FAA Accepts Accident Report, Grants SpaceX License for Falcon 9 ‘Return to Flight’

SpaceX Falcon 9 poised for launch from Vandenberg Air Force Base in California, in this file photo ahead of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX
SpaceX Falcon 9 poised for launch from Vandenberg Air Force Base in California, in this file photo ahead of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX

The Federal Aviation Administration (FAA) today “accepted the investigation report” regarding the results of SpaceX’s investigation into the cause of the company’s catastrophic Sept. 1, 2016 launch pad explosion of a Falcon 9 rocket in Florida, and simultaneously “granted a license” for the ‘Return to Flight’ blastoff of the private rocket from California as soon as next week – the FAA confirmed today to Universe Today, Friday, Jan. 6.

“The FAA accepted the investigation report on the AMOS-6 mishap and has closed the investigation,” FAA spokesman Hank Price confirmed to Universe Today.

All SpaceX launches were immediately grounded when their Falcon 9 booster and its $200 million AMOS-6 Israeli communications satellite payload were suddenly destroyed without warning during a routine preflight fueling test on Sept. 1, 2016, at pad 40 on Cape Canaveral Air Force Station in Florida.

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

With today’s definitive action from the FAA the path is now clear for Hawthorne, Ca based SpaceX to resume launches of the Falcon 9 rocket as soon as Monday, Jan. 9. It will carry a fleet of ten Iridium NEXT mobile voice and data relay satellites to orbit from Vandenberg Air Force Base, Ca, for Iridium Communications.

“SpaceX applied for a license to launch the Iridium NEXT satellites from Vandenberg Air Force Base. The FAA has granted a license for that purpose,” Price added.

The SpaceX investigation report has not been released at this time.

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation IridiumNEXT communications satellites is slated for 10:22 am PST (1:22 pm EST), Jan. 9, 2017 from Space Launch Complex 4E on Vandenberg Air Force Base in California.

Furthermore all technical systems would appear to be ‘GO’ for the commercial rocket and commercial payload, following the official announcement by SpaceX CEO Elon Musk that the Falcon 9 rocket successfully passed its normally routine prelaunch static fire test of the first stage engines, on Thursday, Jan. 5.

“Hold-down firing of @SpaceX Falcon 9 at Vandenberg Air Force completed,” SpaceX CEO Elon Musk tweeted Jan. 5.

“All systems are go for launch next week.”

“Payload/rocket mating underway,” Iridium CEO Matt Desch elaborated and confirmed via twitter today.

The static fire test involves briefly firing the first stage Merlin 1D engines for several seconds while the rocket remains anchored to the launch pad. The test is run to confirm that all the engines and rocket systems are technically ready for launch.

In contrast to AMOS-6, the Iridium NEXT payload was not installed atop the rocket this time during Thursday’s test to keep them safely and prudently stored out of harms way – just in case another unexpected mishap were to occur.

Members of the Iridium Communications team were on hand to observe Thursday’s static fire test first hand.

“With great anticipation, team members observed the static fire test of the Falcon 9 rocket that will deliver the first ten Iridium NEXT satellites to orbit. Iridium is excited to share that the test is complete, and that SpaceX is reporting that the rocket should be ready for the first launch of the Iridium NEXT satellite constellation next week,” said Iridium officials.

“The target launch date is now Monday, January 9th at 10:22 am PST, weather permitting.”

And since the launch window is instantaneous, there is no margin for error or delay from either a technical or weather standpoint.

Currently, next weeks weather outlook is not promising with a forecast of rain and clouds on Monday morning and beyond. But only time will tell.

“With completion of the static fire test, our first launch has just gotten that much closer,” said Matt Desch, chief executive officer at Iridium, in a statement.

“The Iridium team has been anxiously awaiting launch day, and we’re now all the more excited to send those first ten Iridium NEXT satellites into orbit.”

“Looks like we’re good to go for Monday!” Desch tweeted today.

“Payload/rocket mating underway; we’ll just have to see about the weather. Anti-rain dances, anyone?”

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Also known as Iridium 1, this is the first of seven planned Falcon 9 launches to establish the Iridium NEXT constellation – eventually consisting of 81 advanced satellites.

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Indeed the FAA license approved today covers all seven launches.

