SpaceX Dragon Departs Space Station after Delivering Slew of Science and Returns with Ocean Splashdown

A space-weathered @SpaceX #Dragon looking great moments before release today. Credit: NASA/Reid Wiseman

Concluding a busy five week mission, the SpaceX Dragon CRS-4 commercial cargo ship departed the International Space Station (ISS) this morning, Oct. 25, after delivering a slew of some 2.5 tons of ground breaking science experiments and critical supplies that also inaugurated a new era in Earth science at the massive orbiting outpost following installation of the ISS-RapidScat payload.

Dragon was released from the snares of the station’s robotic arm at 9: 57 a.m. EDT while soaring some 250 mi (400 km) over the northwest coast of Australia.

It returned safely to Earth with a splashdown in the Pacific Ocean some six hours later, capping the fourth of SpaceX’s twelve contracted station resupply missions for NASA through 2016.

“The Dragon is free!” exclaimed NASA commentator Rob Navias during a live broadcast on NASA TV following the ungrappling this morning. “The release was very clean.”

Dragon released from snares of ISS robotic arm on Oct. 25, 2014 for return to Earth.  Credit: NASA
Dragon released from snares of ISS robotic arm on Oct. 25, 2014, for return to Earth. Credit: NASA

The private resupply ship was loaded for return to Earth with more than 3,276 pounds of NASA cargo and science samples from the station crew’s investigations on “human research, biology and biotechnology studies, physical science investigations, and education activities sponsored by NASA and the Center for the Advancement of Science in Space, the nonprofit organization responsible for managing research aboard the U.S. national laboratory portion of the space station,” said NASA.

The release set up a quick series of three burns by the ship’s Draco thrusters designed to carry Dragon safely away from the station.

NASA astronauts Reid Wiseman and Butch Wilmore quickly retracted the arm working from their robotics workstation in the domed Cupola module.

“Thanks for the help down there,” the astronauts radioed. “It was a great day.”

Dragon moves away from ISS on Oct. 25, 2014 for return to Earth.  Credit: NASA  TV
Dragon moves away from ISS on Oct. 25, 2014, for return to Earth. Credit: NASA TV

The first burn took place a minute later at about 9:58 a.m. EDT and the second at about 10:00 a.m. A yaw maneuver at 10:05 a.m. set up the orientation required for the third burn at about 10:08 a.m.

Dragon moved away quickly during the nighttime release and was already outside the Keep Out Sphere (KOS), an imaginary bubble surrounding the station at a distance of 200 m. It disappeared quickly in the dark and was barely visible within minutes.

“The propulsion systems are in good shape,” said Navias. “All systems on Dragon are functioning perfectly.”

With Dragon safely gone following the trio of burns, the next major event was the deorbit burn at 2:43 p.m. EDT at a distance of about 90 statute miles from the station.

Dragon slipped out of orbit. After surviving the scorching heat of reentry through the Earth’s atmosphere, the ship sequentially deployed its drogue chutes and three main parachutes at about 3:30 p.m.

Splashdown in the Pacific Ocean occurred as expected at about 3:39 p.m., approximately 265 miles west of the Baja peninsula.

Dragon is the only vehicle that can return intact from the ISS with a substantial load of cargo and is carrying critical science samples for distribution to researchers.

Today’s Dragon departure starts a week of heavy traffic of comings and goings to the ISS involving a series of US and Russian unmanned cargo ships.

SpaceX Dragon captures view of ISS after departure on Oct. 25, 2014 for return to Earth.  Credit: NASA  TV
SpaceX Dragon captures view of ISS after departure on Oct. 25, 2014, for return to Earth. Credit: NASA TV

The Orbital Sciences Antares rocket with the commercial Cygnus cargo freighter is set to launch on Monday, Oct. 27, from NASA Wallops, VA. It will dock at the ISS on Nov. 2 at the Earth-facing port on the Harmony module just vacated by Dragon.

Russia’s Progress 56 unmanned cargo ship will also undock on Oct. 27. And Progress 57 will launch from Baikonur on Wednesday, Oct 29.

The SpaceX Dragon CRS-4 cargo resupply mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

Dragon was successfully berthed at the Harmony module on Sept. 23, 2014.

