The Dwarf Planet Eris

Artist illustration of Eris. Image credit: NASA

Eris is the largest dwarf planet in the Solar System, and the ninth largest body orbiting our Sun. Sometimes referred to as the “tenth planet”, it’s discovery is responsible for upsetting the traditional count of nine planets in our Solar System, as well as leading the way to the creation of a whole new astronomical category.

Located beyond the orbit of Pluto, this “dwarf planet” is both a trans-Neptunian object (TNO), which refers to any planetary object that orbits the Sun at a greater distance than Neptune – or 30 astronomical units (AU). Because of this distance, and the eccentricity of its orbit, it is also a member of a the population of objects (mostly comets) known as the “scattered disk”.

The discovery of Eris was so important because it was a celestial body larger than Pluto, which forced astronomers to consider, for the first time in history, what the definition of a planet truly is.

Discovery:

Eris, which has the full title of 136199 Eris, was first observed in 2003 during a Palomar Observatory survey of the outer solar system by a team led by Mike Brown, a professor of planetary astronomy at the California Institute of Technology. The discovery was confirmed in January 2005 after the team examined the pictures obtained from the survey in detail.

Classification:

At the time of it’s discovery, Brown and his colleagues believed that they had located the 10th planet of our solar system, since it was the first object in the Kuiper Belt found to be bigger than Pluto. Some astronomers agreed and liked the designation, but others objected since they claimed that Eris was not a true planet. At the time, the definition of “planet” was not a clear-cut since there had never been an official definition issued by the International Astronomical Union (IAU).

The matter was settled by the IAU in the summer of 2006. They defined a planet as an object that orbits the Sun, which is large enough to make itself roughly spherical. Additionally, it would have to be able to clear its neighborhood – meaning it has enough gravity to force any objects of similar size or that are not under its gravitational control out of its orbit.

In addition to finally defining what a planet is, the IAU also created a new category of “dwarf planets“. The only difference between a planet and a dwarf planet is that a dwarf planet has not cleared its neighborhood. Eris was assigned to this new category, and Pluto lost its status as a planet. Other celestial bodies, including Haumea, Ceres, and Makemake, have been classified as dwarf planets.

artist's impression shows the distant dwarf planet Eris. New observations have shown that Eris is smaller than previously thought and almost exactly the same size as Pluto. Eris is extremely reflective and its surface is probably covered in frost formed from the frozen remains of its atmosphere. Credit: ESO
Artist’s impression shows the distant dwarf planet Eris, highlighting its bright surface. Credit: ESO

Naming:

Eris is named after the Greek goddess of strife and discord. The name was assigned on September 13th, 2006, following an unusually long consideration period that arose over the issue of classification. During this time, the object became known to the wider public as Xena, which was the name given to it by the discovery team.

The team had been saving this name, which was inspired by the title character of the television series Xena: Warrior Princess, for the first body they discovered that was larger than Pluto. They also chose it because it started with the letter X, a reference to Percival Lowell’s hunt for a planet he believed to exist the edge of the Solar System (which he referred to as “Planet X“).

According to fellow astronomer and science writer Govert Schilling, Brown initially wanted to call the object “Lila”. This name was inspired by a concept in Hindu mythology that described the cosmos as the outcome of a game played by Brahma, and also because it was similar to “Lilah” – the name of Brown’s newborn daughter.

Size and Orbit:

The actual size and mass of Eris has been the subject of debate, as official estimates have changed with time and subsequent viewing. In 2005, using images from the Hubble Space Telescope. the diameter of Eris was measured to be 2397 ± 100 km (1,489 miles). In 2007, a series of observations of the largest trans-Neptunian objects with the Spitzer Space Telescope estimated Eris’s diameter at 2600 (+400/-200) km (1616 miles).

A diagram showing solar system orbits. The highly tilted orbit of Eris is in red. Credit: NASA
A diagram showing solar system orbits. The highly tilted orbit of Eris is in red. Credit: NASA

The most recent observation took place in November of 2010, when Eris was the subject of one of the most distant stellar occultations yet achieved from Earth. The teams findings were announced on October 2011, and contradicted previous findings with an estimated diameter of 2326 ± 12 km (1445 miles).

Because of these differences, astronomers have been hard-pressed to maintain that Eris is more massive than Pluto. According to the latest estimates, the Solar System’s “ninth planet” has a diameter of 2368 km (1471 miles), placing it on par with Eris. Part of the difficulty in accurately assessing the planet’s size comes from interference from Pluto’s atmosphere. Astronomers expect a more accurate appraisal when the New Horizons space probe arrives at Pluto in July 2015.

Eris has an orbital period of 558 years. Its maximum possible distance from the Sun (aphelion) is 97.65 AU, and its closest (perihelion) is 37.91 AU. This means that Eris and its moon are currently the most distant known objects in the Solar System, apart from long-period comets and space probes.

Eris’s orbit is highly eccentric, and brings Eris to within 37.9 AU of the Sun, a typical perihelion for scattered objects. This is within the orbit of Pluto, but still safe from direct interaction with Neptune (29.8-30.4 AU). Unlike the eight planets, whose orbits all lie roughly in the same plane as the Earth’s, Eris’s orbit is highly inclined – the planet is tilted at an angle of about 44° to the ecliptic.

Moons:

Eris has one moon called Dysnomia, which is named after the daughter of Eris in Greek mythology, which was first observed on September 10th, 2005 – a few months after the discovery of Eris. The moon was spotted by a team using the Keck telescopes in Hawaii, who were busy carrying out observations of the four brightest TNOs (Pluto, Makemake, Haumea, and Eris) at the time.

Eris (center) and its moon of Dysnomia (left of center), taken by the Hubble Space Telescope. Credit: NASA/ESA/Mike Brown
Eris (center) and its moon of Dysnomia (left of center), taken by the Hubble Space Telescope. Credit: NASA/ESA/Mike Brown

Interesting Facts:

The dwarf planet is rather bright and can be detected using something as simple as a small telescope. Models of internal heating via radioactive decay suggest that Eris may be capable of sustaining an internal ocean of liquid water at the mantle-core boundary. These studies were conducted by Hauke Hussmann and colleagues from the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG) at the University of São Paulo.

Brown and the discovery team followed up their initial identification of Eris with spectroscopic observations of the planet, which were made on January 25th, 2005. Infrared light from the object revealed the presence of methane ice, indicating that the surface may be similar to that of Pluto and of Neptune’s moon Triton.

Due to Eris’s distant eccentric orbit, its surface temperature is estimated to vary between about 30 and 56 K (?243.2 and ?217.2 °C). This places it on par with Pluto’s surface temperature, which ranges from 33 to 55 K (-240.15 and -218.15 °C).

We have many interesting articles on planets here at Universe Today, including this article on What is the newest planet and the 10th planet.

If you are looking for more information, try Eris and NASA’s Solar System Exploration entry.