“Space Explorations Technologies is authorized to conduct seven launches of Falcon 9 version 1.2 vehicles from Space Launch Complex 4E at Vandenberg Air Force Base with each flight transporting ten Iridium NEXT payloads to low Earth orbit.

The license also allows SpaceX to land the first stage on a droneship at sea in the Pacific Ocean.

After the Sept. 1 accident at pad 40, SpaceX initiated a joint investigation to determine the root cause with the FAA, NASA, the US Air Force and industry experts who have been “working methodically through an extensive fault tree to investigate all plausible causes.”

On Jan. 2, SpaceX issued a statement ascribing the Sept. 1 anomaly as being traced to a failure wherein one of three high pressure gaseous helium storage tanks located inside the second stage liquid oxygen (LOX) tank of the Falcon 9 rocket suddenly burst. Helium is used to pressurize the propellant tanks. They provided some but not many technical details.

The failure apparently originated at a point where the helium tank “buckles” and accumulates oxygen – “leading to ignition” of the highly flammable liquid oxygen propellant in the second stage when it came into contact with carbon fibers covering the helium tank.

The helium tanks – also known as composite overwrapped pressure vessels (COPVs) – are used in both stages of the Falcon 9 to store cold helium which is used to maintain tank pressure.

SpaceX says investigators identified “an accumulation of super chilled liquid oxygen LOX or SOX in buckles under the overwrap” as “credible causes for the COPV failure.”

Apparently the super chilled LOX or SOX can pool in the buckles and react with carbon fibers in the overwrap – which act as an ignition source. “Friction ignition” between the carbon fibers and super chilled oxygen led to the calamitous explosion.

The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and both occurred inside the second stage.

Up close look at a SpaceX Falcon 9 second stage and payload fairing from the JCSAT-16 launch from pad 40 at Cape Canaveral Air Force Station, FL. Both Falcon 9 rocket failures took place inside the second stage. Credit: Ken Kremer/kenkremer.com

If the Iridium liftoff is successful, SpaceX hopes to resume launches on the Florida Space Coast soon thereafter involving both commercial and NASA payloads using pad 39A at the Kennedy Space Center.

SpaceX could launch an EchoStar communications satellite later in January and a cargo resupply mission for NASA to the ISS in February from KSC.

Blastoff of SpaceX Falcon 9 on Dragon CRS-9 resupply mission to the International Space Station (ISS) at 12:45 a.m. EDT on July 18, 2016. Credit: Ken Kremer/kenkremer.com

Watch this space for continuing updates as SpaceX rolls the rocket out from the processing hangar and we watch the foggy weather forecast with great anticipation !

SpaceX rocket processing hangar at Vandenberg Air Force Base in California, fogged by common fog. Credit Julian Leek

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 erected at Vandenberg AFB launch pad in California in advance of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX

SpaceX Finds Failure Cause, Announces Sunday Jan. 8 as Target for Falcon 9 Flight Resumption

Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

After an intensive four month investigation into why a SpaceX Falcon 9 rocket exploded without warning on the launch pad last September, the company today announced the failures likely cause as well as plans of a rapid resumption of flights as soon as next Sunday, Jan. 8, from their California launch complex – carrying a lucrative commercial payload of 10 advanced mobile relay satellites to orbit for Iridium Communications.

“Targeting return to flight from Vandenberg with the @IridiumComm NEXT launch on January 8,” SpaceX announced on their website today, Monday, Jan. 2., 2017.

“Our date is now public. Next Sunday morning, Jan 8 at 10:28:07 pst. Iridium NEXT launch #1 flies!” Iridium Communications CEO Matt Desch quickly confirmed by tweet today, Jan 2.

SpaceX has been dealing with the far reaching and world famous fallout from the catastrophic launch pad explosion that eviscerated a Falcon 9 and its expensive $200 million Israeli Amos-6 commercial payload in Florida without warning, during a routine preflight fueling test on Sept. 1, 2016, at pad 40 on Cape Canaveral Air Force Station.

The first ten IridiumNEXT satellites are stacked and encapsulated in the Falcon 9 fairing for launch from Vandenberg Air Force Base, Ca., in early 2017. Credit: Iridium

After the Sept. 1 accident at pad 40, SpaceX initiated a joint investigation to determine the root cause with the FAA, NASA, the US Air Force and industry experts who have been “working methodically through an extensive fault tree to investigate all plausible causes.”

