send ‘Human to Mars’ in the 2030s.
Read more about both fallen shuttle crews and the Apollo 1 crew who perished in a launch pad accident in January 1967 in my tribute story posted here during NASA’s solemn week of remembrance in January.
I urge everyone to visit this hallowed “Forever Remembered” memorial at the Kennedy Space Center Visitor Complex and remember those who made the ultimate sacrifice to benefit all of us in the quest for new knowledge of the boundless expanse of space leading to new discoveries we cannot fathom today.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Hey, Mars, you’ve got company. Looks like there’s a second “red planet” in the Solar System — Pluto. Color images returned from NASA’s New Horizons spacecraft, now just 10 days from its encounter with the dwarf planet, show a distinctly ruddy surface with patchy markings that strongly resemble Mars’ appearance in a small telescope.
On Mars, iron oxide or rust colors the planet’s soil, while Pluto’s coloration is likely caused by hydrocarbon molecules called tholins that are formed when cosmic rays and solar ultraviolet light interact with methane in Pluto’s atmosphere and on its surface. Airborne tholins fall out of the atmosphere and coat the surface with a reddish gunk.
A particular color or wavelength of UV light called Lyman-alpha is most effective at stimulating the chemical reactions that build hydrocarbons at Pluto. Recent measurements with New Horizons’ Alice instrument reveal the diffuse glow of Lyman-alpha light all around the dwarf planet coming from all directions of space, not just the Sun.
Since one of the main sources of Lyman-alpha light besides the Sun are regions of vigorous star formation in young galaxies, Pluto’s cosmetic rouge may originate in events happening millions of light years away.
“Pluto’s reddish color has been known for decades, but New Horizons is now allowing us to correlate the color of different places on the surface with their geology and soon, with their compositions,” said New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado.
Tholins have been found on other bodies in the outer Solar System, including Titan and Triton, the largest moons of Saturn and Neptune, respectively, and made in laboratory experiments that simulate the atmospheres of those bodies.
As you study the photos and animation, you’ll notice that Pluto’s largest dark spot is redder than the most of the surface; you also can’ help but wonder what’s going on with those four evenly-spaced dark streaks in the equatorial zone. When I first saw them, my reaction was “no way!” They look so neatly lined up I assumed it was an image artifact, but after seeing the rotating movie, maybe not. It’s more likely that low resolution enhances the appearance of alignment.
But what are they? Located as they are on the Charon-facing side of Pluto, they may be related to long-ago tidal stresses induced by each body on the other as they slowly settled into their current tidally-locked embrace or something as current as seasonal change.
Voyager 2 photographed cyrovolcanos at Triton during its 1989 flyby of the Neptune system. Nitrogen geysers and plumes of gas and ice as high as 5 miles (8 km) were seen erupting from active volcanoes, leaving dark streaks on its icy surface.
Seasonal heating from the Sun is the most likely cause for Triton’s eruptions; Pluto’s dark streaks may have a similar origin.
Today, New Horizons lies just 7.4 million miles (11.9 million km) from its target. Sharpness and detail visible will rapidly improve in just a few days.
“Even at this resolution, Pluto looks like no other world in our Solar System,” said mission scientist Marc Buie of the Southwest Research Institute, Boulder in a recent press release.
Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
Story updated[/caption]
A sigh of relief was heard worldwide with today’s (July 3) successful launch to orbit of the unmanned Progress 60 cargo freighter atop a Soyuz-U booster from the Baikonur Cosmodrome, signifying the restoration of Russia’s critical cargo lifeline to the International Space Station (ISS), some two months after the devastating launch failure of the prior Progress 59 spaceship on April 28.
The Progress 60 resupply ship, also known as Progress M-28M, was loaded with over three tons of food, fuel, oxygen, science experiments, water and supplies on a crucial mission for the International Space Station crew to keep them stocked with urgently needed life support provisions and science experiments in the wake of the twin launch failures in April and June.
