Reused SpaceX Dragon Supply Ship Arrives Space Station, Cygnus Departs, Falcon 9 Launch & Landing: Photos/Videos

The SpaceX Dragon CRS-11 is seen seconds away from its capture with the Canadarm2 robotic arm on June 5, 2017. Credit: NASA TV
The SpaceX Dragon CRS-11 is seen seconds away from its capture with the Canadarm2 robotic arm on June 5, 2017. Credit: NASA TV

KENNEDY SPACE CENTER, FL – The first ever reused Dragon supply ship successfully arrived at the International Space Station (ISS) two days after a thunderous liftoff from NASA’s Kennedy Space Center atop a SpaceX Falcon 9 rocket on Saturday, June 3. The first stage booster made a magnificent return to the Cape and erect ground landing some 8 minutes after liftoff.

Meanwhile the already berthed Orbital ATK Cygnus OA-7 supply ship departed the station on Sunday, June 4 after ground controllers detached it and maneuvered it into position for departure.

The commercial Dragon cargo freighter carrying nearly 3 tons of science and supplies for the multinational crew on the CRS-11 resupply mission reached the space stations vicinity Monday morning, June 5, after a two day orbital chase starting from the Kennedy Space Center and a flawless series of carefully choreographed thruster firings culminated in rendezvous.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, following a 48 hour delay due to a stormy weather scrub at the Florida Space Coast on Thursday, June 1.

The stunning Falcon 9 launch and landing events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

The Falcon 9 blastoff also counts as the 100th flight from KSC’s historic pad 39A which previously launched NASA’s Apollo astronauts on lunar landing missions and space shuttles for 3 decades

Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

By 8:30 a.m. Monday morning ground controllers had maneuvered Dragon to within 250 meters of the station and the imaginary keep out sphere around the orbiting complex.

Engineers carefully assessed the health of the Dragon and its systems to insure its ability to slowly and safely move in closer for capture by the crew.

When Dragon reached a distance of 11 meters, it was grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm Monday morning at 9:52 a.m. EDT, a few minutes ahead of schedule.

“Capture complete,” radioed Whitson as Dragon was captured at its grapple pin by the grappling snares at the terminus of the Canadarm2 robotic arm.

Dragon’s capture took place as the ISS was orbiting 250 miles over the South Atlantic Ocean as it was nearing the East coast of Argentina.

“Complete complete. Go for capture configuration,” replied Houston Mission control.

The newly arrived SpaceX Dragon CRS-11 resupply ship is installed to the Harmony module on June 5, 2017. The Progress 66 cargo craft is docked to the Pirs docking compartment and the Soyuz MS-04 crew vehicle is docked to the Poisk module. Credit: NASA

“We want to thank the entire team on the ground that made this possible, both in Hawthorne and in Houston. Really around the whole world, from support in Canada for this wonderful robotic arm, Kennedy Space Center’s launch support, to countless organizations which prepared the experiments and cargo,” Fischer radioed in response.

“These people have supplied us with a vast amount of science and supplies, really fuel for the engine of innovation we get to call home, the International Space Station. We have a new generation of vehicles now, led by commercial partners like SpaceX, as they build the infrastructure that will carry us into the future of exploration.”

“It’s also the first second mission to the ISS which was previously here as CRS-4. The last returned visitor was space shuttle Atlantis on the STS-135 mission,” Fischer said.

A little over two hours after it was captured by Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson, ground teams maneuvered the unpiloted SpaceX Dragon cargo craft for attachment to the Earth-facing port of the station’s Harmony module.

“Ground controllers at Mission Control, Houston reported that Dragon was bolted into place at 12:07 p.m. EDT as the station flew 258 statute miles over central Kazakhstan,” NASA reported.

The berthing of Dragon to Harmony was not broadcast live on NASA TV.

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad and Cape Canaveral media viewing site – including an A/V compilation of sonic booms from the propulsive ground landing.

Video Caption: CRS-11 Launch from KSC Pad 39A with the first re-used Dragon capsule. SpaceX Falcon 9 launch of the CRS-11 mission to take supplies, equipment and experiments to the ISS, followed by the first stage landing at LZ-1 on the Cape Canaveral Air Force Station. Credit: Jeff Seibert

Video Caption: SpaceX Falcon 9/Dragon CRS 11 Launch 3 June 2017. Launch of SpaceX Falcon 9 on June 3, 2017 from pad 39A at the Kennedy Space Center, FL carrying 1st recycled Dragon supply ship bound for the International Space Station on the CRS-11 mission loaded with 3 tons of science and supplies – as seen in this remote video taken at the pad under cloudy afternoon skies. Credit: Ken Kremer/kenkremer.com

Video Caption: Sonic booms from the return of the CRS-11 booster to LZ-1 on June 3, 2017. Triple sonic booms signal the return of the Falcon 9 first stage to LZ-1 after launching the CRS-11 Dragon spacecraft to the ISS. Credit: Jeff Seibert

The gumdrop shaped 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

The CRS-11 cargo ship will support over 62 of the 250 active research investigations and experiments being conducted by Expedition 52 and 53 crew members.

The flight delivered investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

40 new micestonauts are also aboard inside the rodent research habitat for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The therapy will also examine whether bone can be regenerated for the first time. No drug exists for bone regeneration.

The unpressurized trunk of the Dragon spacecraft also transported 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).

Blastoff of 1st recycled SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center on June 3, 2017 delivering Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

NASA decided to use the SpaceX weather related launch delay to move up the departure of the “SS John Glenn” Cygnus cargo ship by over a month since it was already fully loaded and had completed its mission to deliver approximately 7,600 pounds of supplies and science experiments to the orbiting laboratory and its Expedition 51 and 52 crew members for Orbital ATK’s seventh NASA-contracted commercial resupply mission called OA-7.