Astronomy Cast has an episode on Pluto’s planetary identity crisis.

Source:

NASA’s Journey to Mars Ramps Up with InSight, Key Tests Pave Path to 2016 Lander Launch

NASA's InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars. Credits: NASA/JPL-Caltech/Lockheed Martin

NASA’s ‘Journey to Mars’ is ramping up significantly with ‘InSight’ – as the agency’s next Red Planet lander has now been assembled into its flight configuration and begun a comprehensive series of rigorous and critical environmental stress tests that will pave the path to launch in 2016 on a mission to unlock the riddles of the Martian core.

The countdown clock is ticking relentlessly and in less than nine months time, NASA’s InSight Mars lander is slated to blastoff in March 2016.

InSight, which stands for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is a stationary lander. It will join NASA’s surface science exploration fleet currently comprising of the Curiosity and Opportunity missions which by contrast are mobile rovers.

But before it will even be allowed to get to the launch pad, the Red Planet explorer must first prove its mettle and show that it can operate in and survive the harsh and unforgiving rigors of the space environment via a battery of prelaunch tests. That’s an absolute requirement in order for it to successfully carry out its unprecedented mission to investigate Mars deep interior structure.

InSight’s purpose is to elucidate the nature of the Martian core, measure heat flow and sense for “Marsquakes.” These completely new research findings will radically advance our understanding of the early history of all rocky planets, including Earth and could reveal how they formed and evolved.

“Today, our robotic scientific explorers are paving the way, making great progress on the journey to Mars,” said Jim Green, director of NASA’s Planetary Science Division at the agency’s headquarters in Washington, in a statement.

“Together, humans and robotics will pioneer Mars and the solar system.”

The science deck of NASA's InSight lander is being turned over in this April 29, 2015, photo from InSight assembly and testing operations inside a clean room at Lockheed Martin Space Systems, Denver.  The large circular component on the deck is the protective covering to be placed over InSight's seismometer after the seismometer is placed directly onto the Martian ground.   Credits: NASA/JPL-Caltech/Lockheed Martin
The science deck of NASA’s InSight lander is being turned over in this April 29, 2015, photo from InSight assembly and testing operations inside a clean room at Lockheed Martin Space Systems, Denver. The large circular component on the deck is the protective covering to be placed over InSight’s seismometer after the seismometer is placed directly onto the Martian ground. Credits: NASA/JPL-Caltech/Lockheed Martin

The launch window for InSight opens on March 4 and runs through March 30, 2016.

InSight will launch atop a United Launch Alliance (ULA) Atlas V rocket from Vandenberg Air Force Base, California.

InSight counts as NASA’s first ever interplanetary mission to launch from California.

The car sized probe will touch down near the Martian equator about six months later in the fall of 2016.

The prime contractor for InSight is Lockheed Martin Space Systems in Denver, Co and the engineering and technical team recently finished assembling the lander into its final configuration.

So now the time has begun to start the shakedown that literally involve “shaking and baking and zapping” the spacecraft to prove its ready and able to meet the March 2016 launch deadline.

During the next seven months of environmental testing at Lockheed’s Denver facility, “the lander will be exposed to extreme temperatures, vacuum conditions of nearly zero air pressure simulating interplanetary space, and a battery of other tests.”

“The assembly of InSight went very well and now it’s time to see how it performs,” said Stu Spath, InSight program manager at Lockheed Martin Space Systems, Denver, in a statement.

“The environmental testing regimen is designed to wring out any issues with the spacecraft so we can resolve them while it’s here on Earth. This phase takes nearly as long as assembly, but we want to make sure we deliver a vehicle to NASA that will perform as expected in extreme environments.”

The first test involves “a thermal vacuum test in the spacecraft’s “cruise” configuration, which will be used during its seven-month journey to Mars. In the cruise configuration, the lander is stowed inside an aeroshell capsule and the spacecraft’s cruise stage – for power, communications, course corrections and other functions on the way to Mars — is fastened to the capsule.”

After the vacuum test, InSight will be subjected to a series of tests simulating the vibrations of launch, separation and deployment shock, as well as checking for electronic interference between different parts of the spacecraft and compatibility testing.

Finally, a second thermal vacuum test will expose the probe “to the temperatures and atmospheric pressures it will experience as it operates on the Martian surface.”

The $425 million InSight mission is expected to operate for about two years on the Martian surface.

Artist rendition of NASA’s Mars InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Lander. InSight is based on the proven Phoenix Mars spacecraft and lander design with state-of-the-art avionics from the Mars Reconnaissance Orbiter (MRO) and Gravity Recovery and Interior Laboratory (GRAIL) missions. Credit: JPL/NASA
Artist rendition of NASA’s Mars InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Lander. InSight is based on the proven Phoenix Mars spacecraft and lander design with state-of-the-art avionics from the Mars Reconnaissance Orbiter (MRO) and Gravity Recovery and Interior Laboratory (GRAIL) missions. Credit: JPL/NASA

InSight is an international science mission and a near duplicate of NASA’s successful Phoenix Mars landing spacecraft, Bruce Banerdt, InSight Principal Investigator of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California, told Universe Today.

“InSight is essentially built from scratch, but nearly build-to-print from the Phoenix design,” Banerdt, of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena , Calif, told me. The team can keep costs down by re-using the blueprints pioneered by Phoenix instead of creating an entirely new spacecraft.

3 Footpads of Phoenix Mars Lander atop Martian Ice.  NASA’s Mars InSight spacecraft design is based on the successful 2008 Phoenix lander. This mosaic shows Phoenix touchdown atop Martian ice.  Phoenix thrusters blasted away Martian soil and exposed water ice.  InSight carries instruments to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core.  Credit: Ken Kremer/kenkremer.com/Marco Di Lorenzo/NASA/JPL/UA/Max Planck Institute
3 Footpads of Phoenix Mars Lander atop Martian Ice. NASA’s Mars InSight spacecraft design is based on the successful 2008 Phoenix lander. This mosaic shows Phoenix touchdown atop Martian ice. Phoenix thrusters blasted away Martian soil and exposed water ice. InSight carries instruments to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer/kenkremer.com/Marco Di Lorenzo/NASA/JPL/UA/Max Planck Institute

It is funded by NASA’s Discovery Program as well as several European national space agency’s and countries. Germany and France are providing InSight’s two main science instruments; HP3 and SEIS through the Deutsches Zentrum für Luft- und Raumfahrt. or German Aerospace Center (DLR) and the Centre National d’Etudes Spatiales (CNES).

“The seismometer (SEIS, stands for Seismic Experiment for Interior Structure) is from France (built by CNES and IPGP) and the heat flow probe (HP3, stands for Heat Flow and Physical Properties Probe) is from Germany (built by DLR),” Banerdt explained.