The Soyuz-U carrier rocket launched Progress into blue skies at 10:55 a.m. local time in Baikonur (12:55 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan. The launch was webcast live on NASA TV.
“Everything went by the book,” said NASA commentator Rob Navias during the webcast. “Everything is nominal.”
The International Space Station was flying about 249 miles over northwestern Sudan, near the border with Egypt and Libya, at the moment of liftoff. Note: See an exquisite photo of the Egyptian pyramid photographed from the ISS in my recent story – here.
After successfully separating from the third stage Progress reach its preliminary orbit less than 10 minutes after launch from Baikonur and deployed its solar arrays and navigational antennas as planned.
Live video was received from Progress after achieving orbit showing a beautiful view of the Earth below.
A two day chase of 34 orbits of Earth over the next two days will bring the cargo craft to the vicinity of the station for a planned docking to the Russian segment of the orbiting laboratory at 3:13 a.m. Sunday, July 5.
NASA TV will provide live coverage of the arrival and docking operation to the Pirs Docking Compartment starting at 2:30 a.m. EDT on Sunday, July 5.
Watch live on NASA TV and online at http://www.nasa.gov/nasatv
NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka are currently living and working aboard the station as the initial trio of Expedition 44 following the safe departure and landing of the three person Expedition 43 crew in mid June.
Kelly and Kornienko comprise the first ever 1 Year Crew to serve aboard the ISS and are about three months into their stay in space.
In the span of just the past eight months, three launches of unmanned cargo delivery runs to the space station have failed involving both American and Russian rockets.
The cargo ships function as a railroad to space and function as the lifeline to keep the station continuously crewed and functioning. Without periodic resupply by visiting vehicles from the partner nations the ISS cannot continue to operate.
The Russian Soyuz/Progress 59 mission failed after the cargo vessel separated from the Soyuz booster rockets third stage and spun wildly out of control on April 28, 2015 and eventually crashed weeks later during an uncontrolled plummet back to Earth over the ocean on May 8. The loss was traced to an abnormal third stage separation event.
Roscosmos, the Russian Federal Space Agency, switched this Progress vehicle to an older version of the Soyuz rocket which had a different third stage configuration that was not involved in the April failure.
Russian officials decided to move up the launch by about a month from its originally planned launch date in August in order to restock the station crew with critically needed supplies as soon as practical.
Following Sundays SpaceX cargo launch failure, the over 6100 pounds of new supplies on Progress are urgently needed more than ever before. Loaded aboard are 1,146 pounds (520 kg) of propellant, 105 pounds (48 kg) of oxygen, 926 pounds (420 kg) of water and 3,071 pounds (1393 kg) pounds of crew supplies, provisions, research equipment, science experiments, tools and spare parts and parcels for the crew.
In the wake of the trio of American and Russian launch failures, the crews current enjoy only about four month of supplies reserves compared to the more desirable six months stockpile in case of launch mishaps.
Progress 60 will extend the station supplies by about a month’s time.
The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.
These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising Kelly and Kornienko.
The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis to dock at the ISS starting in 2017.
The three cargo launch failures so close together are unprecedented in the history of the ISS program over the past two decades.
The next cargo ship now slated to launch is the Japanese HTV-5 on August 16.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – SpaceX and NASA are diligently working to “identify the root cause” of the June 28 in flight failure of the firms Falcon 9 rocket, as the accident investigation team focuses on “flight data” rather than recovered debris as the best avenue for determining exactly what went wrong, a SpaceX spokesperson told Universe Today.
The SpaceX Falcon 9 booster broke up just minutes after a picture perfect blastoff from a seaside Florida launch pad on a critical mission for NASA bound for the International Space Station (ISS). It was carrying a SpaceX Dragon cargo freighter loaded with research equipment and new hardware to enable crewed spaceships to dock at the orbiting outpost.
The accident investigation team is still seeking the root cause of the launch failure through a complex fault tree analysis.