Named after legendary Mercury and shuttle astronaut John Glenn – 1st American to orbit the Earth – the supply ship had spent 44 days at the station.

The “SS John Glenn” will now remain in orbit a week to conduct the third SAFFIRE fire experiment as well as deploy four small Nanoracks satellites before Orbital ATK flight controllers send commands June 11 to deorbit the spacecraft for its destructive reentry into the Earth’s atmosphere over the Pacific Ocean.

The Orbital ATK Cygnus cargo craft, with its prominent Ultra Flex solar arrays, is pictured moments after being released from the International Space Station on June 4, 2017 . Credit: NASA TV

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

……….

SpaceX Falcon 9 aloft carrying 1st reused Dragon on CRS-11 resupply flight to the International Space Station on June 3, 2017 from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Julian Leek
Descent of SpaceX Falcon 9 1st stage towards Landing Zone-1 at Cape Canaveral after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. Credit: Julian Leek
Recycled SpaceX Dragon CRS-11 cargo craft lifted off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 carrying 3 tons of research equipment, cargo and supplies to Earth orbit and the International Space Station. Credit: Ken Kremer/kenkremer.com
3 June 2017 launch of SpaceX Falcon 9 on CRS-11 mission to the ISS – as seen from Port Orange, FL. Credit: Gerald DaBose
Landing of SpaceX Falcon 9 1st stage following launch of Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on June 3, 2017 to the ISS. Credit: Jean Wright
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com
Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

1st Recycled SpaceX Dragon Blasts Off for Space Station on 100th Flight from Pad 39A with Science Rich Cargo and Bonus Booster Landing: Gallery

Blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center at 5:07 p.m. EDT on June 3, 2017, on Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 5:07 p.m. EDT on June 3, 2017, on Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After threatening stormy skies over the Florida Space Coast miraculously parted just in the nick of time, the first ever recycled SpaceX Dragon cargo freighter blasted off on the 100th flight from historic pad 39A on the Kennedy Space Center (KSC) late Saturday afternoon June 3 – bound for the International Space Station (ISS) loaded with a science rich cargo from NASA for the multinational crew.

Nearly simultaneously the first stage booster accomplished another heart stopping and stupendous ground landing back at the Cape accompanied by multiple shockingly loud sonic booms screeching out dozens of miles (km) in all directions across the space coast region.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, after a predicted downpour held off just long enough for the SpaceX launch team to get the rocket safely off the ground.

The launch took place after a 48 hour scrub from Thursday June 1 forced by stormy weather and lightning strikes came within 10 miles of pad 39A less than 30 minutes from the planned liftoff time.

The backup crew of 40 new micestonauts are also aboard for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The 40 originally designated mice lost their coveted slot and were swapped out Friday due to the scrub.

The 213-foot-tall (65-meter-tall) SpaceX Falcon 9 roared to life off pad 39A upon ignition of the 9 Merlin 1 D first stage engines generating 1.7 million pounds of liftoff thrust and successfully delivered the Dragon bolted on top to low Earth orbit on course for the space station and jam packed with three tons of essential cargo.

Loading of the densified liquid oxygen and RP-1 propellants into the Falcon 9 first and second stages starting about 70 minutes prior to ignition. Everything went off without a hitch.

Final descent of the SpaceX Falcon 9 1st stage landing as seen from the NASA Causeway under heavily overcast skies after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. The booster successfully soft landed upright at Landing Zone-1 (LZ-1) accompanied by multiple sonic booms at Cape Canaveral Air Force Station, Florida, about 8 minutes after launch to the International Space Station (ISS). Note SpaceX logo lettering visible on booster skin. Credit: Ken Kremer/kenkremer.com

Dragon reached its preliminary orbit 10 minutes after launch and deployed its power generating solar arrays. It now set out on a carefully choreographed series of thruster firings to reach the space station Monday morning.

Following stage separation at 2 min 25 sec after liftoff, the first stage began a series of three burns (boostback, entry and landing) to carry out a precision propulsive ground landing back at Cape Canaveral Air Force Station, FL at Landing Zone-1 (LZ-1).

SpaceX Falcon 9 booster starts landing leg deployment moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely eight minutes after liftoff from pad 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

The 156-foot-tall (47-meter-tall) first stage successfully touched down upright at LZ-1 some 8 minutes after liftoff as I witnessed from the NASA Causeway and seen in photos from myself and colleagues herein.

LZ-1 is located about 9 miles (14 kilometers) south of the starting point at pad 39A.

Descent of SpaceX Falcon 9 1st stage towards Landing Zone-1 at Cape Canaveral after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. Credit: Julian Leek

Thus overall SpaceX has now successfully recovered 11 boosters; 5 by land and 6 by sea, over the past 18 months – in a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by SpaceX billionaire CEO and founder Elon Musk.

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

The recycled Dragon has undergone some refurbishments to requalify it for flight but most of the structure is intact, according to SpaceX VP for Mission Assurance Hans Koenigsmann.

The 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. This will support over 62 of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.

See detailed CRS-11 cargo mission cargo below.

Blastoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Julian Leek

Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

Falcon 9 streaked to orbit in spectacular fashion darting in and out of clouds for the hordes of onlookers and spectators who had gathered from around the globe to witness the spectacle of a rocket launch and booster landing first hand.

Recycled SpaceX Dragon CRS-11 cargo craft lifted off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 carrying 3 tons of research equipment, cargo and supplies to Earth orbit and the International Space Station. Credit: Ken Kremer/kenkremer.com

Dragon is loaded with “major experiments that will look into the human body and out into the galaxy.”