SEIS and HP3 are stationed on the lander deck. They will each be picked up and deployed by a robotic arm similar to that flown on Phoenix with some modifications.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Pluto Reveals Many New Details In Latest Images

These images show Pluto in the latest series of New Horizons Long Range Reconnaissance Imager (LORRI) photos, taken May 8-12, 2015. Hints of possible complex surface geology and the polar cap first seen in April are visible. Credit: NASA

Hey Pluto, it’s great to see your face! Since sending its last batch of images in April, NASA’s New Horizons probe lopped off another 20 million miles in its journey to the mysterious world.  Among the latest revelations: the dwarf planet displays a much more varied surface and the bright polar cap discovered earlier this spring appears even bigger.

Comparison of the April image of one hemisphere of Pluto with nearly the same hemisphere photographed in May. have been rotated to align Pluto's rotational axis with the vertical direction (up-down), as depicted schematically in the center panel. Between April and May, Pluto appears to get larger as the spacecraft gets closer, with Pluto's apparent size increasing by approximately 50 percent. Pluto rotates around its axis every 6.4 Earth days, and these images show the variations in Pluto's surface features during its rotation. Credit: NASA
Comparison of the April image of one hemisphere of Pluto with the same hemisphere photographed in May. The photos have been rotated to align Pluto’s rotational axis with the vertical direction (up-down), as shown schematically in the center panel. Between April and May, Pluto grew larger as the spacecraft got closer, with Pluto’s apparent size increasing by approximately 50%. Pluto rotates around its axis every 6.4 Earth days; this and the images below show the variations in Pluto’s surface features during its rotation. Credit: NASA

“These new images show us that Pluto’s differing faces are each distinct; likely hinting at what may be very complex surface geology or variations in surface composition from place to place,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute in Boulder, Colorado.

Compare Pluto's polar cap (white spot at top of the globe), first seen in April (left) with the latest image taken on May 10. Approximately the same face of Pluto is shown in both images. The cap's extent varies with longitude. Credit: NASA
Compare Pluto’s polar cap (white spot at top of the globe), first seen in April (left) with the latest image taken on May 10. Approximately the same face of Pluto is shown in both images. The cap’s extent varies with longitude. Credit: NASA

Mission scientists caution against over-interpreting some of the smaller details. The photos have been processed using a method called deconvolution, which strips away the out-of-focus information to enhance features on Pluto. Deconvolution can occasionally add “false” details or artifacts, so the smallest features in these pictures will need to be confirmed by images taken from closer range in the next few weeks.

Pluto compared on
Pluto compared on April 16, 2015 and May 12. Credit: NASA

Compared to recent photos of Ceres, the other dwarf planet in the limelight this season, Pluto shows only light and dark blotches. That’s how Ceres started out too. All those variations in tone and texture suggest a fascinating and complex surface. And it’s clear that the polar cap — whatever it might ultimately be — is extensive and multi-textured. The images were taken from a little less than 50 million miles (77 million km) away or about the same distance Mars is from Earth during a typical opposition.

New Horizons current position along with
New Horizons current position and particulars on May 28, 2015. Credit: NASA

Watch for dramatic improvements in the images as New Horizons speeds toward its target, covering 750,000 miles per day until closest approach on July 14. By late June, they’ll have four times the resolution; during the flyby that will improve to 5,000 times. The spacecraft is currently 2.95 billion miles from Earth. Light, traveling at 186,00o miles per second, requires 8 hours and 47 minutes – the length of a typical work day – to make the long round trip.

NASA Selects Mission Science Instruments Searching for Habitability of Jupiter’s Ocean Moon Europa

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

In a major move forward on a long dreamed of mission to investigate the habitability of the subsurface ocean of Jupiter’s mysterious moon Europa, top NASA officials announced today, Tuesday, May 26, the selection of nine science instruments that will fly on the agency’s long awaited planetary science mission to an intriguing world that many scientists suspect could support life.

“We are on our way to Europa,” proclaimed John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington, at a media briefing today outlining NASA’s plans for a mission dedicated to launching in the early to mid-2020s. “It’s a mission to inspire.”

“We are trying to answer big questions. Are we alone?”

“The young surface seems to be in contact with an undersea ocean.”

The Europa mission goal is to investigate whether the tantalizing icy Jovian moon, similar in size to Earth’s moon, could harbor conditions suitable for the evolution and sustainability of life in the suspected ocean.

It will be equipped with high resolution cameras, radar and spectrometers, several generations beyond anything before to map the surface in unprecedented detail and determine the moon’s composition and subsurface character. And it will search for subsurface lakes and seek to sample erupting vapor plumes like those occurring today on Saturn’s tiny moon Enceladus.

“Europa has tantalized us with its enigmatic icy surface and evidence of a vast ocean, following the amazing data from 11 flybys of the Galileo spacecraft over a decade ago and recent Hubble observations suggesting plumes of water shooting out from the moon,” says Grunsfeld.

“We’re excited about the potential of this new mission and these instruments to unravel the mysteries of Europa in our quest to find evidence of life beyond Earth.”

Planetary scientists have long desired a speedy return on Europa, ever since the groundbreaking discoveries of NASA’s Galileo Jupiter orbiter in the 1990s showed that the alien world possessed a substantial and deep subsurface ocean beneath an icy shell that appears to interact with and alter the surface in recent times.

This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter's moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona
This 12-frame mosaic provides the highest resolution view ever obtained of the side of Jupiter’s moon Europa that faces the giant planet. It was obtained on Nov. 25, 1999 by the camera onboard the Galileo spacecraft, a past NASA mission to Jupiter and its moons. Credit: NASA/JPL/University of Arizona

NASA’s Europa mission would blastoff perhaps as soon as 2022, depending on the budget allocation and rocket selection, whose candidates include the heavy lift Space Launch System (SLS).

The solar powered probe will go into orbit around Jupiter for a three year mission.

“The mission concept is that it will conduct multiple flyby’s of Europa,” said Jim Green. director, Planetary Science Division, NASA Headquarters, during the briefing.

“The purpose is to determine if Europa is a habitable place. It shows few craters, a brown gum on the surface and cracks where the subsurface meet the surface. There may be organics and nutrients among the discoloration at the surface.”

Europa is at or near the top of the list for most likely places in our solar system that could support life. Mars is also near the top of the list and currently being explored by a fleet of NASA robotic probes including surface rovers Curiosity and Opportunity.

“Europa is one of those critical areas where we believe that the environment is just perfect for potential development of life,” said Green. “This mission will be that step that helps us understand that environment and hopefully give us an indication of how habitable the environment could be.”

The exact thickness of Europa’s ice shell and extent of its subsurface ocean is not known.

The ice shell thickness has been inferred by some scientists to be perhaps only 5 to 10 kilometers thick based on data from Galileo, the Hubble Space Telescope, a Cassini flyby and other ground and space based observations.