“The process for determining the root cause of Sunday’s mishap is complex, and there is no one theory yet that is consistent with the data,” said SpaceX spokesman John Taylor.
The accident investigation is in full swing both at the Cape and SpaceX headquarters in Hawthorne, Ca.
“Our engineering teams are heads down reviewing every available piece of flight data as we work through a thorough fault tree analysis in order to identify root cause.”
Hans Koenigsmann, SpaceX VP of Mission Assurance, is leading the accident investigation for SpaceX.
SpaceX is conducting an intense and thorough investigation with the active support of various government agencies including the FAA, NASA and the U.S. Air Force.
The SpaceX Falcon 9 and Dragon were destroyed just over two minutes after a stunning liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in sunny Florida at 10:21 a.m. EDT.
The SpaceX CRS-7 cargo resupply mission to the ISS began flawlessly. The nine Merlin 1D engines powering the Falcon 9 rockets first stage were firing nominally at launch to produce about 1.3 million pounds of liftoff thrust for almost their entire duration.
However, approximately 139 seconds into the planned 159 second firing of the first stage engine, the majestic blastoff went awry as the upper stage of the vehicle experienced an as yet unexplained anomaly and suddenly exploded, vaporizing into a grayish cloud at supersonic speed and raining debris down into the Atlantic Ocean.
The Falcon 9 has transmitting data on over 3,000 channels of flight data streams.
But something went wrong apparently with the upper stage said SpaceX CEO Elon Musk.
“There was an overpressure event in the upper stage liquid oxygen tank. Data suggests counterintuitive cause,” tweeted Musk.
But why that happened and the vehicle disintegrated in mere seconds is still a mystery to be resolved through careful fault tree analysis of the data.
“Cause still unknown after several thousand engineering-hours of review. Now parsing data with a hex editor to recover final milliseconds.”
While SpaceX and Coast Guard ships have recovered some debris in the days since the launch mishap, the data streams are expected to be the most useful source of information to the investigation team.
Hex editors are being used to comb through the data.
A hex editor (or binary file editor or byte editor) is a type of computer program that allows for manipulation of the fundamental binary data that constitutes a computer file.
The name ‘hex’ comes from ‘hexadecimal’: a standard numerical format for representing binary data.
Some data was transmitted after the breakup.
The accident investigation teams are currently in the process of recreating the final milliseconds of the flight to give them some additional insights into what may have happened, when and why.
In the meantime all SpaceX launches are on hold for several months at least.
The next Falcon 9 launch scheduled was for NASA’s Jason 3 from Vandenberg Air Dorce Base in California
The next SpaceX cargo Dragon had been scheduled for liftoff in September 2015 on the CRS-8 mission, but is now postponed pending the results of the return to flight investigation.
There are sufficient supplies on board the ISS to keep the crew continuing their mission until at least October 2015.
The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.
These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising Scott Kelly and Mikhail Kornienko.
The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis to dock at the ISS starting in 2017.
Another Russian Progress vehicle is set to fly on the next resupply mission from the Baikonur Cosmodrome on Friday, July 3.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
You’re probably as eager as I am for new images of Pluto and Ceres as both New Horizons and Dawn push ever closer to their respective little worlds. Recent photos, of which there are only a few, reveal some wild new features including what appears to a large crater on Pluto.
In the end, this apparent large impact might only be a contrast effect or worse, an artifact of over-processing, but there’s no denying its strong resemblance to foreshortened, shadow-filled craters seen on the Moon and other moons. It’s also encouraging that an earlier photo from June 27 shows the same feature. But the “crater” is just so … big! Its size seems disproportionate to the Pluto’s globe and recalls Saturn’s 246-mile-wide moon Mimas with its 81-mile-wide crater Herschel.
Astronomers speculate the impact that gouged out Herschel came perilously close to shattering the moon to pieces. If it does turn out to be an crater, Pluto’s surface opposite the impact will likely show many fractures. Not to be outdone, the dwarf planet’s largest moon, Charon, is starting to show a personality of its own with a prominent dark north polar cap.