“We have been working closely with NASA, and the FAA [Federal Aviation Administration] and our commercial customers to understand it,” said SpaceX CEO Elon Musk.

Via the “fault tree analysis” the Sept. 1 anomaly has been traced to a failure in one of three gaseous helium storage tanks located inside the second stage liquid oxygen (LOX) tank of the Falcon 9 rocket, according to a statement released by SpaceX today which provided some but not many technical details.

The failure apparently originated at a point where the helium tank “buckles” and accumulates oxygen – “leading to ignition” of the highly flammable liquid oxygen propellant in the second stage.

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

The helium tanks – also known as composite overwrapped pressure vessels (COPVs) – are used in both stages of the Falcon 9 to store cold helium which is used to maintain tank pressure.

“The accident investigation team worked systematically through an extensive fault tree analysis and concluded that one of the three composite overwrapped pressure vessels (COPVs) inside the second stage liquid oxygen (LOX) tank failed.”

“Each COPV consists of an aluminum inner liner with a carbon overwrap.”

“Specifically, the investigation team concluded the failure was likely due to the accumulation of oxygen between the COPV liner and overwrap in a void or a buckle in the liner, leading to ignition and the subsequent failure of the COPV.”

SpaceX says investigators identified “an accumulation of super chilled LOX or SOX in buckles under the overwrap” as “credible causes for the COPV failure.”

Apparently the super chilled LOX or SOX can pool in the buckles and react with carbon fibers in the overwrap – which act as an ignition source.

As part of the most recent upgrade to the Falcon 9, SpaceX changed their fueling procedure to include the use of densified oxygen – or super chilled oxygen – in order to load more propellant into the same volume, at a lower temperature of about minus 340 degrees Fahrenheit for SOX vs. about minus 298 degrees Fahrenheit for LOX.

In essence SpaceX gets more gallons of super chilled oxygen into the same tank volume because of the higher density – and they don’t have to change the rocket’s dimensions.

This temperature change enables the Falcon 9 to launch heavier payloads.

However the side effect of the superchilling process is that the oxygen is now very close to its freezing point – with the potential to partially solidify , rather than being a completely free flowing liquid. Then the resulting friction with carbon fibers can ignite the pooled oxygen resulting in an instantaneous fireball and destruction of the rocket – as happened to Falcon 9 and Amos-6 at pad 40 on Sept. 1, 2016.

“Investigators concluded that super chilled LOX can pool in these buckles under the overwrap. When pressurized, oxygen pooled in this buckle can become trapped; in turn, breaking fibers or friction can ignite the oxygen in the overwrap, causing the COPV to fail.”

Very concerning to this author is the fact that the helium loading conditions are confirmed to be so low that they can actually freeze the liquid oxygen into solid form. Thus it cannot flow freely and significantly increases the chances of a “friction ignition.”

This same Falcon 9 rocket will be used to launch our astronauts to the ISS in 2018 – seated inside a Crew Dragon atop the helium tank bathed in super chilled LOX.

“Investigators determined that the loading temperature of the helium was cold enough to create solid oxygen (SOX), which exacerbates the possibility of oxygen becoming trapped as well as the likelihood of friction ignition.”

SpaceX says they will address the causes of the mishap through a mix of both short term and long term “corrective actions.”

“The corrective actions address all credible causes and focus on changes which avoid the conditions that led to these credible causes.”

The short term fixes involve simpler changes to the COPV configuration and modifying the helium loading conditions.

“In the short term, this entails changing the COPV configuration to allow warmer temperature helium to be loaded, as well as returning helium loading operations to a prior flight proven configuration based on operations used in over 700 successful COPV loads.”

So it remains to be seen if SpaceX continues the use of densified oxygen or not in the near term.

The long term fixes involve changing the COPV hardware itself and will take longer to implement. They are also likely to be more effective – but only time will tell.

“In the long term, SpaceX will implement design changes to the COPVs to prevent buckles altogether, which will allow for faster loading operations.”