The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

The unpressurized trunk of the spacecraft also will transport 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).

Roll Out Solar Array (ROSA) is among the science investigations launching on the next SpaceX commercial resupply flight to the International Space Station, targeted for June 1, 2017.
Credits: Deployable Space Systems, Inc.

If all goes well, Dragon will arrive at the ISS 2 days after launch and be grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm.

They will berth Dragon at the Earth-facing port of the Harmony module.

NASA TV will begin covering the Dragon rendezvous and grappling activities starting at 8:30 a.m. Monday.

Dragon CRS-11 is SpaceX’s second contracted resupply mission to launch this year for NASA.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Overall CRS-11 marks the 100th launch from pad 39A and the sixth SpaceX launch from this pad.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011. To date this is the sixth SpaceX launch from this pad.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

June 3, 2017 liftoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Jeff Seibert

Cargo Manifest for CRS-11:

TOTAL CARGO: 5970.1 lbs. / 2708 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3761.1 lbs. / 1665 kg
• Science Investigations 2356.7 lbs. / 1069 kg
• Crew Supplies 533.5 lbs. / 242 kg
• Vehicle Hardware 438.7 lbs. / 199 kg
• Spacewalk Equipment 123.4 lbs. / 56 kg
• Computer Resources 59.4 lbs. / 27 kg

UNPRESSURIZED 2209.0 lbs. / 1002 kg
• Roll-Out Solar Array (ROSA) 716.5 lbs. / 325 kg
• Neutron Star Interior Composition Explorer (NICER) 820.1 lbs. / 372 kg
• Multiple User System for Earth Sensing (MUSES) 672.4 lbs. / 305 kg

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 booster starts landing leg deployment moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely eight minutes after liftoff from pad 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com
Launch of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017 as seen from the Countdown clock at the KSC Press Site. Credit: Jean Wright
Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff occurred 3 June 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) occurred 3 June 2017. Credit: Ken Kremer/Kenkremer.com

100th Blastoff from Historic Pad 39A Features SpaceX Resupply to Space Station and Land Landing June 1: Watch Live

SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The 100th blastoff from NASA’s historic pad 39A features a SpaceX Dragon resupply mission carrying three tons of science and crew supplies to the International Space Station (ISS) as well as another unfathomable ground landing of the Falcon 9 rockets first stage. UPDATE: Stormy weather and lightning scrubs launch until Saturday, June 3 at 5:07 p.m. EDT

40 micetonauts are also aboard for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. Update: The rocket was lowered into horizontal position in order to swap out the 40 micetonauts and other time critial cargo items.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside pad 39A at NASA’s Kennedy Space Center in Florida is slated for 5:55 p.m. EDT Thursday, June 1.

Everything is on track for Thursday’s dinnertime launch of the 230 foot tall SpaceX Falcon 9 on the NASA contracted SpaceX CRS-11 resupply mission to the million pound orbiting lab complex.

However since the launch window is instantaneous there is no margin. In case any delays arise during the countdown due to technical or weather issues a 48 hour scrub to Saturday will result.

The launch is coincidently scheduled for dinnertime offering a spectacular opportunity for fun for the whole family as space enthusiasts flock in from around the globe.

Plus SpaceX will attempt a land landing of the 156 foot tall first stage back at the Cape at Landing Zone 1 some 9 minutes after liftoff.

To date SpaceX has successfully recovered 10 boosters, 4 by land and 6 by sea, over the past 18 months – in a feat straight out of science fiction but aimed at drastically slashing the cost of access to space.

If you can’t personally be here to witness the launch in Florida, you can watch NASA’s live coverage on NASA Television and the agency’s website.

The SpaceX/Dragon CRS-11 launch coverage will be broadcast on NASA TV beginning 5:15 p.m. on June 1. with additional commentary on the NASA launch blog.

SpaceX will also feature their own live webcast beginning approximately 20 minutes before launch at 5:35 p.m. EDT.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can watch the launch live at SpaceX Webcast at – spacex.com/webcast

In the event of delay for any reason, the next launch opportunity is 5:07 p.m. Saturday, June 3, with NASA TV coverage starting at 4:30 p.m.

Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

The weather looks somewhat iffy at this time with a 70% chance of favorable conditions at launch time according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base. The primary concerns on June 1 are for afternoon thunderstorms, anvil clouds and cumulus clouds.

The odds drop to 60% favorable for the scrub day on June 3.

The Dragon resupply ship dubbed Dragon CRS-11 counts as SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

The 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science research, crew supplies and hardware to the orbiting laboratory in support of Expedition 52 and 53 crew members.

The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

The unpressurized trunk of the spacecraft also will transport 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

Dragon CRS-11 will be the second SpaceX resupply mission to launch this year.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. It was also the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

The recycled Dragon has undergone some refurbishments to requalify it for flight.

If all goes well, Dragon will arrive at the ISS 2 days after launch and be grappled by Expedition 51 astronauts Peggy Whitson and Jack Fischer using the 57 foot long (17 meter long) Canadian-built robotic arm.

They will berth Dragon at the Earth-facing port of the Harmony module. .