Since polar caps are normally bright, icy features, some have referred to this one as an “anti-polar cap”. Speaking of ice, the bright rim around Pluto in the photo above may be nitrogen frost condensing out of Pluto’s scant atmosphere as it slowly recedes from the Sun. Think how cold it must have to get for nitrogen to freeze out. How about -346° F (-210° C)! For new images of the Pluto system, be sure to check the New Horizons LORRI gallery page.
Closer to home, new photos of Ceres show a peculiar, pyramid-shaped mountain towering 3 miles (5 km) high from a relatively smooth region between two large craters. Mountains poking from crater floors aren’t unusual. They’re tossed up after the crust later rebounds after a large impact. What makes this one unusual is the lack of an associated crater. Moreover, the mountain’s pale hue could indicate it’s younger than the surrounding landscape. As far as we can tell, it’s the only tall mountain on the face of the dwarf planet.
The Dawn team also photographed that cluster of white spots again, this time with a very shot exposure in to eke out more details. What do you think? If you’re as interested in asteroids as I am, Italian astrophysicist Gianluca Masi, a frequent photo contributor to Universe Today, will host a special live Asteroid Day event today starting at 6 p.m. CDT (23:00 UT). Masi will review near-Earth asteroids, explain discovery techniques and observe several in real time.
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com Story and photos expanded[/caption]
Meanwhile, search and recovery teams from SpaceX and the Coast Guard are scouring the ocean and beaches along the Florida Space Coast for any signs of potentially dangerous Falcon rocket debris that rained down from the sky into the Atlantic Ocean after the sudden explosion unexpectedly destroyed the vehicle barely two minutes after a sun drenched liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:21 a.m. EDT.
All appeared normal as the Falcon 9 booster and Dragon resupply spaceship were streaking skywards through majestically blue Florida skies when catastrophe struck at approximately 148 seconds after blastoff and the rocket exploded violently- utterly destroying the rocket ship and its two ton load of critical supplies heading to the astronauts and cosmonauts living on board the ISS.
The upper stage appeared to break up in flight as the nine first stage Merlin 1D engines were firing as planned and the rocket was arcing over.
But why that happened and the vehicle disintegrated in mere seconds is still a mystery which will take some time to resolve.
“Cause still unknown after several thousand engineering-hours of review. Now parsing data with a hex editor to recover final milliseconds,” tweeted SpaceX CEO Elon Musk.
Although the cause is unknown, Musk also announced that the failure might be related to a problem with the Falcon 9 upper stage. since the first stage engines were still firing as planned.
“There was an overpressure event in the upper stage liquid oxygen tank. Data suggests counterintuitive cause,” tweeted Musk.
The rocket was traveling about 5000 km/h at an altitude of 45 kilometers at the time of the mishap.
“Falcon 9 experienced a problem shortly before first stage shutdown. Will provide more info as soon as we review the data,” tweeted SpaceX CEO Elon Musk soon after the explosion.
The pressurized section of the Dragon was packed with over 4,000 pounds of research experiments, spare parts, gear, high pressure supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45 on the ISS.
Sunday’s launch was the 19th launch of the Falcon 9 rocket and the first failure after 18 straight successes.
SpaceX formed a failure investigation board immediately following the launch failure of the SpaceX Commercial Resupply Services 7 (CRS-7) mission bound for the ISS. The FAA and NASA will assist in the investigation.
The launch was the sixth for SpaceX this year, which had been picking up its launch pace dramatically compared to 2014.
It was the third launch failure of a cargo delivery run to the space station in the past half year -including both American and Russian rockets.
The Orbital Sciences Antares/Cygnus Orb 3 mission exploded in a massive an frightening fireball on October 28, 2014 which I witnessed from the press site from NASA Wallops in Virginia.
The Russian Soyuz/Progress 59 mission failed after the cargo vessel separated from the booster rockets third stage and spun wildly out of control in April 2015 and eventually crashed.