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation IridiumNEXT communications satellites will take place from Space Launch Complex 4E on Vandenberg Air Force Base in California – assuming the required approval is first granted by the Federal Aviation Administration (FAA).

No Falcon 9 launch will occur until the FAA gives the ‘GO.’

Furthermore, in anticipation of announcing the targeted ‘Return to Flight’ launch date, technicians have already processed the Falcon 9 rocket for the ‘Return to Flight’ blastoff with the vanguard of a fleet of IridiumNEXT mobile voice and data relay satellites for Iridium Communications – as I reported last week in my story here – and subsequently tweeted by Iridium CEO Matt Desch saying “Nice recap.”

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Last week, the first ten IridiumNEXT mobile voice and data relay satellites were fueled, stacked and tucked inside the nose cone of the Falcon 9 rocket designated as SpaceX’s ‘Return to Flight’ launcher in order to enable a blastoff as soon as possible after an approval is received from the FAA.

“Iridium is pleased with SpaceX’s announcement on the results of the September 1 anomaly as identified by their accident investigation team, and their plans to target a return to flight on January 8 with the first Iridium NEXT launch” Iridium Communications said on their website today, Jan. 2.

Another milestone to watch for is the first stage engine static fire test that SpaceX routinely conducts several days prior to the launch. Thats exactly the same type test where the Falcon 9 blew up in Florida some five minutes before the short Merlin 1D engine ignition to confirm readiness for the real launch that had been planned for 2 days later.

Iridium’s SpaceX Falcon9 rocket in processing at Vandenberg Air Force Base, getting ready for launch in early Jan. 2017. Credit: Iridium

The Iridium 1 mission is the first of seven planned Falcon 9 launches – totaling 70 satellites.

“Iridium is replacing its existing constellation by sending 70 Iridium NEXT satellites into space on a SpaceX Falcon 9 rocket over 7 different launches,” says Iridium.

The goal of this privately contracted mission is to deliver the first 10 Iridium NEXT satellites into low-earth orbit to inaugurate what will be a new constellation of satellites dedicated to mobile voice and data communications.

Iridium eventually plans to launch a constellation of 81 Iridium NEXT satellites into low-earth orbit.

“At least 70 of which will be launched by SpaceX,” per Iridium’s contract with SpaceX.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. Credit: Ken Kremer/kenkremer.com

Meanwhile pad 40, which was heavily damaged during the Sept. 1 explosion, is undergoing extensive repairs and refurbishments to bring it back online.

It is not known when pad 40 will be fit to resume Falcon 9 launches.

In the interim, SpaceX plans to initially resume launches from the Florida Space Coast at the Kennedy Space Center (KSC) from pad 39A, the former shuttle pad that SpaceX has leased from NASA.

Commercial SpaceX launches at KSC could start from pad 39A sometime in early 2017 – after modifications for the Falcon 9 are completed.

Up close look at a SpaceX Falcon 9 second stage and payload fairing from the JCSAT-16 launch from pad 40 at Cape Canaveral Air Force Station, FL. Both Falcon 9 rocket failures took place inside the second stage. Credit: Ken Kremer/kenkremer.com

The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and called into question the rockets overall reliability. Both incidents involved the second stage helium system, but SpaceX maintains that they are unrelated.

The first Falcon 9 failure involved a catastrophic mid air explosion in the second stage about two and a half minutes after liftoff, during the Dragon CRS-7 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author. The accident was traced to a failed strut holding the helium tank inside the liquid oxygen tank. The helium tank dislodged and ultimately ruptured the second stage as the first stage was still firing resulting in a total loss of the rocket and payload.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Iridium Satellites Fueled and Tucked In For SpaceX Falcon 9 ‘Return to Flight’ Blastoff

The first ten IridiumNEXT satellites are stacked and encapsulated in the Falcon 9 fairing for launch from Vandenberg Air Force Base, Ca., in early 2017. Credit: Iridium
The first ten IridiumNEXT satellites are stacked and encapsulated in the Falcon 9 fairing for launch from Vandenberg Air Force Base, Ca., in early 2017. Credit: Iridium

Technicians have fueled, stacked and tucked the first ten advanced IridiumNEXT mobile voice and data relay satellites inside the nose cone of a Falcon 9 rocket designated as SpaceX’s ‘Return to Flight’ launcher – potentially as early as next week – from their west coast launch pad on Vandenberg Air Force Base in California.