Among the nearly 5000 pounds of cargo hauled up by Dragon was as an Earth observation platform named ISS-RapidScat loaded in the unpressurized trunk section.

Also loaded aboard were a slew of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

It also carried the first 3-D printer to space for the first such space based studies ever attempted by the astronaut crews. The printer will remain at the station for at least the next two years.

20 mice housed in a special rodent habitat were also aboard, as well as fruit flies.

The ISS Rapid Scatterometer, or ISS-RapidScat, is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module.  It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.
ISS-RapidScat instrument, shown in this artist’s rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014, and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

The successful installation and activation of the ISS-RapidScat science instrument on the exterior of Europe’s Columbus module in late September and early October inaugurated a new era in space station science.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring.

The 1280 pound (580 kilogram) experimental instrument is already collecting its first science data following its recent power-on and activation at the station.

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40  awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 with Dragon spaceship erect at Cape Canaveral launch pad 40 awaiting launch on Sept. 21, 2014, on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

“This mission enabled research critical to achieving NASA’s goal of long-duration human spaceflight in deep space,” said Sam Scimemi, director of the International Space Station division at NASA Headquarters.

“The delivery of the ISS RapidScatterometer advances our understanding of Earth science, and the 3-D printer will enable a critical technology demonstration. Investigations in the returned cargo could aid in the development of more efficient solar cells and semiconductor-based electronics, the development of plants better suited for space, and improvements in sustainable agriculture.”

The next SpacX cargo Dragon on the CRS-5 mission is slated for launch no earlier then Dec. 9.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 26/27: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

You Could Fit All the Planets Between the Earth and the Moon

You could fit all the planets within the average distance to the Moon.
You could fit all the planets within the average distance to the Moon.

I ran into this intriguing infographic over on Reddit that claimed that you could fit all the planets of the Solar System within the average distance between the Earth and the Moon.

I’d honestly never heard this stat before, and it’s pretty amazing how well they tightly fit together.

But I thought it would be a good idea to doublecheck the math, just to be absolutely certain. I pulled my numbers from NASA’s Solar System Fact Sheets, and they’re a little different from the original infographic, but close enough that the comparison is still valid.

Planet Average Diameter (km)
Mercury 4,879
Venus 12,104
Mars 6,771
Jupiter 139,822
Saturn 116,464
Uranus 50,724
Neptune 49,244
Total 380,008

The average distance from the Earth to the Moon is 384,400 km. And check it out, that leaves us with 4,392 km to spare.

So what could we do with the rest of that distance? Well, we could obviously fit Pluto into that slot. It’s around 2,300 km across. Which leaves us about 2,092 km to play with. We could fit one more dwarf planet in there (not Eris though, too big).

The amazing Wolfram-Alpha can make this calculation for you automatically: total diameter of the planets. Although, this includes the diameter of Earth too.

A nod to CapnTrip on Reddit for posting this.

Comet Siding Spring Was Bleeding Hydrogen As It Sped By Mars

Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA

As Comet Siding Spring passed close by Mars on Sunday (Oct. 19), NASA’s newest Mars spacecraft took a time-out from its commissioning to grab some ultraviolet pictures of its coma. What you see above is hydrogen, a whole lot of it, leaving the comet in this picture taken from 5.3 million miles (8.5 million kilometers).

The hydrogen is a product of the water ice on the comet that the Sun is slowly melting and breaking apart into hydrogen and oxygen molecules. Because hydrogen scatters ultraviolet light from the Sun, it shows up rather clearly in this picture taken by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft.

Check out more recent pictures of Siding Spring below.

Is this an image of Comet Siding Spring? It's the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
Is this an image of Comet Siding Spring? It’s the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Another photo, just in, taken of the comet and Mars today (Oct. 19) by Rolando Ligustri. Beautiful!
Another photo, just in, taken of the comet and Mars today (Oct. 19) by Rolando Ligustri. Beautiful!
Comet 2013 A1 Siding Spring on October 17, 2014, with two days to go until its Martian encounter. Very dense Milkyway starfield in the background with many darker obscured regions. Credit and copyright: Damian Peach.
Comet 2013 A1 Siding Spring on October 17, 2014, with two days to go until its Martian encounter. Very dense Milkyway starfield in the background with many darker obscured regions. Credit and copyright: Damian Peach.