Overall CRS-11 marks the 100th launch from pad 39A and the sixth SpaceX launch from this pad.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011. To date this is the sixth SpaceX launch from this pad.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission took place on 19 Feb 2017 in this file photo. Credit: Ken Kremer/Kenkremer.com
The NASA KSC prelaunch briefing for the SpaceX Dragon CRS-11 launch held on May 31, 2017 at NASA’s Kennedy Space Center Press Site. Credit: Ken Kremer/kenkremer.com

SpaceX Targets June 1 Launch of Space Station Cargo Delivery Mission for NASA

SpaceX conducted a successful static fire test of the Falcon 9 rocket on May 28, 2017 at Launch Complex 39A on NASA’s Kennedy Space Center, Fl. Liftoff of the uncrewed Dragon resupply mission to the ISS is scheduled for June 1, 2017. Credit: SpaceX
SpaceX conducted a successful static fire test of the Falcon 9 rocket on May 28, 2017 at Launch Complex 39A on NASA’s Kennedy Space Center, Fl. Liftoff of the uncrewed Dragon resupply mission to the ISS is scheduled for June 1, 2017. Credit: SpaceX

SpaceX is targeting a June 1 blastoff for the firms next cargo delivery mission to the International Space Station (ISS) for NASA following today’s (May 28) successful test firing of the Falcon 9 booster’s main engines on the Florida Space Coast under sunny skies.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside pad 39A at NASA’s Kennedy Space Center in Florida is slated for 5:55 p.m. EDT Thursday, June 1.

“Static fire test of Falcon 9 complete,” SpaceX confirmed via Twitter soon after completion of the test at noon today 12 p.m. EDT.

“Targeting June 1 launch from historic Pad 39A for Dragon’s next resupply mission to the @Space_Station.”

The static fire test also apparently set off a brush fire near the pad which required a response from firefighters to douse the blaze with water bucket drops from helicopters.

“#USFWS firefighters are responding to a new wildfire at Merritt Island NWR caused by a static rocket test fire #FLfire,” tweeted the US Fish and Wildlife Service.

The wildfire stretched to 4 acres on Merritt Island and was successfully contained, the US Fish and Wildlife Service said.

Firefighters drop numerous buckets of water to douse brush fire near pad 39A on the Kennedy Space Center and Merritt Island after SpaceX static fire test on May 28, 2017. Credit: US Fish and Wildlife Service.

With the launch conveniently coinciding with dinnertime, it will offer prime time viewing thrills for spectators and space enthusiasts coming from near and far.

The weather outlook for Thursday is currently promising with mostly sunny conditions but can change at a moments notice.

And to top that off SpaceX will attempt a land landing of the first stage back at the Cape at Landing Zone 1 some 9 minutes after liftoff.

The Dragon resupply ship dubbed Dragon CRS-11 counts as SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

It is carrying almost 6,000 pounds of science research, crew supplies and hardware to the orbiting laboratory in support of Expedition 52 and 53 crew members. The unpressurized trunk of the spacecraft also will transport solar panels, tools for Earth-observation and equipment to study neutron stars.

Dragon CRS-11 will be the second SpaceX resupply mission to launch this year.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. It was also the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Sunday’s brief static fire test involved a successful hot fire ignition test of the two stage rocket and all nine first stage Merlin 1D engines Sunday afternoon while the rocket was firmly held down at the pad.

The hold down engine test is routinely conducted to confirm the readiness of the engines and rocket for flight.

The nine Merlin 1D engines generate 1.7 million pounds of thrust for approximately three seconds.

The test simulates all the conditions of flight except liftoff, and involves loading of the densified liquid oxygen and RP-1 propellants into the first and second stages starting about 70 minutes prior to ignition.

The engine test was run without the Dragon cargo ship bolted on top.

The rocket was rolled out of the SpaceX processing hangar at the perimeter fence early this morning and then up the slight incline to the top of pad 39A. It was erected vertical to launch position using a dedicated transporter-erector.

With the successful completion of the static fire test, the booster will be rolled back to the big processing hangar and Dragon CRS-11 will be integrated on top.

NASA will offer live launch coverage on NASA Television and the agency’s website at beginning 5:15 p.m. on June 1.

In case of a delay for any reason, the next launch opportunity is 5:07 p.m. Saturday, June 3, with NASA TV coverage starting at 4:30 p.m.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about the SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

May 30/31: “SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Digital Society Boosted by Stunning SpaceX Launch Delivering Inmarsat Mobile Broadband Satellite to Orbit – Photo/Video Gallery

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The worlds emerging ‘Digital Society’ gained a big boost following SpaceX’s stunningly beautiful twilight launch of a Falcon 9 that successfully delivered the huge 6.7 ton mobile Inmarsat-5 F4 broadband satellite to orbit for London-based Inmarsat on Monday, May 15.

SpaceX blasted the “largest and most complicated communications satellite ever built to orbit” for Inmarsat, the Inmarset CEO Rupert Pearce told Universe Today in a post launch interview at the Kennedy Space Center on May 15.

Inmarsat-5 F4 will eventually serve upwards of “hundreds of millions” of government, military, commercial and everyday customers on land, at sea and in the air as part of the firm’s satellite constellation forming the Global Xpress (GX) network, he explained.

“This has obviously been an absolutely exceptional performance from SpaceX,” Peace elaborated.

The twilight sendoff of the SpaceX Falcon 9 carrying the commercial Inmarsat-5 Flight 4 communications satellite for High-Speed mobile broadband provider Inmarsat occurred at 7:21 p.m. EDT (or 23:21 UTC) on Monday evening, May 15, from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Julian Leek

The spectacular liftoff events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

The Inmarsat-5 F4 satellite is designed to provide high speed broad band service to government, military, maritime and aviation users and ship and airplane customers numbering in the millions to tens of millions of customers now and potentially hundreds of millions of customers in the future.

It was the heaviest payload ever launched by a Falcon 9.

I asked CEO Peace to explain the customer based expected for the Global Xpress (GX) network.

“We expect to reach millions to tens of millions of customers,” Pearce told me.

“At the moment we are making huge strides with the first three satellites – serving governments around the world; most notably the US government and US defense department.”