“Milestone Alert: The first ten #IridiumNEXT satellites are stacked and encapsulated in the Falcon 9 fairing,” Iridium Communications announced on the company website on Thursday, Dec. 29.

The excitement of a possibly imminent liftoff is clearly building – at least for Iridium Communications and their CEO Matt Desch.

“Our first 10 #IridiumNEXT satellites are all fueled now, tucked in and dreaming of flying in space. Very. Soon. Happy Holidays!” Iridium Communications CEO Matt Desch tweeted on Christmas Day, Dec. 25, 2016.

But SpaceX is still dealing with the fallout from the catastrophic launch pad explosion that eviscerated a Falcon 9 and its expensive commercial payload in Florida without warning, during a routine fueling test on Sept. 1, 2016.

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation IridiumNEXT communications satellites from Vandenberg’s Space Launch Complex 4-East could come as soon as next week – in early January 2017 perhaps as soon as Jan. 7.

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

SpaceX CEO Elon Musk had said he hoped to resume Falcon 9 launches before the end of this year 2016 – while investigating the root cause of the devastating mishap.

But the launch has been repeatedly postponed and pushed off into 2017 while investigators plumb the data for clues and fix whatever flaws are uncovered.

“Iridium’s @Falcon9_rocket in processing at @VandenbergAFB, getting ready for our launch in early Jan. Progress! #Thistimeitsforreal!” Desch elaborated.

Nevertheless, there has been no official statement issued by either SpaceX or Iridium Communications announcing a specific target launch date.

And the liftoff is completely dependent on achieving FAA approval for the Falcon 9 launch.

“This launch is contingent upon the FAA’s approval of SpaceX’s return to flight following the anomaly that occurred on September 1, 2016 at Cape Canaveral Air Force Station, Florida,” Iridium said in a prior statement, reported here.

All SpaceX Falcon 9 launches immediately ground to a halt following the colossal eruption of a fireball from the Falcon 9 at the launch pad that suddenly destroyed the rocket and completely consumed its $200 million Israeli Amos-6 commercial payload on Sept. 1 during a routine fueling and planned static fire engine test at Cape Canaveral Air Force Station in Florida.

The explosive anomaly resulted from a “large breach” in the cryogenic helium system of the second stage liquid oxygen tank and subsequent ignition of the highly flammable oxygen propellant.

Meanwhile, SpaceX and Iridium are preparing the payload and rocket for launch as soon as possible after FAA approval is granted.

“Satellites have been fueled, pressurized & dispenser tiers are being stacked as we move closer to first launch #IridiumNEXT #NEXTevolution,” Iridium elaborated with photos showing the recent processing in progress.

The Iridium mission is the first of seven planned Falcon 9 launches – totaling 70 satellites.

“Iridium is replacing its existing constellation by sending 70 Iridium NEXT satellites into space on a SpaceX Falcon 9 rocket over 7 different launches,” says Iridium.

“There were many challenges on the program, from orbit determination knowledge design, to encryption design, to integration and verification test planning, to planning for on orbit acceptance activities, but the team made it all come together and the satellites are ready for deployment to enhance the future of mobile satellite communications — I could not be more proud,” Joel Rademacher, Ph.D, Director, Systems Engineering for Iridium Next, said in a statement.

The goal of this privately contracted mission is to deliver the first 10 Iridium NEXT satellites into low-earth orbit to inaugurate what will be a new constellation of satellites dedicated to mobile voice and data communications.

Iridium eventually plans to launch a constellation of 81 Iridium NEXT satellites into low-earth orbit.

“At least 70 of which will be launched by SpaceX,” per Iridium’s contract with SpaceX.

Iridium’s SpaceX Falcon9 rocket in processing at Vandenberg Air Force Base, getting ready for launch in early Jan. 2017. Credit: Iridium

Besides the launch, SpaceX plans to continue its secondary objective of recovering the Falcon 9 first stage via a propulsive soft landing – as done several times previously and witnessed by this author.

The goal is to eventually recycle and reuse the first stage – and thereby dramatically slash launch costs per Musk’s vision.