Stinky! Rosetta’s Comet Smells Like Rotten Eggs And Ammonia

A view of Comet 67P/Churyumov-Gerasimenko on Sept. 26, 2014 from the orbiting Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM

While you can’t smell in space — there is no medium to carry the molecules, the same reason you can’t hear things — you can certainly detect what molecules are emanating from comets and other solar system bodies. A new analysis of Comet 67P/Churyumov-Gerasimenko by the orbiting Rosetta spacecraft thus found a rather pungent chemistry combination.

The spacecraft detected hydrogen sulphide (the smell of rotten eggs), ammonia and formaldehyde with traces of hydrogen cyanide and methanol. But compared to the amounts of water and carbon monixide 67P has, these molecule concentrations are quite miniscule.

“This all makes a scientifically enormously interesting mixture in order to study the origin of our solar system material, the formation of our Earth and the origin of life,” stated the University of Bern’s Kathrin Altwegg, from the center of space and habitability.

“And after all: it seems like comet Churyumov was indeed attracted by comet Gerasimenko to form Churyumov-Gerasimenko, even though its perfume may not be Chanel No 5, but comets clearly have their own preferences.”

More seriously, astronomers do say that at three astronomical units (Earth-Sun distances) from the Sun, the comet is emitting more molecules than expected. The next step will be to compare Rosetta’s data with ground-based data of other comets to see if this is common.

Source: University of Bern

Asteroid 2014 SC324 Zips By Earth Friday Afternoon – Tips on How to See it

Here comes another asteroid! 2014 SC324 will miss Earth by 1.5 times the distance to the Moon early Friday afternoon October 24, 2014. Credit: Gianluca Masi / Software Bisque

What a roller coaster week it’s been. If partial eclipses and giant sunspots aren’t your thing, how about a close flyby of an Earth-approaching asteroid?  2014 SC324 was discovered on September 30 this year by the Mt. Lemmon Survey high in the Catalina Mountains north of Tucson, Arizona. Based on brightness, the tumbling rock’s size is estimated at around 197 feet (60-m), on the large side compared to the many small asteroids that whip harmlessly by Earth each year.

Near-Earth asteroid 2014 SC324 caught in the camera on October 23. The telescope tracked on the zippy space rock, causing the stars to trail. Credit: Gianluca Masi
Near-Earth asteroid 2014 SC324 caught in the camera on October 23. The telescope tracked on the zippy space rock, causing the stars to trail. Credit: Gianluca Masi

Closest approach happens around 2 p.m. CDT (7 p.m. UT) Friday afternoon when our fast friend misses Earth by just 351,000 miles (565,000 km) or 1.5 times the distance to the Moon. This is a very safe distance, so we can finish up our lunches without a jot of concern. But the asteroid’s  combination of size and proximity means amateur astronomers with a 10-inch or larger telescope will be able to track it across the sky beginning tonight (Oct. 23) and continuing through tomorrow night. 2014 SC324 should shine tolerably bright this evening at around magnitude +13.5.

Bright here is something of a euphemism, but when it comes to new Earth-approaching asteroids, this is within range of many amateur instruments. And because 2014 SC324 is “only” a half million miles away tonight, it’s not moving so fast that you can’t plot its arc on a single star chart, spot it and go for a ride.


Simulation based on recent data showing the known asteroids orbiting the Sun

By Friday evening, the new visitor will have faded a bit to magnitude +14. You can create a track for 2014 SC324 by inputting its orbital elements into a variety of astro software programs like MegaStar, the Sky, and Le Ciel. Elements are available via the Minor Planet Center and Horizons. Once saved, the program will make a track of the asteroid’s movement at selected time intervals. Print out the chart and you’re ready for the hunt!