“And serving the maritime industry. And serving the aviation industry.”

“We are looking at a world where suddenly passengers want wifi on the aircraft they are flying on. So we could be talking about hundreds of millions of customers [passengers] on aircraft being served by that satellite in the years to come.”

The new I-5 F4 satellite joins a constellation of 3 others already in orbit as part of a US$1.6 billion investment forming the firms transformational Global Xpress (GX) network.

“Inmarsat Global Xpress has been in operation delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Inmarsat GX is the world’s first globally available, broadband connectivity service and was created to enable communities across the world to benefit from the emerging digital society.”

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad, Kennedy Space Center and Cape Canaveral media viewing sites and public viewing locations off base.

Video Caption: SpaceX Falcon 9 launch of the Inmarsat-5 F4 satellite from Pad 39A. The I-5 F4 is the fourth Ka-band, mobile broadband satellite launched for the Global Xpress constellation, it was built by Boeing Network and Space Systems. Credit: Jeff Seibert

Video Caption: Launch of SpaceX Falcon 9 on May 15, 2017 from pad 39A at the Kennedy Space Center carrying Inmarsat-5 F4 broadband satellite to geosynchronous orbit for the Global Xpress constellation – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

The 229-foot-tall (70-meter) SpaceX Falcon 9 successfully delivered the gigantic bus sized 7 meter long Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO) under brilliant blue and nearly cloudless twilight skies from the Florida Space Coast.

Liftoff of SpaceX Falcon 9 rocket on 15 May 2017 at 7:20 p.m. EDT that delivered commercial Inmarsat 5 F4 broadband satellite to geostationary orbit from Launch Complex 39A from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The 6,100 kg (13,400 lbs) Inmarsat-5 Flight 4 communications satellite was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

TInmarsat 5 F4 counts as the sixth SpaceX launch of 2017.

And SpaceX continues tracking on an absolutely torrid launch pace. Monday’s liftoff took place just 2 weeks after the prior successful SpaceX Falcon 9 liftoff on May 1 of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Dawn Leek Taylor

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 launch of the Inmarsat-5 F4 satellite from Pad 39A on 15 May 2017. Credit: Jeff Seibert
SpaceX Falcon 9 soars skyward with Inmarsat-5 F4 broadband satellite after liftoff from pad 39A at KSC on 15 May 2017. Credit: Jillian Laudick
15 May 2017 blastoff of SpaceX Falcon 9 rocket from pad 39A on NASA’s Kennedy Space Center in Florida carrying Inmarsat 5 F4 broadband satellite to geostationary orbit – as seen from ITL Causeway with USAF/SpaceX satellite processing facility. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rockets skyward with Inmarsat-5 F4 broadband satellite after liftoff from pad 39A at KSC on 15 May 2017 as seen from Titusville, FL residential neighborhood. Credit: Melissa Bayles
SpaceX Falcon 9 rockets skyward with Inmarsat-5 F4 broadband satellite after liftoff from pad 39A at KSC on 15 May 2017 as seen from Titusville, FL residential neighborhood. Credit: Melissa Bayles
SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Julian Leek
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite accelerates to orbit leaving exhaust trail in its wake after twilight launch at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

We Will Launch on Reusable Rocket After Exceptional SpaceX Performance – Inmarsat CEO Tells Universe Today

All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Following SpaceX’s “exceptional performance” launching an immensely powerful broadband satellite on their maiden mission for Inmarsat this week on a Falcon 9 rocket, the company CEO told Universe Today that Inmarsat was willing to conduct future launches with SpaceX – including on a “reusable rocket in the future!”

“This has obviously been an absolutely exceptional performance from SpaceX, Inmarsat CEO Rupert Pearce told Universe Today in a post launch interview at the Kennedy Space Center on Monday, May 15.

“They have now earned themselves an immensely loyal customer.”

SpaceX is the first and thus far only company in history to successfully recover and refly a previously flown orbit class ‘flight-proven’ liquid fueled first stage rocket – during the SES-10 launch in March 2017.

The twilight blastoff of the SpaceX Falcon 9 carrying the Inmarsat-5 Flight 4 communications satellite for commercial High-Speed mobile broadband provider Inmarsat occurred at 7:21 p.m. EDT (or 23:21 UTC) on Monday evening, May 15, from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

“They hit the ball out of the park with this launch for us,” Inmarsat CEO Pearce told me regarding the new space company founded by billionaire CEO Elon Musk.

The never before used 229-foot-tall (70-meter) SpaceX Falcon 9 successfully delivered the gigantic bus sized 6100 kg Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO) under brilliant blue and nearly cloudless twilight skies from the Florida Space Coast. Read my launch report here.

The first stage is powered by nine Merlin 1 D engines fueled by RP-1 and liquid oxygen propellants and generating 1.7 million pounds.

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The Inmarsat-5 F4 satellite is designed to provide high speed broad band service to government, military, maritime and aviation users and ship and airplane customers numbering in the millions to tens of millions of customers now and potentially hundreds of millions of customers in the future. It was the heaviest payload ever launched by a Falcon 9.

Pearce says he “has every confidence in SpaceX.”

Inmarsat is a leading provider of mobile satellite communications, providing global connectivity more than 35 years – on land, at sea and in the air, says the firm.

I asked CEO Pearce; What does the future hold regarding further Inmarsat launches with SpaceX?

“They [SpaceX] have now just gained and earned themselves an immensely loyal customer [from Inmarsat], CEO Pearce replied.

“We will be looking to do further launches with them.”

The 7 meter long Inmarsat-5 F4 satellite was deployed approximately 32 minutes after Monday’s launch when it will come under the command of the Boeing and Inmarsat satellite operations teams based at the Boeing facility in El Segundo.