This Falcon 9 has been outfitted with four landing lags and grid fins for a controlled landing on a tiny barge prepositioned in the Pacific Ocean several hundred miles off the west coast of California.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

Desch says that all seven of his Falcon’s will be new – not resued.

“All our seven F9s are new,” Desch tweeted.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

SpaceX maintains active launch pads on both the US East and West coasts.

On the Florida Space Coast, SpaceX plans to initially resume launches at the Kennedy Space Center (KSC) from pad 39A, the former shuttle pad that SpaceX has leased from NASA.

Commercial SpaceX launches at KSC could start from pad 39A sometime in early 2017 – after modifications for the Falcon 9 are completed.

Meanwhile pad 40, which was heavily damaged during the Sept. 1 explosion, is undergoing extensive repairs and refurbishments to bring it back online.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

It is not known when pad 40 will be fit to resume Falcon 9 launches.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

SpaceX and NASA Confirm Delay of First Crewed Dragon Flight to 2018

SpaceX Crew Dragon docks at the ISS. Credit: SpaceX
SpaceX Dragon V2 docks at the ISS. Credit: SpaceX
SpaceX Dragon V2 docks at the ISS. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Launching Americans back to space and the International Space Station (ISS) from American soil on American rockets via NASA’s commercial crew program (CCP) has just suffered another significant but not unexpected delay, with an announcement from NASA that the target date for inaugural crewed flight aboard a SpaceX commercial Crew Dragon has slipped significantly from 2017 to 2018.

NASA announced the revised schedule on Dec. 12 and SpaceX media affairs confirmed the details of the launch delay to Universe Today.

The postponement of the demonstration mission launch is the latest fallout from the recent launch pad explosion of a SpaceX Falcon 9 rocket at Cape Canaveral, Florida, on Sept. 1 during final preparations and fueling operations for a routine preflight static fire test.

Since the Falcon 9 is exactly the same booster that SpaceX will employ to loft American astronauts in the SpaceX Crew Dragon to the space station, the stakes could not be higher with astronauts lives on the line.

Blastoff of the first Crew Dragon spacecraft on its first unmanned test flight is postponed from May 2017 to August 2017, according to the latest quarterly revision just released by NASA. Liftoff of the first piloted Crew Dragon with a pair of NASA astronauts strapped in has slipped from August 2017 to May 2018.

“The Commercial crew updated dates for Demo 1 (no crew) is Q4 2017,” SpaceX’s Phil Larson told Universe Today. “For Demo 2 (with 2 crew members) the updated commercial crew date is Q2 2018 [for Crew Dragon].”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

Although much has been accomplished since NASA’s commercial crew program started in 2010, much more remains to be done before NASA will approve these launches.

“The next generation of American spacecraft and rockets that will launch astronauts to the International Space Station are nearing the final stages of development and evaluation,” said NASA KSC public affairs officer Stephanie Martin.

Above all both of the commercial crew providers – namely Boeing and SpaceX – must demonstrate safe, reliable and robust spacecraft and launch systems.

“NASA’s Commercial Crew Program will return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety and mission requirements. To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station.”

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

These latest launch delays come on top of other considerable delays announced earlier this year when SpaceX has still hoping to launch the unpiloted Crew Dragon mission before the end of 2016 – prior to the Sept 1 launch pad catastrophe.

“We are finalizing the investigation of our Sept. 1 anomaly and are working to complete the final steps necessary to safely and reliably return to flight,” Larson told me.

“As this investigation has been conducted, our Commercial Crew team has continued to work closely with NASA and is completing all planned milestones for this period.”

SpaceX is still investigating the root causes of the Sept. 1 anomaly, working on fixes and implementing any design changes – as well as writing the final report that must be submitted to the FAA, before they can launch the planned ‘Return to Flight’ mission from their California launch pad at Vandenberg Air Force Base.

No launch can occur until the FAA grants a license after fully assessing the SpaceX anomaly report.

Last week SpaceX announced a delay in resuming launches at Vandenberg until no earlier than January 2017.

“We are carefully assessing our designs, systems, and processes taking into account the lessons learned and corrective actions identified. Our schedule reflects the additional time needed for this assessment and implementation,” Larson elaborated.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Boeing has likewise significantly postponed their debut unpiloted and piloted launches of their CST-100 Starliner astronaut space taxi by more than six months this year alone.