Illustration of small asteroids passing near Earth. Credit: ESA / P. Carril
Illustration of small asteroids passing near Earth. Credit: ESA / P. Carril

You can also go to Horizons, ask for a list of positions every 15 minutes for example and then hand plot those positions in right ascension (R.A.) and declination (Dec.) on a star map.  This is what I do. I find the the general chunk of sky the asteroid’s passing through, print the map and then mark positions in pencil and connect them all with a line. Now I’ve got a chart I can use at the telescope based on the most current orbit.

Tonight the errant mountain will rumble through Aries the Ram, which is conveniently located in the eastern sky below Andromeda and the Great Square of Pegasus at nightfall.

Finding a dim, fast-moving object is doubtless an exciting challenge, but if you lack the equipment or the weather doesn’t cooperate, you can see the show online courtesy of Italian astrophysicist Gianluca Masi. He’ll stream the close encounter live on his Virtual Telescope Project website beginning at 7 p.m. CDT (midnight UT) tomorrow night October 24-25.

Clear skies!

Rosetta’s Comet Springs Spectacular Leaks As It Gets Closer To The Sun

This Rosetta image of Comet 67P/Churyumov-Gerasimenko shows spectacular jets erupting from the small body on Sept. 10, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Jet! The comet that the Rosetta spacecraft is visiting is shedding more dust as machine and Solar System body get closer to the Sun.

While activity was first seen at the “neck” of the rubber-duckie shaped comet a few weeks ago, now scientists are seeing jets spring from across the comet.

This is just one signal of cometary activity picking up as 67P gets closer to the Sun. For the moment, it appears the prime landing site is still safe enough for Philae to land on Nov. 19, officials said, while noting there is a jet about a kilometer away that the lander can study when it gets there.

Jets spring from the "neck" area of Comet 67P/Churyumov-Gerasimenko. The smaller lobe is on the left, and the larger on the right. These images were taken about 7.2 kilometers (4.5 miles) from the surface. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Jets spring from the “neck” area of Comet 67P/Churyumov-Gerasimenko. The smaller lobe is on the left, and the larger on the right. These images were taken about 7.2 kilometers (4.5 miles) from the surface. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“At this point, we believe that a large fraction of the illuminated comet’s surface is displaying some level of activity,” stated Jean-Baptiste Vincent a scientist from the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) that took the pictures. He is with the Max Planck Institute for Solar System Research in Germany.

The comet is about 470 million kilometers (292 miles) from the Sun and will make its closest approach in 2015. Rosetta is the first mission to orbit a comet as it gets close to the Sun, and Philae (if successful) will make the first “soft” landing on a cometary surface.

Source: European Space Agency

Hubble Composite Picture Shows How Close Siding Spring Comet Was To Mars

Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

We’ve seen spectacular images of Comet Siding Spring from Mars spacecraft, showing just how close the small body was to the Red Planet when it whizzed by Sunday (Oct. 19). But how close were the two objects actually, in the sky? This Hubble Space Telescope composite image shows just how astoundingly near they were.

Above are two separate exposures taken Oct. 18-19 EDT (Oct. 18-20 UTC) against the same starry field image from another survey. It was a complicated shot to get, NASA explains, but it does serve as a powerful illustration of the celestial close encounter.

“This is a composite image because a single exposure of the stellar background, comet Siding Spring, and Mars would be problematic. Mars is actually 10,000 times brighter than the comet, and so could not be properly exposed to show detail in the Red Planet,” NASA stated.

High resolution image pairs made with HiRISE camera on MRO during Comet Siding Spring's closest approach to Mars on October 19. Shown at top are images of the nucleus region and inner coma. Those at bottom were exposed to show the bigger coma beginning of a tail. Credit: NASA/JPL/Univ. of Arizona
High resolution image pairs made with HiRISE camera on MRO during Comet Siding Spring’s closest approach to Mars on October 19. Shown at top are images of the nucleus region and inner coma. Those at bottom were exposed to show the bigger coma beginning of a tail. Credit: NASA/JPL/Univ. of Arizona

“The comet and Mars were also moving with respect to each other and so could not be imaged simultaneously in one exposure without one of the objects being motion blurred. Hubble had to be programmed to track on the comet and Mars separately in two different observations.”