Myself and other members of the media were watching and photographing the SpaceX Falcon 9 launch from atop the iconic Vehicle Assembly Building (VAB) when the launch mishap occurred.
See a galley of my launch failure explosion photos herein.
Watch for Ken’s continuing onsite coverage of the CRS-7 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
The year’s finest conjunction is upon us. Chances are you’ve been watching Venus and Jupiter at dusk for some time.
Like two lovers in a long courtship, they’ve been slowly approaching one another for the past several months and will finally reach their minimum separation of just over 1/4° (half a Full Moon diameter) Tuesday evening June 30.
Most of us thrill to see a single bright planet let alone the two brightest so close together. That’s what makes this a very special conjunction. Conjunctions are actually fairly common with a dozen or more planet-to-planet events a year and 7 or 8 Moon-planet match-ups a month. It’s easy to see why.
All eight planets travel the same celestial highway around the sky called the ecliptic but at different rates depending upon their distance from the Sun. Distant Saturn and Neptune travel more slowly than closer-in planets like Mercury and Mars. Over time, we see them lap one another in the sky, pairing up for a week or so and inspiring the gaze of those lucky enough to look up. After these brief trysts, the worlds part ways and move on to future engagements.
In many conjunctions, the planets or the Moon and planet are relatively far apart. They may catch the eye but aren’t exactly jaw-dropping events. The most striking conjunctions involve close pairings of the brightest planets. Occasionally, the Moon joins the fray, intensifying the beauty of the scene even more.
While moving planets are behind many conjunctions, they often don’t do it alone. Earth’s orbital motion around the Sun helps move things along. This week’s event is a perfect example. Venus is currently moving away from Jupiter in the sky but not quickly enough to avoid the encounter. Each night, its apparent distance from the Sun decreases by small increments and the planet loses altitude. Meanwhile, Jupiter’s moving away from Venus, traveling east toward Regulus as it orbits around the Sun.
So how can they possibly get together? Earth to the rescue! Every day, our planet travels some 1.6 million miles in our orbit, completing 584 million miles in one year. We see this movement reflected in the rising and setting times of the stars and planets.
Every night, the stars rise four minutes earlier than the night before. Over days and weeks, the minutes accumulate into hours. When stars rise earlier in the east, those in the west set earlier. In time, all stars and planets drift westward due to Earth’s revolution around the Sun.
It’s this seasonal drift that “pushes” Jupiter westward to eventually overtake a reluctant Venus. Despite appearances, in this particular conjunction, both planets are really fleeing one another!
We’re attuned to unusual planetary groupings just as our ancestors were. While they might have seen a planetary alignment as a portent of kingly succession or ill fortune in battle, we’re free to appreciate them for their sheer beauty. Not to say that some might still read a message or experience a personal revelation at the sight. There’s something in us that sees special meaning in celestial alignments. We’re good at sensing change in our environment, so we sit up and take notice when unusual sky events occur like eclipses, bright comets and close pairings of the Moon and planets.
You can watch the Jupiter-Venus conjunction several different ways. Naked eye of course is easiest. Just face west starting about an hour after sunset and drink it in. My mom, who’s almost 90, will be watching from her front step. Binoculars will add extra brilliance to the sight and perhaps show several moons of Jupiter.
If you have a telescope, I encourage you to point it at the planetary doublet. Even a small scope will let you see Jupiter’s two dark, horizontal stripes — the North and South Equatorial Belts — and several moons. Venus will appear as a pure white, thick crescent 32 arc seconds across virtually identical in apparent size to Jupiter. To tame Venus’ glare, start observing early when the sky is still flush with pale blue twilight. I think the best part will be seeing both planets in the same field of view even at moderate magnification — a rare sight!
To capture an image of these shiny baubles try using your cellphone. For many, that’s the only camera we have. First, find a pretty scene to frame the pair. Hold your phone rock-solid steady against a post or building and click away starting about an hour after sundown when the two planets have good contrast with the sky, but with light still about. If your pictures appear too dark or light, manually adjust the exposure. Here’s a youtube video on how to do it with an iPhone.