The global ocean might be twice the volume of all of Earth’s water. Research indicates that it is salty, may possess organics, and has a rocky sea floor. Tidal heating from Jupiter could provide the energy for mixing and chemical reactions, supplemented by undersea volcanoes spewing heat and minerals to support living creatures, if they exist.

This artist's rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean.  Credits: NASA/JPL-Caltech
This artist’s rendering shows a concept for a future NASA mission to Europa in which a spacecraft would make multiple close flybys of the icy Jovian moon, thought to contain a global subsurface ocean. Credits: NASA/JPL-Caltech

“Europa could be the best place in the solar system to look for present day life beyond our home planet,” says NASA officials.

The instruments chosen today by NASA will help answer the question of habitability, but they are not life detection instruments in and of themselves. That would require a follow on mission.

“They could find indications of life, but they’re not life detectors,” said Curt Niebur, Europa program scientist at NASA Headquarters in Washington. “We currently don’t even have consensus in the scientific community as to what we would measure that would tell everybody with confidence this thing you’re looking at is alive. Building a life detector is incredibly difficult.”

‘During the three year mission, the orbiter will conduct 45 close flyby’s of Europa,” Niebur told Universe Today. “These will occur about every two to three weeks.”

The close flyby’s will vary in altitude from 16 miles to 1,700 miles (25 kilometers to 2,700 kilometers).

“The mass spectrometer has a range of 1 to 2000 daltons, Niebur told me. “That’s a much wider range than Cassini. However there will be no means aboard to determine chirality.” The presence of Chiral compounds could be an indicator of life.

Right now the Europa mission is in the formulation stage with a budget of about $10 million this year and $30 Million in 2016. Over the next three years the mission concept will be defined.

The mission is expected to cost in the range of at least $2 Billion or more.

Jupiter Moon Europa, Ice Rafting View
Jupiter Moon Europa, Ice Rafting View

Here’s a NASA description of the 9 instruments selected:

Plasma Instrument for Magnetic Sounding (PIMS) — principal investigator Dr. Joseph Westlake of Johns Hopkins Applied Physics Laboratory (APL), Laurel, Maryland. This instrument works in conjunction with a magnetometer and is key to determining Europa’s ice shell thickness, ocean depth, and salinity by correcting the magnetic induction signal for plasma currents around Europa.

Interior Characterization of Europa using Magnetometry (ICEMAG)
— principal investigator Dr. Carol Raymond of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California. This magnetometer will measure the magnetic field near Europa and – in conjunction with the PIMS instrument – infer the location, thickness and salinity of Europa’s subsurface ocean using multi-frequency electromagnetic sounding.


Mapping Imaging Spectrometer for Europa (MISE)
— principal investigator Dr. Diana Blaney of JPL. This instrument will probe the composition of Europa, identifying and mapping the distributions of organics, salts, acid hydrates, water ice phases, and other materials to determine the habitability of Europa’s ocean.

Europa Imaging System (EIS) — principal investigator Dr. Elizabeth Turtle of APL. The wide and narrow angle cameras on this instrument will map most of Europa at 50 meter (164 foot) resolution, and will provide images of areas of Europa’s surface at up to 100 times higher resolution.

Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) — principal investigator Dr. Donald Blankenship of the University of Texas, Austin. This dual-frequency ice penetrating radar instrument is designed to characterize and sound Europa’s icy crust from the near-surface to the ocean, revealing the hidden structure of Europa’s ice shell and potential water within.

Europa Thermal Emission Imaging System (E-THEMIS) — principal investigator Dr. Philip Christensen of Arizona State University, Tempe. This “heat detector” will provide high spatial resolution, multi-spectral thermal imaging of Europa to help detect active sites, such as potential vents erupting plumes of water into space.

MAss SPectrometer for Planetary EXploration/Europa (MASPEX) — principal investigator Dr. Jack (Hunter) Waite of the Southwest Research Institute (SwRI), San Antonio. This instrument will determine the composition of the surface and subsurface ocean by measuring Europa’s extremely tenuous atmosphere and any surface material ejected into space.

Ultraviolet Spectrograph/Europa (UVS) — principal investigator Dr. Kurt Retherford of SwRI. This instrument will adopt the same technique used by the Hubble Space Telescope to detect the likely presence of water plumes erupting from Europa’s surface. UVS will be able to detect small plumes and will provide valuable data about the composition and dynamics of the moon’s rarefied atmosphere.

SUrface Dust Mass Analyzer (SUDA) — principal investigator Dr. Sascha Kempf of the University of Colorado, Boulder. This instrument will measure the composition of small, solid particles ejected from Europa, providing the opportunity to directly sample the surface and potential plumes on low-altitude flybys.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Opportunity Rover Team Honors Pioneering Lindbergh Flight at Mars Mountaintop Crater

Martian Reminder of a Pioneering Flight. Names related to the first solo nonstop flight across the Atlantic have been informally assigned to a crater NASA's Opportunity Mars rover is studying. This false-color view of the "Spirit of St. Louis Crater" and the "Lindbergh Mound" inside it comes from Opportunity's panoramic camera. Image Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Martian Reminder of a Pioneering Flight. Names related to the first solo nonstop flight across the Atlantic have been informally assigned to a crater NASA’s Opportunity Mars rover is studying. This false-color view of the “Spirit of St. Louis Crater” and the “Lindbergh Mound” inside it comes from Opportunity’s panoramic camera. Image Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
See additional Opportunity photo mosaics below [/caption]

The science team leading NASA’s long-lived Opportunity rover mission is honoring the pioneering solo nonstop trans-Atlantic flight of aviator Charles Lindbergh by assigning key features of the Mars mountain top crater area the rover is now exploring with names related to the historic flight.

Opportunity is now studying an elongated crater called “Spirit of St. Louis” and an unparalleled rock spire within the crater called “Lindbergh Mound” which are named in honor of Lindbergh himself and his plane – the Spirit of Saint Louis.

“Spirit of Saint Louis” crater is quite special in many ways related not just to history but also to science and exploration – that very reasons behind Lindbergh’s flight and Opportunity’s astounding mission to the Red Planet.

The team is ecstatic that the 11 year old rover Opportunity has reached “Spirit of St. Louis Crater” because its serves as the gateway to the alien terrain of “Marathon Valley” holding caches of water altered minerals that formed under environmental conditions conducive to support Martian microbial life forms, if they ever existed.

The crater, rock spire and several features in and near it are shown in several recent panoramic mosaics, above and below, created by the rover team and separately by the image processing team of Ken Kremer and Marco Di Lorenzo.