The two images were blended together in this single shot, showing their separation of 1.5 arc minutes (1/20 of the Moon’s apparent diameter.) The background stars comes from data from the Palomar Digital Sky Survey “reprocessed to approximate Hubble’s resolution”, NASA stated.

While the nucleus is too small to be imaged by Hubble, you can see what it looks like in the image above from the Mars Reconnaissance Orbiter. Siding Spring passed by the Red Planet at a distance of just 87,000 miles (140,000 km).

Source: NASA

Two Comet Groups Discovered Around Beta Pictoris

This artist’s impression shows exocomets orbiting the star Beta Pictoris. Credit: ESO/L. Cacada

Between the years 2003 and 2011, the High Accuracy Radial velocity Planet Searcher – better known as HARPS – made more than a thousand observations of nearby star, Beta Pictoris. On board the ESO 3.6-metre telescope at the La Silla Observatory in Chile, the sensitive instrument normally combs the sky nightly in search of exoplanets, but lately it has contributed to another astounding discovery… exocomets!

Located about 63 light-years from the Sun, Beta Pictoris is a youthful star, estimated to be only around 20 million years old. Keeping it company in space is a vast disc of material. This swarm of gas and dust is the beginnings of an active planetary system and was likely created by the destruction of comets and collisions of rocky bodies like asteroids. Now a French team using HARPS has been able to create the most complete catalog of comets to date from this system. Researchers have found no less than five hundred comets belonging to Beta Pictoris and they divide in two unique branches of exocomets. Split into both old and new, these two active flows behave much like our own cometary groups… They have either made many trips around the parent star or are the product of a recent breakup of one or more objects.

Flavien Kiefer (IAP/CNRS/UPMC), lead author of the new study, sets the scene: “Beta Pictoris is a very exciting target! The detailed observations of its exocomets give us clues to help understand what processes occur in this kind of young planetary system.”

Beta Pictoris is located about 60 light-years away towards the constellation of Pictor (the Painter's Easel) and is one of the best-known examples of a star surrounded by a dusty debris disc. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star, all indirect, but tell-tale signs that strongly suggested the presence of a massive planet. Observations done with the NACO instrument on ESO’s Very Large Telescope in 2003, 2008 and 2009, have proven the presence of a planet around Beta Pictoris. It is located at a distance between 8 and 15 times the Earth-Sun separation — or Astronomical Units — which is about the distance Saturn is from the Sun. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This image, based on data from the Digitized Sky Survey 2, shows a region of approximately 1.7 x 2.3 degrees around Beta Pictoris.  Credit: ESO/Sky Survey II
Beta Pictoris is located about 60 light-years away towards the constellation of Pictor (the Painter’s Easel) and is one of the best-known examples of a star surrounded by a dusty debris disc. Earlier observations showed a warp of the disc, a secondary inclined disc, and comets falling onto the star, all indirect, but tell-tale signs that strongly suggested the presence of a massive planet. Observations done with the NACO instrument on ESO’s Very Large Telescope in 2003, 2008, and 2009, have proven the presence of a planet around Beta Pictoris. It is located at a distance between 8 and 15 times the Earth-Sun separation — or Astronomical Units — which is about the distance Saturn is from the Sun. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This image, based on data from the Digitized Sky Survey 2, shows a region of approximately 1.7 x 2.3 degrees around Beta Pictoris. Credit: ESO/Sky Survey II

Just like discovering planets through the transit method, astronomers believe exocomets can cause a disturbance in the amount of light we can see from a given star. When these icy travelers exhaust themselves, their gas and dust tails could absorb a portion of the star light passing through them. For nearly three decades scientists had been aware of minute changes in the light from Beta Pictoris, but attributing it to comets was next to impossible to prove. Their tiny light was simply overpowered by the light of the star and could not be imaged from Earth.

Enter HARPS…

Using more than a thousand observations taken by this sensitive equipment, astronomers chose a sample of 493 exocomets unrelated to each other, but sharing in the Beta Pictoris system. Of these, some were dutifully followed for hours at several different times. The size and speed of the gas clouds produced were carefully measured. Researchers were even able to document the orbital properties of some of these exocomets – the size and shape of their passage paths in relation to the parent star allowing scientists to infer their distances.