Point-and-shoot camera owners should place their camera on a tripod, adjust the ISO or sensitivity to 100, open the aperture or f/stop to its widest setting (f/2.8 or f/4), autofocus on the planets and expose from 5-10 seconds in mid-twilight or about 1 hour to 90 minutes after sunset. The low ISO is necessary to keep the images from turning grainy. High-end digital SLR cameras have no such limitations and can be used at ISO 1600 or higher. As always, review the back screen to make sure you’re exposing properly.
I’m not a harmonic convergence kind of guy, but I believe this week’s grand conjunction, visible from so many places on Earth, will stir a few souls and help us appreciate this life that much more.
Rosetta will attempt comet landing
This single frame Rosetta navigation camera image of Comet 67P/Churyumov-Gerasimenko was taken on 15 June 2015 from a distance of 207 km from the comet centre. The image has a resolution of 17.7 m/pixel and measures 18.1 km across. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0 [/caption]
Europe’s history making Rosetta cometary spacecraft has been granted a nine month mission extension to plus up its bountiful science discoveries as well as been given the chance to accomplish one final and daring historic challenge, as engineers attempt to boldly go and land the probe on the undulating surface of the comet its currently orbiting.
Officials with the European Space Agency (ESA) gave the “GO” on June 23 saying “The adventure continues” for Rosetta to march forward with mission operations until the end of September 2016.
If all continues to go well “the spacecraft will most likely be landed on the surface of Comet 67P/Churyumov-Gerasimenko” said ESA to the unabashed glee of the scientists and engineers responsible for leading Rosetta and reaping the rewards of nearly a year of groundbreaking research since the probe arrived at comet 67P in August 2014.
“This is fantastic news for science,” says Matt Taylor, ESA’s Rosetta Project Scientist, in a statement.
It will take about 3 months for Rosetta to spiral down to the surface.
After a decade long chase of over 6.4 billion kilometers (4 Billion miles), ESA’s Rosetta spacecraft arrived at the pockmarked Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014 for history’s first ever attempt to orbit a comet for long term study.
Since then, Rosetta deployed the piggybacked Philae landing craft to accomplish history’s first ever touchdown on a comets nucleus on November 12, 2014. It has also orbited the comet for over 10 months of up close observation, coming at times to as close as 8 kilometers. It is equipped with a suite 11 instruments to analyze every facet of the comet’s nature and environment.
Currently, Comet 67P is still becoming more and more active as it orbits closer and closer to the sun over the next two months. The mission extension will enable researchers to a far greater period of time to compare the comets activity, physical and chemical properties and evolution ‘before and after’ they arrive at perihelion some six weeks from today.
The pair reach perihelion on August 13, 2015 at a distance of 186 million km from the Sun, between the orbits of Earth and Mars.
“We’ll be able to monitor the decline in the comet’s activity as we move away from the Sun again, and we’ll have the opportunity to fly closer to the comet to continue collecting more unique data. By comparing detailed ‘before and after’ data, we’ll have a much better understanding of how comets evolve during their lifetimes.”
Because the comet is nearly at its peak of outgassing and dust spewing activity, Rosetta must observe the comet from a stand off distance, while still remaining at a close proximity, to avoid damage to the probe and its instruments.
Furthermore, the Philae lander “awoke” earlier this month after entering a sven month hibernation period after successfully compleing some 60 hours of science observations from the surface.
As the comet again edges away from the sun and becomes less active, the team will attempt to land Rosetta on comet 67P before it runs out of fuel and the energy produced from the huge solar panels is insufficient to continue mission operations.
“This time, as we’re riding along next to the comet, the most logical way to end the mission is to set Rosetta down on the surface,” says Patrick Martin, Rosetta Mission Manager.