Opportunity’s view (annotated) on the day the NASA rover exceeded the distance of a marathon on the surface of Mars on March 24, 2015, Sol 3968 with features named in honor of Charles Lindbergh’s historic solo flight across the Atlantic Ocean in 1927. Rover stands at Spirit of Saint Louis Crater near mountaintop at Marathon Valley overlook and Martian cliffs at Endeavour crater holding deposits of water altered clay minerals.  This navcam camera photo mosaic was assembled from images taken on Sol 3968 (March 24, 2015) and colorized.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Opportunity’s view (annotated) on the day the NASA rover exceeded the distance of a marathon on the surface of Mars on March 24, 2015, Sol 3968 with features named in honor of Charles Lindbergh’s historic solo flight across the Atlantic Ocean in 1927. Rover stands at Spirit of Saint Louis Crater near mountaintop at Marathon Valley overlook and Martian cliffs at Endeavour crater holding deposits of water altered clay minerals. This navcam camera photo mosaic was assembled from images taken on Sol 3968 (March 24, 2015) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Marathon Valley and Spirit of St. Louis Crater are located just a few hundred meters south of a Mars mountain summit at a majestic spot called Cape Tribulation. It lies along a marvelous ridgeline along the western rim of Endeavour crater, which spans some 22 kilometers (14 miles) in diameter.

“What’s the connection between St. Louis and the Spirit of St. Louis? Lindbergh flew from New York to Paris, but he named his aircraft for the St. Louis citizens who purchased it for him,” says Prof. Ray Arvidson, the rover Deputy Principal Investigator of Washington University in St. Louis.

The raw images for the mosaics were taken in March and April 2015 using the robots mast mounted pancam and navcam cameras. The mosaics are shown in false color and colorized versions, annotated and unannotated.

Charles Lindbergh embarked in May 1927 on his history making flight from New York to Paris in the airplane he named Spirit of St. Louis, the first solo nonstop flight across the Atlantic.

Opportunity at Spirit of Saint Louis crater scanning into Marathon Valley and Endeavour crater from current location on Mars in April 2015 in this photo mosaic.  The crater, featuring an odd mound of rocks now named Lingbergh Mound, is the gateway to Marathon Valley and exposures of water altered clay minerals.  This navcam camera photo mosaic was assembled from images taken on Sol 3987 (April 12, 2015) and colorized.  Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo
Opportunity at Spirit of Saint Louis crater scanning into Marathon Valley and Endeavour crater from current location on Mars in April 2015 in this photo mosaic. The crater, featuring an odd mound of rocks now named Lingbergh Mound, is the gateway to Marathon Valley and exposures of water altered clay minerals. This navcam camera photo mosaic was assembled from images taken on Sol 3987 (April 12, 2015) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

The shallow Spirit of St. Louis Crater is about 110 feet (34 meters) long and about 80 feet (24 meters) wide, with a floor slightly darker than surrounding terrain, says NASA.

Lindbergh Mound dominates the crater measuring about 7 to 10 feet (2 to 3 meters) tall, rising higher than the crater’s rim.

The annotations also include features named to recognize the financial backing for the flight from St. Louis residents including Harold M. Bixby and Harry M. Knight. The plane’s designer was Donald A. Hall.

Opportunity arrives at Spirit of Saint Louis crater and peers into Marathon Valley and Endeavour crater from current location on Mars as of April 3, 2015 in this photo mosaic.  The crater, featuring an odd mound of rocks now named Lingbergh Mound,  is the gateway to Marathon Valley and exposures of water altered clay minerals.  This pancam camera photo mosaic was assembled from images taken on Sol 3973 (March 29, 2015) and colorized.  Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo
Opportunity arrives at Spirit of Saint Louis crater and peers into Marathon Valley and Endeavour crater from current location on Mars as of April 3, 2015 in this photo mosaic. The crater, featuring an odd mound of rocks now named Lingbergh Mound, is the gateway to Marathon Valley and exposures of water altered clay minerals. This pancam camera photo mosaic was assembled from images taken on Sol 3973 (March 29, 2015) and colorized. Credit: NASA/JPL/Cornell/ Ken Kremer/kenkremer.com/Marco Di Lorenzo

Among other features named are Roosevelt Field, the spot on New York’s Long Island from which Lindbergh took off, and Marathon Monument, where the rover completed a her first marathon distance runners drive on Mars. The team picked a distinctive outcrop, Marathon Monument, to mark the finish line, said NASA officials.

“The science team for the rover picks crater names from a list of “vessels of exploration,” including ships of sail and spacecraft as well as aircraft. As long as the rover remains in the crater, names for interesting features will drawn from a list of names related to this famous flight,” according to a NASA statement.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

11 Year Traverse Map for NASA’s Opportunity rover from 2004 to 2015. This map shows the entire path the rover has driven during 11 years and three months and a marathon runners distance on Mars for over 4000 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 -to current location just past the Cape Tribulation summit at the western rim of Endeavour Crater at Marathon Valley. Rover surpassed Marathon distance on Sol 3968 and marked 11th Martian anniversary on Sol 3911. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone - and is searching for more on the road ahead at Marathon Valley.  Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer – kenkremer.com
11 Year Traverse Map for NASA’s Opportunity rover from 2004 to 2015. This map shows the entire path the rover has driven during 11 years and three months and a marathon runners distance on Mars for over 4000 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 -to current location just past the Cape Tribulation summit at the western rim of Endeavour Crater at Marathon Valley. Rover surpassed Marathon distance on Sol 3968 and marked 11th Martian anniversary on Sol 3911. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone – and is searching for more on the road ahead at Marathon Valley. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer – kenkremer.com

SpaceX Dragons Coming and Going at Record Setting Pace

Release of SpaceX-6 Dragon on May 21, 2015 from the International Space Station for Pacific Ocean splashdown later in the day. Credit: NASA/Terry Virts

Release of SpaceX-6 Dragon on May 21, 2015 from the International Space Station for Pacific Ocean splashdown later in the day. Credit: NASA/Terry Virts
Story updated with further details and photos[/caption]

SpaceX Dragons seem to be flying nearly everywhere these days, coming and going at a record pace to the delight and relief of NASA, researchers and the space faring crews serving aboard the International Space Station (ISS). As one Dragon returned to Earth from space today, May 21, another Dragon prepares to soar soon to space.

The commercial SpaceX-6 cargo Dragon successfully splashed down in the Pacific Ocean at 12:42 p.m. EDT (1642 GMT) today, Thursday, about 155 miles southwest of Long Beach, California, some five hours after it was released from the grip of the stations robotic arm this morning at 7:04 a.m. EDT by the Expedition 43 crew as the craft were flying some 250 miles (400 km) above Australia.

The ocean splashdown marked the conclusion to the company’s sixth cargo resupply mission to the ISS under a commercial contract with NASA. Overall this was the seventh trip by a Dragon spacecraft to the station since the inaugural flight in 2012.

Following the launch failure and uncontrolled destructive plummet back to Earth of the Russian Progress 59 cargo freighter earlier this month, the station and its six person international crews are more dependent than ever on the SpaceX commercial supply train to orbit to keep it running and humming with productive science.