The first crewed Boeing Starliner is now slated for a launch in August 2018, possibly several months after SpaceX. But the schedules keep changing so it’s anyone’s guess as to when these commercial crew launches will actually occur.

Another big issue that has cropped up since the Sept. 1 pad disaster, regards the procedures and timing for fueling the Falcon 9 rocket with astronauts on board. SpaceX is proposing to load the propellants with the crew already on board, unlike the practice of the past 50 years where the astronauts climbed aboard after the extremely dangerous fueling operation was completed.

SpaceX proposes this change due to their recent use of superchilled liquid oxygen and resulting new operational requirement to fuel the rocket in the last 30 minutes prior to liftoff.

Although a SpaceX hazard report outlining these changes was approved by NASA’s Safety Technical Review Board in July 2016, an objection was raised by former astronaut Maj. Gen. Thomas Stafford and the International Space Station Advisory Committee.

“SpaceX has designed a reliable fueling and launch process that minimizes the duration and number of personnel exposed to the hazards of launching a rocket,” Larson explained.

“As part of this process, the crew will safely board the Crew Dragon, ground personnel will depart, propellants will be carefully loaded and then the vehicle will launch. During this time the Crew Dragon launch abort system will be enabled.”

SpaceX says they have performed a detailed safety analysis with NASA of all potential hazards with this process.

“The hazard report documenting the controls was approved by NASA’s Safety Technical Review Board in July 2016.”

SpaceX representatives recently met with Stafford and the ISS review board to address their concerns, but the outcome and whether anything was resolved is not known.

“We recently met with Maj. Gen. Stafford and the International Space Station Advisory Committee to provide them detailed information on our approach and answer a number of questions. SpaceX and NASA will continue our ongoing assessment while keeping the committee apprised of our progress,” Larson explained.

The Falcon 9 fueling procedure issue relating to astronaut safety must be satisfactorily resolved before any human launch with Dragon can take place, and will be reported on further here.

Whenever the Crew Dragon does fly it will launch from the Kennedy Space Center (KSC) at Launch Complex 39A – the former shuttle launch pad which SpaceX has leased from NASA.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

SpaceX is currently renovating pad 39A for launches of manned Falcon 9/Dragon missions. And the firm has decided to use it for commercial missions as well while pad 40 is repaired following the pad accident.

This week a Falcon 9 first stage was spotted entering Cape Canaveral to prepare for an upcoming launch.

SpaceX Falcon 9 first stage arrives at Cape Canaveral Air Force Station on Dec. 12, 2016 for launch sometime in 2017. Credit: Julian Leek
SpaceX Falcon 9 first stage arrives at Cape Canaveral Air Force Station on Dec. 12, 2016 for launch sometime in 2017. Credit: Julian Leek

Getting our astronauts back to space with home grown technology is proving to be far more difficult and time consuming than anyone anticipated – despite the relative simplicity of developing capsule-like vehicles vs. NASA’s highly complex and hugely capable Space Shuttle vehicles.

And time is of the essence for the commercial crew program.

Because for right now, the only path to the ISS for all American astronauts is aboard a Russian Soyuz capsule through seats purchased by NASA – at about $82 million each. But NASA’s contract with Roscosmos for future flight opportunities runs out at the end of 2018. So there is barely a few months margin left before the last available contracted seat is taken.

It takes about 2 years lead time for Russia to build the Soyuz and NASA is not planning to buy any new seats.

So any further delays to SpaceX or Boeing could result in an interruption of US and partner flights to the ISS in 2019 – which is primarily American built.

Exterior of the Crew Dragon capsule. Credit: SpaceX.
Exterior of the Crew Dragon capsule. Credit: SpaceX.