Would you consider a used rocket, a previously flown booster?

“I’m sure we will be using a ‘reused rocket’, Pearce stated. “And we will be launching on a ‘reusable rocket’ in the future.”

“We will be looking to support them in any way we can with their new innovation programs.”

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Julian Leek

In contrast to virtually all Falcon 9 launches in the past 18 months, no attempt was made to recover the first stage booster.

For this launch there was basically no choice but to make the first stage ‘expendable’ because Inmarsat-5 F4 is heaviest ever payload launched on a Falcon 9.

The satellites heavy weight with a launch mass of approx. 6,100 kg (13,400 lbs) means the rocket needs all its thrust to get the satellite to orbit and thus precludes the chance to land the first stage at sea or land.

Thus there are no landing legs or grid gins attached to the skin of this Falcon 9.

“This rocket that went today was not reusable. That was just a creature of its time,” Pearce elaborated.

“We will stay at the cutting edge with SpaceX!”

To date, SpaceX has successfully recovered 10 first stage boosters either by land or by sea on an ocean going platform.

Inmarsat CEO Rupert Pierce during post launch interview with Ken Kremer/Universe Today discusses SpaceX Falcon 9 launch carrying commercial Inmarsat 5 F4 broadband satellite to geostationary orbit after liftoff at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Once in geostationary orbit, the satellite will provide additional capacity for Global Xpress users on land, at sea and in the air.”

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

The new satellite will join 3 others already in orbit.

Inmarsat has invested approximately US$1.6 billion in the Global Xpress constellation “to establish the first ever global Ka-band service from a single network operator.”

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite accelerates to orbit leaving exhaust trail in its wake after twilight launch at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Inmarsat 5 F4 counts as the sixth SpaceX launch of 2017.

And SpaceX is on an absolutely torrid launch pace. Monday’s liftoff comes just 2 weeks after the last successful SpaceX Falcon 9 liftoff on May 1 of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 Inmarsat-5 F4 (I-5 F4) mission artwork. Credit: SpaceX/Inmarsat
Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

SpaceX Blasts Biggest High Speed Communications Satellite to Orbit for Inmarsat

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX blasted the “largest and most complicated communications satellite ever built to orbit” for London based Inmarset at twilight this evening, May 15, from NASA’s Kennedy Space Center aboard an expendable Falcon 9 rocket.

In fact the Inmarsat-5 F4 satellite is so powerful that it has the potential to reach “hundreds of millions of customers” the Inmarsat CEO Rupert Pierce told Universe Today in a post launch interview at the Kennedy Space Center.

“This is the largest and most complicated [communications] satellite ever built,” Pearce explained beside NASA’s countdown clock at the KSC press site.

Blastoff of the Inmarsat-5 Flight 4 communications satellite for commercial High-Speed mobile broadband provider Inmarsat took place right on time early Monday evening, May 15 at 7:21 p.m. EDT (or 23:21 UTC) from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The newly built 229-foot-tall (70-meter) SpaceX Falcon 9 successfully delivered the huge 6100 kg Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO) under brilliant blue twilight skies from the Florida Space Coast.

“Satellite deployment success!” Inmarsat announced.

“#I5F4 has been released & is flying high on its way to geostationary orbit! Safe journey! Thanks for a great launch SpaceX!”

All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Why launch such the largest and most complicated satellite ever? I asked Inmarsat CEO Pearce.

“We set a very high bar for the service offerings we want to offer for that satellite that just went up and is now on its way to in orbit testing,” Inmarsat CEO Pearce told me.

“That satellite will deliver mobile broadband for a third of the Earth at 50 megabits per second.”

“And by the end of next year those data rates will go up to over 300 megabits per second.”

“To get that kind of data speed you need very high processing powers, you need to deploy the new Ka band – which although it is still relatively unproven is looking like a very exciting new capability for space assets.”

The integrated Falcon 9/Inmarsat-5 F4 were rolled out to the KSC launch pad on Sunday to begin final preparations and were erected at the pad this morning for Monday’s liftoff.

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Dawn Leek Taylor

The first stage is powered by nine Merlin 1 D engines fueled by RP-1 and liquid oxygen propellants and generating 1.7 million pounds.

The 7 meter long satellite was deployed approximately 32 minutes after launch when it will come under the command of the Boeing and Inmarsat satellite operations teams based at the Boeing facility in El Segundo.

It will now be “manoeuvred to its geostationary orbit, 35,786km (22,236 miles) above Earth, where it will deploy its solar arrays and reflectors and undergo intensive payload testing before beginning commercial service.”

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite accelerates to orbit leaving exhaust trail in its wake after twilight launch at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Once in geostationary orbit, the satellite will provide additional capacity for Global Xpress users on land, at sea and in the air.”

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

The new satellite will join 3 others already in orbit.

Inmarsat has invested approximately US$1.6 billion in the Global Xpress constellation “to establish the first ever global Ka-band service from a single network operator.”

Inmarsat 5 F4 counts as the sixth SpaceX launch of 2017.

And SpaceX is on an absolutely torrid launch pace. Monday’s liftoff comes just 2 weeks after the last successful SpaceX Falcon 9 liftoff on May 1 of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat
SpaceX Falcon 9 Inmarsat-5 F4 (I-5 F4) mission artwork. Credit: SpaceX/Inmarsat

SpaceX Targeting Twilight Thunder for May 15 Inmarsat Blastoff – Watch Live

The Inmarsat-5 F4 satellite is loaded into the SpaceX Falcon 9 rocket and rolled out to Launch Complex 39A. Launch is slated for May 15, 2017. Credit: Inmarsat
The Inmarsat-5 F4 satellite is loaded into the SpaceX Falcon 9 rocket and rolled out to Launch Complex 39A. Launch is slated for May 15, 2017. Credit: Inmarsat

KENNEDY SPACE CENTER, FL – SpaceX is targeting twilight thunder with the firms Falcon 9 rocketing skyward from the Florida Space Coast on Monday 15 carrying a commercial High-Speed broadband satellite for London based Inmarsat.