Working from a robotics work station in the domed cupola, NASA astronaut Scott Kelly released the Dragon CRS-6 spacecraft from the grappling snares of the 57.7-foot-long (17-meter-long) Canadian-built robotic arm with help from fellow NASA astronaut Terry Virts. Kelly is a member of the first 1 Year ISS mission crew, along with Russian cosmonaut Mikhail Kornienko.

The capsule then performed an intricate series of three departure burns and maneuvers to move beyond the imaginary 656-foot (200-meter) “keep out sphere” around the station and begin its five and a half hour long trip back to Earth.

The station crew had packed Dragon with almost 3,100 pounds of NASA cargo from the International Space Station. The including research samples pertaining to a host of experiments on how spaceflight and microgravity affect the aging process and bone health as well as no longer need items and trash to reduce station clutter.

The SpaceX Dragon cargo spacecraft was released from the International Space Station's robotic arm at 7:04 a.m. EDT Thursday. The capsule then performed a series of departure burns and maneuvers to move beyond the 656-foot (200-meter) "keep out sphere" around the station and begin its return trip to Earth.  Credits: NASA TV
The SpaceX Dragon cargo spacecraft was released from the International Space Station’s robotic arm at 7:04 a.m. EDT Thursday. The capsule then performed a series of departure burns and maneuvers to move beyond the 656-foot (200-meter) “keep out sphere” around the station and begin its return trip to Earth. Credits: NASA TV

“Spaceflight-induced health changes, such as decreases in muscle and bone mass, are a major challenge facing our astronauts,” said Julie Robinson, NASA’s chief scientist for the International Space Station Program Office at NASA’s Johnson Space Center in Houston, in a statement.

“We investigate solutions on the station not only to keep astronauts healthy as the agency considers longer space exploration missions but also to help those on Earth who have limited activity as a result of aging or illness.”

The Dragon was retrieved from the ocean by recovery boats following the parachute assisted splashdown. It will be transported to Long Beach, California for removal and return of the NASA cargo. The capsule itself will be shipped to SpaceX’s test facility in McGregor, Texas, for processing to remove cargo and inspection of its performance.

Dragon splashes down into the Pacific Ocean, carrying 3,100 lbs of cargo and science for NASA on May 21, 2015, Credit: SpaceX.
Dragon splashes down into the Pacific Ocean, carrying 3,100 lbs of cargo and science for NASA on May 21, 2015, Credit: SpaceX.

“The returning Space Aging study, for example, examines the effects of spaceflight on the aging of roundworms, widely used as a model for larger organisms,” noted NASA in a statement.

“By growing millimeter-long roundworms on the space station, researchers can observe physiological changes that may affect the rate at which organisms age. This can be applied to changes observed in astronauts, as well, particularly in developing countermeasures before long-duration missions.”

Dragon departed after having spent a record setting stay of 33 days berthed to the station at an Earth facing port on the Harmony node.

Dragon is also the only current US means for sending cargo to the station after the loss of the Orbital Sciences Cygnus craft in the Antares rocket explosion last October.

The SpaceX CRS-6 Dragon successfully blasted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 (Commercial Resupply Services-6) mission.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

The resupply vessel had arrived three days later on April 17 and was successfully snared by the Expedition 43 Flight Engineer Samantha Cristoforetti of the European Space Agency, the first female Italian astronaut.

Dragon launched on April 14 with more than 4,300 pounds of supplies, science experiments, and technology demonstrations, including critical materials to support about 40 of more than 250 science and research investigations during the station’s Expeditions 43 and 44.

An Espresso machine was also aboard and delivered to enhance station morale during the daily grind some 250 miles above Earth.

Among the research investigations were a fresh batch of 20 rodents for the Rodent Research Habitat, and experiments on osteoporosis to counteract bone deterioration in microgravity, astronaut vision loss, protein crystal growth, and synthetic muscle for prosthetics and robotics.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Following the complete success of the SpaceX Dragon CRS-6 mission, NASA just announced that the next SpaceX Dragon is currently slated to launch on June 26 at 11:09 a.m. EDT.

The Dragon will carry critical US equipment enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters.

Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Video caption: SpaceX CRS-6 Falcon 9 Launch to the International Space Station on April 14, 2015. Credit: Alex Polimeni

X-37B Air Force Space Plane Launches on 4th Mystery Military Mission and Solar Sailing Test

Blastoff of the X-37B spaceplane on United Launch Alliance (ULA) Atlas V rocket with the OTV-4 AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: Ken Kremer/kenkremer.com

Blastoff of the X-37B spaceplane on United Launch Alliance (ULA) Atlas V rocket with the OTV-4 AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: Ken Kremer/kenkremer.com
Story updated with additional details and photos[/caption]

The X-37B, a reusable Air Force space plane launched today, May 20, from Cape Canaveral, Florida, on its fourth mission steeped in mystery as to its true goals for the U.S . military and was accompanied by ten tiny cubesat experiments for NASA and the NRO, including a solar sailing demonstration test for The Planetary Society.

The military space plan successfully blasted off for low Earth orbit atop a 20 story United Launch Alliance (ULA) Atlas V rocket on the clandestine Air Force Space Command 5 (AFSPC-5) satellite mission for the U.S. Air Force Rapid Capabilities Office at 11:05 a.m. EDT (1505 GMT) today, May 20, from Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida.

The weather cooperated for a spectacular liftoff from the Florida space coast, which was webcast live by ULA until five minutes after launch when it went into a communications blackout shortly after announcing the successful ignition of the Centaur upper stage.

The exact launch time was classified until it was released by the Department of Defense this morning. Early this morning the four hour launch window was narrowed down to two small windows of opportunity.

USAF X-37B orbital test vehicle launches atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle launches atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

Among the experiments for the flight are 10 CubeSats housed in the Aft Bulkhead Carrier (ABC) located below the Centaur upper stage. Together they are part of the National Reconnaissance Office’s (NRO’s) Ultra Lightweight Technology and Research Auxiliary Satellite (ULTRASat). The 10 CubeSats in ULTRASat are managed by the NRO and NASA. They are contained in eight P-Pods from which they will be deployed in the coming days.

Also aboard the X-37B is a NASA materials science experiment called METIS and an advanced Hall thruster experiment. The Hall thruster is a type of electric propulsion device that produces thrust by ionizing and accelerating a noble gas, usually xenon.

Following primary spacecraft separation the Centaur will change altitude and inclination in order to release the CubeSat spacecraft.

They are sponsored by the National Reconnaissance Office (NRO) and NASA and were developed by the U.S. Naval Academy, the Aerospace Corporation, the Air Force Research Laboratory, California Polytechnic State University, and The Planetary Society.

LightSail marks the first controlled, Earth orbit solar sail flight according to the non-profit Planetary Society. Photons from the sun should push on the solar sails.