Knowing that comets exist around other stars is very exciting – and knowing that solar systems around other stars work much like our own is downright rewarding. Through this study, we’re able to take a unique look at what might be several hundreds of exocomets connected to a solitary exo-planet system. What the research has revealed is two distinct branches of the comet family tree. One of these is old comets – their orbit dictated by a single, massive planet. The other half of the family fork belongs to comets that might have arisen from the destruction of a larger object.

The older group behaves in a predictable manner. These exocomets have differing orbital patterns, and their gas and dust production is greatly reduced. If they follow the same rules as the ones in our solar system, it’s typical behavior for a comet which has exhausted its volatiles during multiple trips around the parent star and is also being controlled by the system’s massive planet. This is exciting because it confirms the planet’s presence and distance!

“Moreover, the orbits of these comets (eccentricity and orientation) are exactly as predicted for comets trapped in orbital resonance with a massive planet.” says the science team. “The properties of the comets of the first family show that this planet in resonance must be at about 700 million kilometres from the star – close to where the planet Beta Pictoris b was discovered.”

The second group also behaves in a predictable manner. These exocomets have nearly identical orbits and their emissions are active and radical. Observations of this cometary type tell us they more than likely originated from the destruction of a larger body and the rubble is caught in a orbit which allows the fragments to graze Beta Pictoris. According to the research team: “This makes them similar to the comets of the Kreutz family in the Solar System, or the fragments of Comet Shoemaker-Levy 9, which impacted Jupiter in July 1994.”

Flavien Kiefer concludes: “For the first time a statistical study has determined the physics and orbits for a large number of exocomets. This work provides a remarkable look at the mechanisms that were at work in the Solar System just after its formation 4.5 billion years ago.”

Original Story Source: “Two Families of Comets Found Around Nearby Star – Biggest census ever of exocomets around Beta Pictoris” – ESO Science News Release

This 3-D Martian Picture Feels Like You’re Standing Beside The Opportunity Rover

A 3-D image of "Wdowiak Ridge" on Mars, based on images from the left and right side of the Opportunity rover's Pancam. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Grab your 3-D glasses (you do have a pair handy, right?) and take a look at this latest vista from Mars. This is a view taken by the Opportunity rover that looks at a location nicknamed “Wdowiak Ridge”, on the rim of Endeavour Crater.

This mosaic was obtained Sept. 17 as Opportunity continued its journey to “Marathon Valley”, a spot that could hold clays (which would indicate a water-rich environment in the past.) The rover is more than a decade into its mission and has been sending back images amid battling Flash memory problems lately.

Check out more recent pictures below, including a probable one of Comet Siding Spring passing by Mars (which Bob King wrote about in detail earlier this week.)

“Wdowiak Ridge sticks out like a sore thumb.  We want to understand why this ridge is located off the primary rim of Endeavour Crater and how it fits into the geologic story of this region,” stated Jim Rice, the Opportunity science-team of the Planetary Science Institute in Arizona.

More specifically, the team is interested in why this ridge is so prominent and sharp — they are calling it one of the most distinctive features Opportunity has ever seen. How it resisted erosion in an area so worn down is one thing scientists are hoping to learn about.

A Martian mosaic showing "Wdowiak Ridge", which the Opportunity rover imaged Sept. 17, 2014. The rover's tracks are visible at right. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A Martian mosaic showing “Wdowiak Ridge”, which the Opportunity rover imaged Sept. 17, 2014. The rover’s tracks are visible at right. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

The last Opportunity rover update talks about activities through Sept. 30, but NASA has released raw images available since then. Check out a selection below.