Blastoff of the Inmarsat-5 Flight 4 communications satellite for commercial broadband provider Inmarsat is slated for early Monday evening, May 15 at 7:21 p.m. EDT (or 23:21 UTC) from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The SpaceX Falcon 9/ Inmarsat-5 Flight 4 is raised erect at the pad into launch position and poised for a twilight liftoff Monday.

All systems are currently GO and the weather outlook is quite favorable at this time.

The twilight setting will put on an outstanding sky show – if all goes well. But there are no guarantees.

SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

So now is the time is come and watch a launch in person if you have the availability.

“Targeting launch of Inmarsat-5 Flight 4 from Pad 39A on Monday, May 15,” SpaceX confirmed via social media accounts.

The Falcon 9’s launch window extends for 49 minutes until 8:10 p.m. EDT.

The satellites heavy weight with a launch mass of approx. 6,100 kg (13,400 lbs) means the rocket needs all its thrust to get the satellite to orbit and will preclude the chance to land the first stage at sea or land.

Thus there are no landing legs or grid gins attached to the skin of this Falcon 9.

“SpaceX will not attempt to land Falcon 9’s first stage after launch due to mission requirements,” says SpaceX.

The historic pad 39A was previously used to launch NASA’s Apollo Saturn Moon rockets and Space Shuttles.

The built from scratch 229-foot-tall (70-meter) SpaceX Falcon 9 is set to deliver the huge 6100 kg Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO).

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat

The integrated Falcon 9/Inmarsat-5 F4 were rolled out to the KSC launch pad on Sunday to begin final preparations for Monday’s liftoff.

“#I5F4 satellite, built by Boeing Defense, Space & Security, has been loaded into the SpaceX Falcon 9 rocket and rolled out to Launch Complex 39A,” Inmarsat announced Sunday.

”The countdown to launch tomorrow begins!”

You can watch the launch live on a SpaceX dedicated webcast as well as via Inmarsat starting about 20 minutes prior to the 7:20 p.m. EDT opening of the window.

Watch the SpaceX broadcast live at: SpaceX.com/webcast

Alternatively you can catch the launch on Inmarsat’s dedicated webpage:

“Make sure you catch all the live action here”: www.inmarsat.com/i5f4

SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Mondays weather forecast is currently 80% GO for favorable conditions at launch time.

The concerns are for Cumulus clouds and Anvil clouds according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

In case of a scrub for any reason on May 15, the backup launch opportunity is Tuesday, May 16 at 7:21 p.m. EDT, or 23:21 UTC

The path to launch was cleared following the successful completion of a critical static hot-fire test of the first stage this past Thursday, May 11.

Watch this cool video of Thursday’s engine test as seen from the National Wildlife Refuge near Playalinda Beach on the Atlantic Ocean.

Video Caption: Static fire test of Falcon 9 booster for Inmarsat 5 F4 launch. Testing of the 9 Merlin 1D engines of a SpaceX Falcon 9 booster on Pad 39A in preparation for launch of the Inmarsat 5 F4 satellite on May 15, 2017 from pad 39A at KSC. Credit: Jeff Seibert

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Once in geostationary orbit, the satellite will provide additional capacity for Global Xpress users on land, at sea and in the air.”

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

The new satellite will join 3 others already in orbit.

Inmarsat 5 F4 will be the sixth SpaceX launch of 2017.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

The 7 meter long satellite be deployed approximately 32 minutes after launch when it will come under the command of the Boeing and Inmarsat satellite operations teams based at the Boeing facility in El Segundo.

It will then be “manoeuvred to its geostationary orbit, 35,786km (22,236 miles) above Earth, where it will deploy its solar arrays and reflectors and undergo intensive payload testing before beginning commercial service.”

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Continues Torrid 2017 Launch Pace With Commercial High-Speed Inmarsat Broadband Satellite on May 15

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat
Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat

KENNEDY SPACE CENTER, FL – SpaceX is all set to continue their absolutely torrid launch pace in 2017 with a commercial High-Speed broadband satellite for Inmarsat on May 15 following Thursday’s successful completion of a critical static hot-fire test of the first stage. Watch our video below.

The static fire test of all 9 Merlin 1 D first stage engines comes just 10 days after the last successful SpaceX Falcon 9 liftoff of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

The positive outcome for the static fire test of the first stage engines of the SpaceX Falcon 9 rocket on Thursday afternoon, May 11, paves the path to a Monday evening liftoff of the Inmarsat-5 F4 mission from the Florida Space Coast.

Blastoff of the Inmarsat-5 Flight 4 communications satellite for commercial broadband provider Inmarsat is slated for Monday evening, May 15 at 7:20 p.m. EDT (2320 GMT) from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

“Static fire test of Falcon 9 complete,” SpaceX confirmed via social media only minutes after finishing the key test at 12:45 p.m. EDT (1645 GMT).

“Targeting launch of Inmarsat-5 Flight 4 from Pad 39A on Monday, May 15.”

The launch window extends for 50 minutes until 8:10 p.m. EDT.

Watch this cool video of Thursday’s engine test as seen from the National Wildlife Refuge near Playalinda Beach on the Atlantic Ocean.