“The purpose of this LightSail demonstration test is to verify telemetry, return photos return and to test the deployment of the solar sails,” said Bill Nye, the Science Guy), and President of The Planetary Society, during the X-37B launch webcast.

“LightSail is comprised of three CubeSats that measure about 30 cm by 10 cm.”

“It’s smaller than a shoebox, everybody! And the sail that will come out of it is super shiny mylar. We’re very hopeful that the thing will deploy properly, the sunlight will hit it and we’ll get a push.”

United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek

The Boeing-built X-37B is an unmanned reusable mini shuttle, also known as the Orbital Test Vehicle (OTV) and is flying on the OTV-4 mission. It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

“ULA is honored to launch this unique spacecraft for the U.S Air Force. Congratulations to the Air Force and all of our mission partners on today’s successful launch! The seamless integration between the Air Force, Boeing, and the entire mission team culminated in today’s successful launch of the AFSPC-5 mission” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

The two stage Atlas V stands 206 feet tall and weighs 757,000 pounds.

The X-37B was carried to orbit by the Atlas V in its 501 configuration which includes a 5.4-meter-diameter payload fairing and no solid rocket motors. The Atlas first stage booster for this mission was powered by the RD AMROSS RD-180 engine generating some 850,000 pounds of thrust and fired for approximately the first four and a half minutes of flight. The Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The X-37B space plane was to separate from the Centaur about 19 minutes after liftoff. The Centaur continued firing separately with the CubeSat deployment, including the Planetary Society’s LightSail test demoonstration, into a different orbit later.

Overall this was ULA’s sixth launch of the 501 configuration the 54th mission to launch on an Atlas V rocket. This was also ULA’s fifth launch in 2015 and the 96th successful launch since the company was formed in December 2006.

The OTV is somewhat like a miniature version of NASA’s space shuttles.

Boeing has built two OTV vehicles. But it is not known which of the two vehicles was launched today.

Altogether the two X-37B vehicles have spent a cumulative total of 1367 days in space during the first three OTV missions and successfully checked out the vehicles reusable flight, reentry and landing technologies.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

USAF X-37B orbital test vehicle poised for launch atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle poised for launch atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

All three OTV missions to date have launched from Cape Canaveral, Florida and landed at Vandenberg Air Force Base, California. Future missions could potentially land at the shuttle landing facility at the Kennedy Space Center, Florida.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit.

The following flights were progressively longer in duration. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit. The third OTV mission launched on Dec. 11, 2012 and landed on Oct. 17, 2014 after 674 days in orbit.

The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m). The payload bay measures 7 ft × 4 ft (2.1 m × 1.2 m). The space plane is powered by Gallium Arsenide Solar Cells with Lithium-Ion batteries.

Among the primary mission goals of the first three flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely. OTV-4 will shift somewhat more to conducting research.

“We are excited about our fourth X-37B mission,” Randy Walden, director of the USAF’s Rapid Capabilities Office, said in a statement. “With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads.”

US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch.  Credit: Ken Kremer/kenkremer.com
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA

Russia Postpones ISS Crew Rotations Following Progress Freighter Failure

The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA

Russia and its International Space Station (ISS) partners have prudently decided to postpone the scheduled upcoming crew rotations, involving departures and launches of station crews, in the wake of the failure of the Russian Progress 59 freighter that spun out of control soon after blastoff on April 28 and was destroyed during an uncontrolled plummet back to Earth on Friday, May 8.

The schedule shifting, whose possibility was reported here over the weekend and confirmed on Tuesday, May 12 by NASA and Roscosmos, literally came barely a day before the planned return to Earth on Wednesday, May 13 of the three person crew comprising of NASA astronaut and current station commander Terry Virts and flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos. The trio have been working and living aboard the complex since November 2014.

The return of Virts, Cristoforetti and Shkaplerov is now targeted for early June, according to official statements from NASA, ESA and Roscosmos, the Russian space agency. That’s about a month later than the originally planned 171 day mission, in the wake of the failed Progress cargo ship that burned up on reentry.

Although an exact date has not been specified, sources indicate a tentative return target of around June 11.

“The partner agencies agreed to adjust the schedule after hearing the Russian Federal Space Agency’s (Roscosmos) preliminary findings on the recent loss of the Progress 59 cargo craft,” said NASA in a statement. “The exact dates have not yet been established, but will be announced in the coming weeks.”

If that new return date holds, ESA’s Samantha Cristoforetti will become the woman to fly the longest in space, eclipsing the current record holder, NASA astronaut Sunita Williams.

"There's coffee in that nebula"... ehm, I mean... in that #Dragon.  Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA
Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

Blastoff of their replacement crew on the next planned manned Soyuz launch on May 26 from the Baikonur Cosmodrome in Kazakhstan has also been delayed, for about two months most likely to late July. That Expedition 44 crew comprises Russian cosmonaut Oleg Kononenko, Japanese astronaut Kimiya Yui and NASA astronaut Kjell Lindgren.

A rotating international crew of six astronauts and cosmonauts currently serve aboard the ISS. The delayed return of Virts crew from Expedition 43 will lessen the time when the ISS is staffed by a reduced crew of three, which significantly dampens the time allotted to science research.

A Russian state commission investigation board appointed by Roscosmos, is still seeking to determine the cause of the Progress 59 malfunction which occurred right around the time of the separation from its Soyuz-2.1A carrier rockets third stage following blastoff from the Baikonur space center in Kazakhstan.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

A preliminary accident report from the state commission was planned for May 13. But investigators need more time to determine the root cause of the Progress 59 (also known as Progress M-27M) mishap.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka will remain aboard the station after the Virts crew returns to begin Expedition 44.

Roscosmos is also working to speed up the launch of the next unmanned Progress 60 (M-28M), potentially from August to early July. But that hinges on the outcome of the state commission investigation.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

The 7 ton Progress vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, food, water, oxygen, gear and replaceable parts for the station’s life support systems.

NASA officials say that the current ISS Expedition 43 six person crew is in no danger. The station has sufficient supplies to last until at least the fall of 2015, even if no other supplies arrive in the meantime.

Also in the mix is the launch of NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 had been slated for liftoff no earlier than June 19. But that date could slip as well.

The Dragon will carry critical US equipment enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Ceres’ White Spots Multiply in Latest Dawn Photos

Photos of the white spots within the 57-mile-wide on Ceres photographed on May 3 and 4 by NASA's Dawn spacecraft. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA / montage by Tom Ruen

We don’t know exactly what those mysterious white spots on Ceres are yet, but we’re getting closer to an explanation. Literally. The latest images from the Dawn spacecraft taken a mere 8,400 miles from the dwarf planet Ceres reveal that the pair of  spots are comprised of even more spots. 

“Dawn scientists can now conclude that the intense brightness of these spots is due to the reflection of sunlight by highly reflective material on the surface, possibly ice,” said Christopher Russell, principal investigator for the Dawn mission from the University of California, Los Angeles.