Is this an image of Comet Siding Spring? It's the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
Is this an image of Comet Siding Spring? It’s the only fuzzy object in the field photographed on Sol 3817 (October 19) by the Opportunity Rover. Click for original raw image.
The Opportunity rover at work on Mars on Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
The Opportunity rover at work on Mars on Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
An image of Martian terrain with the Opportunity's rover solar panel just visible at the bottom of the panel. Picture taken Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
An image of Martian terrain with the Opportunity’s rover solar panel just visible at the bottom of the panel. Picture taken Sol 3,817 in October 2014. Credit: NASA/JPL-Caltech
A dramatic, shadowy picture showing part of the Opportunity rover on Mars lit by the Sun (at top). Picture taken Sol 3,812 in October 2014. Credit: NASA/JPL-Caltech
A dramatic, shadowy picture showing part of the Opportunity rover on Mars lit by the Sun (at top). Picture taken Sol 3,812 in October 2014. Credit: NASA/JPL-Caltech
The Opportunity rover's tracks dominate this image taken on Mars on Sol 3,807 in October 2014. Credit: NASA/JPL-Caltech
The Opportunity rover’s tracks dominate this image taken on Mars on Sol 3,807 in October 2014. Credit: NASA/JPL-Caltech

Stunning View of Solar System’s Largest Volcano and Valles Marineris Revealed by India’s Mars Orbiter Mission

Olympus Mons, Tharsis Bulge trio of volcanoes and Valles Marineris from ISRO's Mars Orbiter Mission. Note the clouds and south polar ice cap. Credit: ISRO

India’s Mars Orbiter Mission (MOM) has delivered another sweet treat – a stunning view of our Solar System’s largest volcano and the largest canyon.

Just days ago, MOM captured a new global image of the Red Planet dominated by Olympus Mons and Valles Marineris – which is the largest known volcano and the largest known canyon in the Solar System, respectively.

Situated right in between lies a vast volcanic plateau holding a trio of huge volcanoes comprising the Tharsis Bulge: Arsia Mons, Pavonis Mons, and Ascraeus Mons. All four volcanoes are shield volcanoes.

To give an idea of its enormity, Olympus Mons stands about three times taller than Mount Everest and is about the size of Arizona.

Olympus Mons from Mars orbit compared to the state of Arizona. Credit: NASA
Olympus Mons from Mars orbit compared to the state of Arizona. Credit: NASA

Olympus Mons is located in Mars’ western hemisphere and measures 624 kilometers (374 miles) in diameter, 25 km (16 mi) high, and is rimmed by a 6 km (4 mi) high scarp.

Valles Marineris is often called the “Grand Canyon of Mars.” It spans about as wide as the entire United States.

The Indian Space Research Organization (ISRO), India’s space agency which designed and developed the orbiter released the image on Oct. 17, barely two days ahead of the planet’s and spacecrafts’ extremely close encounter with comet Siding Spring.

By the way, a relieved ISRO tweeted MOM’s survival of her close shave with the once-in-a-lifetime cometary passage with gusto, soon after the swingby:

“Phew! Experience of a lifetime. Watched the #MarsComet #SidingSpring whizzing past the planet. I’m in my orbit, safe and sound.”

The new global image was taken by the tri-color camera as MOM swooped around the Red Planet in a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km, according to ISRO.

To date ISRO has released four global images of the Red Planet, including a 3-D view, reported here.

Olympus Mons, the Tharsis Bulge, and Valles Marineris are near the equator.

Valles Marineris stretches over 4,000 km (2,500 mi) across the Red Planet, is as much as 600 km wide, and measures as much as 7 kilometers (4 mi) deep.

Here’s a comparison view of the region taken by NASA’s Viking 1 orbiter in the 1970s.

Global Mosaic of Mars Centered on Valles Marineris
Global Mosaic of Mars Centered on Valles Marineris from NASA’s Viking 1 orbiter. Credit: NASA

MOM is India’s first deep space voyager to explore beyond the confines of her home planet’s influence and successfully arrived at the Red Planet only one month ago after the “history creating” orbital insertion maneuver on Sept. 23/24 following a ten month journey.

The $73 million MOM mission is expected to last at least six months.

MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.

With MOM’s arrival, India became the newest member of an elite club of only four entities that have launched probes that successfully investigated Mars – following the Soviet Union, the United States, and the European Space Agency (ESA).

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISRO's Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74500 km on Sept. 28, 2014.  Credit: ISRO
ISRO’s Mars Orbiter Mission captures spectacular portrait of the Red Planet and swirling dust storms with the on-board Mars Color Camera from an altitude of 74,500 km on Sept. 28, 2014. Credit: ISRO