Video Caption: Static fire test of Falcon 9 booster for Inmarsat 5 F4 launch. Testing of the 9 Merlin 1D engines of a SpaceX Falcon 9 booster on Pad 39A in preparation for launch of the Inmarsat 5 F4 satellite on May 15, 2017 from pad 39A at KSC. Credit: Jeff Seibert

“The countdown begins!” Inmarsat confirmed on the company website.

“Static fire test complete & we are go for launch! #I5F4 will fly with SpaceX on 15 May 19:20 EDT / 00:20 BST.”

The weather forecast is currently 80% GO for favorable conditions at launch time.

The never used 229-foot-tall (70-meter) SpaceX Falcon 9 will deliver Inmarsat-5 F4 to a Geostationary Transfer Orbit (GTO).

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

For the purposes of the engine test only the first and second stages of the Falcon 9 were rolled up the pad and erected.

Following the conclusion of the hot fire test the Falcon 9 was rolled back off the pad to the huge SpaceX processing hangar located just outside the pad perimeter fence.

SpaceX Falcon 9 recycled rocket carrying SES-10 telecomsat poised atop Launch Complex 39A at the Kennedy Space Center ahead of liftoff on 30 Mar 2017 on world’s first reflight of an orbit class rocket. Credit: Ken Kremer/Kenkremer.com

The Falcon 9 rocket and Inmarsat payload have now been mated to the payload adapted and encapsulation inside the nose cone following the test. The integrated rocket and payload eill soon be rolled about a quarter mile up the ramp at pad 39A to undergo final prelaunch preparations.

“The #I5F4 satellite has been successfully mated to the payload adaptor and attach fitting and encapsulated into the payload fairing in preparation for our SpaceX launch on 15 May,” Inmarsat stated.

“It’s an emotional time for our Inmarsat and The Boeing Company engineers – the satellite will not be seen again before it is launched into geostationary orbit, nearly 36,000km from Earth!”

“Catch all the live action here: www.inmarsat.com/i5f4 #GlobalXpress #makingadifference”

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat

Inmarsat 5 F4 will be the sixth SpaceX launch of 2017 following the NROL-76 launch on May 1.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Static fire test of Falcon 9 completed on May 11. SpaceX targeting launch of Inmarsat-5 Flight 4 from Pad 39A on Monday, May 15. Credit: SpaceX

SpaceX Blasts First Surveillance Satellite to Orbit – Launch and Landing Photo/Video Gallery

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – This week SpaceX blasted their first top secret surveillance satellite to orbit for America’s spy chiefs at National Reconnaissance Office (NRO) – affording magnificent viewing and imagery from the Florida Space Coast. Updated with more photos/videos – plus distinctly hear the sonic booms from pad 39A sending birds fleeing!

Liftoff of the classified NROL-76 payload for the NRO occurred soon after sunrise Monday morning, May 1, at 7:15 a.m. EDT (1115 GMT), from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Less than nine minutes later, Space engineers managed to again recover the 15 story tall first stage booster by accomplishing a precise ground landing by perfectly targeting the vehicle for a propulsive soft landing at Cape Canaveral several miles south of the launch pad.

Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek

The stunning events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

Landing legs unfurl and lock in place mere seconds before soft landing via propulsive firing of SpaceX Falcon 9 first stage booster engines at Landing Zone 1 on Canaveral Air Force Station only 9 minutes after launch from pad 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida as seen from Exploration Tower at Port Canaveral, FL. Credit: Dawn Leek

The milestone SpaceX mission to launch the first satellite in support of US national defense was apparently a complete success.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
Up close view of engine exhaust flames whipping around SpaceX Falcon 9 first stage booster during propulsive descent Merlin 1 D engines fire with 4 grid fins deployed after successful NROL-76 spysat launch for the NRO on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage descent culminated seconds later in successful ground landing at the Cape’s LZ-1 nine minutes later. Credit: Ken Kremer/Kenkremer.com
Flames whip around booster darting in and out of clouds during propulsive descent of the SpaceX Falcon 9 first stage firing Merlin 1 D engines with 4 grid fins deployed after successful NROL-76 spysat launch for the NRO on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage descent culminated seconds later in successful ground landing at the Cape’s LZ-1 nine minutes later. Credit: Ken Kremer/Kenkremer.com

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad, Cape Canaveral media viewing site and public viewing locations off base.

Video Caption: SpaceX Falcon 9 liftoff with NROL-76 on 1 May 2017. This is the first launch of an NRO satellite on a SpaceX Falcon 9 rocket and the 4th launch from Pad 39A this year. Credit: Jeff Seibert

In this cool video you can distinctly hear the Falcon 9 sonic booms eminating at LZ-1 from pad 39A sending birds fleeing aflutter in fright!

Video Caption: Falcon 9 sonic booms heard from Pad 39A. These two cameras recorded the launch of the NROL-76 satellite at https://youtu.be/kkKTe_61jk0
Nine minutes after launch, they recorded the sonic booms caused by the booster landing at LZ-1, 9.5 miles south of Launch Pad 39A on 1 May 2017. Credit: Jeff Seibert

Video Caption: SpaceX Launch and Best Landing – NROL76 05-01-2017. Best landing for spectators. Watch the nitrogen thruster’s steer the 16 story booster. Hear double sonic boom at the end. Audio is delayed from podcast. We can not match SpaceX and NASA tracking telescope coverage. Was really awesome for all who witnessed. Credit: USLaunchReport

NROL-76 marks the fifth SpaceX launch of 2017 and the fourth from pad 39A.

The NRO is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation, according to the NRO.

SpaceX Falcon 9 begins to deploy quartet of landing legs spreading out from the top down mere moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com