This animation shows a sequence of images taken by NASA's Dawn spacecraft on May 4, 2015, from a distance of 8,400 miles (13,600 kilometers), in its RC3 mapping orbit. The image resolution is 0.8 mile (1.3 kilometers) per pixel. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This animation shows a sequence of images taken by NASA’s Dawn spacecraft on May 4, 2015, from a distance of 8,400 miles (13,600 km), in its RC3 or science mapping orbit. The image resolution is 0.8 mile (1.3 km) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn recently concluded its first science orbit, making a 15-day full circle around Ceres while gathering data with its suite of science instruments. This past Saturday, May 9, its ion engine fired once again to lower the spacecraft to its second science orbit which it will enter on June 6. On that date, the probe will hover just 2,700 miles (4,400 km) above the dwarf planet and begin a comprehensive mapping of the surface. Scientists also hope the bird’s eye view will reveal clues of ongoing geological activity.


Check out this great video compiled from Dawn’s still frames of Ceres by Tom Ruen. Almost feels like you’re there.

There’s no doubt a lot’s been happening on Ceres. One look at all those cracks hint at either impact-related stresses some kind of crustal expansion. Geological processes may still make this little world rock and roll.

In this uncropped single frame, not only are multiple white spots visible but also long, parallel cracks or troughs in Ceres' surface. Credit:
In this uncropped single frame, not only are multiple white spots visible but also long, roughly parallel cracks or troughs in Ceres’ surface. Are they impact-related or caused by some other stress? Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Fortunately, we won’t have to wait till next month for more photos. NASA plans to pause the probe twice on the way down to shoot and send fresh images.

Wayward Progress Destroyed During Fiery Plummet, ISS Crew Launches ‘Under Evaluation’

File photo of a Russian Progress cargo freighter. Credit: Roscosmos

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
Story updated with further details[/caption]

The spinning, out-of-control Russian Progress 59 cargo freighter met its undesired early demise when it fell from orbit early Friday, May 8, and was destroyed during the unplanned fiery plummet through the Earth’s atmosphere.

As a result of the loss of the unmanned Progress 59 spacecraft, which was bound for the International Space Station (ISS) on a routine resupply mission, the timelines of upcoming crew rotations and new launches are “under evaluation” – Universe Today learned according to Russian and American space sources.

The doomed Progress freighter “ceased to exist” after it reentered the Earth’s atmosphere 05.04 Moscow time on May 8, 2015 (10:04 p.m. EDT May 7) over the central Pacific Ocean,” according to an official statement from Roscosmos, the Russian Space Agency.

The consequences of the failure might cause “postponements of upcoming station crew changes to June” and blastoffs “to July” according to Russian space industry and media sources.

The vessel, also known as Progress M-27M, burned up minutes later and any surviving pieces fell over the Pacific Ocean.

“Debris fell about 900 kilometers west of the Marquesas Islands in the central Pacific Ocean,” a space industry source told the Russian news agency TASS.

“Roscosmos plans to adjust the program of flights to the International Space Station (ISS) due to the recent accident involving the Progress M-27M spacecraft,” according to the TASS rocket and space industry source.

Roscosmos quickly established an investigation board to determine the cause of the Progress failure and any commonalities it might have with manned launches of the Soyuz rocket and capsule, and report back by 13 May.

“The results of investigation of the incident related to “Progress M-27M” will be presented no later than 13 May following the completion of the state commission,” Roscosmos stated.

Russian mission controllers lost control of the Progress 59 spacecraft shortly after its otherwise successful launch to the ISS on April 28 from the Baikonur space center in Kazakhstan atop a Soyuz-2.1A carrier rocket.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

After control could not be reestablished, all hope of docking with the ISS was abandoned by Roscosmos.

NASA officials said that the current ISS Expedition 43 six person crew is in no danger. The station has sufficient supplies to last until at least September, even if no other supplies arrive in the meantime.

“The spacecraft was not carrying any supplies critical for the United States Operating Segment (USOS) of the station, and the break up and reenty of the Progress posed no threat to the ISS crew,” NASA said in a statement.

“Both the Russian and USOS segments of the station continue to operate normally and are adequately supplied well beyond the next planned resupply flight.”

There is a stock of propellants onboard in the Russian segment that can be used for periodically required station reboosts.

According to TASS, “the cause of the accident with the Russian Progress M-27M spacecraft has not been established yet, Russian Deputy Prime Minister Dmitry Rogozin told journalists on Friday.”

“Not yet,” he said, answering a question on whether causes of the accident had been established.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

Because the cause of Progress failure is not yet clear, the schedules for upcoming crew departures and launches to the ISS via Russian Soyuz rockets and capsules are “under evaluation,” according to sources.

There is a significant potential for a delay in the planned May 13 return to Earth of the three person crew international crew consisting of NASA astronaut and current station commander Terry Virts and flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos, who have been aboard the complex since November 2014.

They comprise the current Expedition 43 crew, along with the recently arrived crew of NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka who launched onboard a Soyuz capsule on March 27.

Kelly and Kornienko comprise the first ever “1 Year ISS Crew.”

Virts and his crewmates were due to head back to Earth in their Soyuz capsule on May 13. According to Russian sources, their return trip may be postponed to about June 11 to 13.

“The return from orbit of the expedition which is currently there is suggested to be postponed from May 14 to June,” said a TASS source.

Their three person replacement crew on Expedition 44 were due to blastoff on the next planned manned Soyuz launch on May 26 from the Baikonur Cosmodrome in Kazakhstan. This launch may now be delayed as well, to mid or late July.

“More time will be needed to check already manufactured rockets,” said a source. “A manned Soyuz launch may be made in the last ten days of July.”

“The proposal was forwarded by a Roscosmos working group and has not been approved yet,” reports TASS.

An official announcement by Roscosmos of any ISS schedule changes may come next week since the scheduled return of Virts crew is only days away.

Another potential change is that the launch of the next unmanned Progress 60 (M-28M), could potentially be moved up from August to July, hinging on the outcome of the state commission investigation.

To date flights of the Progress vehicle have been highly reliable. The last failure occurred in 2011, shortly after the retirement of NASA’s Space Shuttle orbiters in July 2011. The loss of the Progress did cascade into a subsequent crew launch delay later in 2011.

"There's coffee in that nebula"... ehm, I mean... in that #Dragon.  Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA
“There’s coffee in that nebula”… ehm, I mean… in that #Dragon. Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

The 7 ton Progress vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, food, water, oxygen, gear and replaceable parts for the station’s life support systems.

The next SpaceX Falcon 9 launch carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS is slated for mid-June. The most recent SpaceX Dragon was launched on the CRS-6 mission on April 14, 2015.

At this time the SpaceX CRS-7 launch remains targeted for liftoff on June 19, 2015.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com