“But there is still a lot to do to confirm that this end-of-mission scenario is possible. We’ll first have to see what the status of the spacecraft is after perihelion and how well it is performing close to the comet, and later we will have to try and determine where on the surface we can have a touchdown.”
During the extended mission, the team will use the experience gained in operating Rosetta in the challenging cometary environment to carry out some new and potentially slightly riskier investigations, including flights across the night-side of the comet to observe the plasma, dust, and gas interactions in this region, and to collect dust samples ejected close to the nucleus, says ESA.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Artist’s concept of NASA mission streaking over ocean world of Europa. Credit: NASA/JPL
Story updated[/caption]
At long last NASA is heading back to Jupiter’s mysterious moon Europa and doing so in a big way – because scientists believe it harbors an alien ocean of water beneath an icy crust and therefore is “one of the most promising places in the solar system to search for signs of present-day life” beyond Earth.
Top NASA officials have now formally and officially green lighted the Europa ocean world robotic mission and given it the “GO” to move from early conceptual studies into development of the interplanetary spacecraft and mission hardware, to search for the chemical constituents of life.
“Today we’re taking an exciting step from concept to mission, in our quest to find signs of life beyond Earth,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, in a NASA statement.
The goal is to investigate the habitability of Europa’s subsurface ocean, determine if it possesses the ingredients for life and advance our understanding of “Are we Alone?”
“Observations of Europa have provided us with tantalizing clues over the last two decades, and the time has come to seek answers to one of humanity’s most profound questions,” said Grunsfeld.
“Therefore Europa is the most likely place to find life in our solar system today because we think there is a liquid water ocean beneath its surface.”
Video caption: Alien Ocean: NASA’s Mission to Europa. Could a liquid water ocean beneath the surface of Jupiter’s moon Europa have the ingredients to support life? Here’s how NASA’s mission to Europa would find out. Credit: NASA
After a thorough review of the mission concept, managers agreed that it “successfully completed its first major review by the agency and now is entering the development phase known as formulation
“It’s a great day for science,” said Joan Salute, Europa program executive at NASA Headquarters in Washington.
“We are thrilled to pass the first major milestone in the lifecycle of a mission that will ultimately inform us on the habitability of Europa.”
In a major milestone leading up to this mission development approval, NASA managers recently announced the selection of the nine science instruments that will fly on the agency’s long awaited planetary science mission to this intriguing world that many scientists suspect could support life, as I reported here last month.
“We are trying to answer big questions. Are we alone,” said Grunsfeld at the May 26 media briefing.
“The young surface seems to be in contact with an undersea ocean.”
Planetary scientists have long desired a speedy to return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the moon’s surface in recent times.
NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection – whose candidates include the heavy lift Space Launch System (SLS) now under development to launch astronauts on deep space expedition to the Moon, Asteroids and Mars.
The solar powered Europa probe will go into orbit around Jupiter for a three year mission in order to minimize exposure to the intense radiation region that could harm the spacecraft.
The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.
It will be equipped with high resolution cameras, spectrometers and radar, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.
There will many opportunities for close flybys of Europa during the three year primary mission to conduct unprecedented studies of the composition and structure of the surface, icy shell and oceanic interior.
“During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Curt Niebur, Europa program scientist at NASA Headquarters in Washington, told Universe Today.
“These will occur about every two to three weeks.”
The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).
The mission currently has a budget of about $10 million for 2015 and $30 Million in 2016. Over the next three years the mission concept will be further defined.
The mission will be managed by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California and is expected to cost in the range of at least $2 Billion or more.
The nine science instruments are described in my earlier story- here. They will be developed and built by Johns Hopkins University Applied Physics Laboratory (APL); JPL; Arizona State University, Tempe; the University of Texas at Austin; Southwest Research Institute, San Antonio and the University of Colorado, Boulder.
Right now there is another NASA probe bound for Jupiter, the solar poweredJuno orbiter that will investigate the origin of the gas giant. But Juno will not be conducting any observations or flyby’s of Europa.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.