Since its inception, the commercial crew program has been severely and shortsightedly underfunded by the US Congress. They have repeatedly cut the Administration’s annual budget requests, delaying forward progress and first crewed flights from 2015 to 2018, and forcing NASA to buy additional Soyuz seats from Russia at a cost of hundreds of millions of dollars.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Postpones Falcon 9 Rocket Launch Resumption to January 2017

SpaceX Falcon 9 Stage 1 arriving in California for Iridium NEXT launch - with a Rainbow! Credit: SpaceX/Iridium
SpaceX Falcon 9 Stage 1 arriving in California for Iridium NEXT launch - with a Rainbow! Credit: SpaceX/Iridium
SpaceX Falcon 9 Stage 1 arriving in California for Iridium NEXT launch – with a Rainbow! Credit: SpaceX/Iridium

SpaceX is postponing the resumption of launches for their Falcon 9 rocket into early January 2017 as they continue to deal with the fallout from the catastrophic launch pad explosion in Florida that destroyed a Falcon 9 during preflight test operations three months ago.

The new space aerospace company led by billionaire CEO Elon Musk had planned to restart launches as early as next week on Dec 16, for the boosters ‘Return to Flight’ Falcon 9 mission from California with a payload comprising Iridium Corporation’s next-generation communications satellites.

The Iridium mission is the first of seven planned launches.

“Iridium is replacing its existing constellation by sending 70 Iridium NEXT satellites into space on a SpaceX Falcon 9 rocket over 7 different launches,” noted Iridium in a statement.

However, the launch date was pending until approval by the FAA – which will not yet be forthcoming in time to meet the Dec. 16 target date.

The FAA can’t approve a launch until they have a report to review from SpaceX. And that final accident investigation report has not yet been written by SpaceX or submitted to the FAA.

In a new update, SpaceX announced that they “are finalizing the investigation into our September 1 anomaly” and need to “complete extended testing” – thus inevitably delaying the hoped for blastoff into early January 2017.

One should not be surprised if there are further delays into the ‘Return to Flight’ since the determination of root cause, testing fixes and finally implementing effective corrective action will take time. This is rocket science and it’s not easy.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

SpaceX is still investigating why the rocket unexpectedly erupted into a humongous fireball at pad 40 on Sept. 1, that completely consumed the rocket and its $200 million Amos-6 Israeli commercial payload during a routine fueling and planned static fire engine test at Cape Canaveral Air Force Station in Florida.

The explosive anomaly resulted from a “large breach” in the cryogenic helium system of the second stage liquid oxygen tank and subsequent ignition of the highly flammable oxygen propellant.

“We are finalizing the investigation into our September 1 anomaly and are working to complete the final steps necessary to safely and reliably return to flight, now in early January with the launch of Iridium-1,” SpaceX announced in a statement.

Iridium Communications had recently announced that the first launch of a slew of its next-generation global satellite constellation, dubbed Iridium NEXT, would launch atop a SpaceX Falcon 9 rocket on December 16, 2016 at 12:36 p.m. PST from SpaceX’s west coast launch pad on Vandenberg Air Force Base in California.

But since only 3 months had elapsed since the accident – the second in 15 months – more time was clearly needed to be certain the rocket was truly flight worthy.

“This allows for additional time to close-out vehicle preparations and complete extended testing to help ensure the highest possible level of mission assurance prior to launch,” SpaceX elaborated.

Iridium also issued a statement supporting the launch delay and expressing continued confidence in SpaceX.

“Iridium supports SpaceX’s announcement today to extend the first Iridium NEXT launch date into early January, in order to help ensure a successful mission. We remain as confident as ever in their ability to safely deliver our satellites into low Earth orbit.”

Iridium NEXT satellites being processed for launch by SpaceX. Credit: SpaceX/Iridium
Iridium NEXT satellites being processed for launch by SpaceX. Credit: SpaceX/Iridium

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX ‘Return to Flight’ Set For Dec. 16 with Next Gen Iridium Satellites – 3 Months After Pad Explosion

Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

Only three months after the catastrophic launch pad explosion of their commercial Falcon 9 rocket in Florida, SpaceX has set Dec. 16 as the date for the boosters ‘Return to Flight’ launch from California with the first batch of Iridium’s next-generation communications satellites.

Iridium Communications announced on Thursday that the first launch of a slew of its next-generation global satellite constellation, dubbed Iridium NEXT, will launch atop a SpaceX Falcon 9 rocket on December 16, 2016 at 12:36 p.m. PST from SpaceX’s west coast launch pad on Vandenberg Air Force Base in California.

Iridium NEXT satellites being processed for launch by SpaceX. Credit: SpaceX/Iridium
Iridium NEXT satellites being processed for launch by SpaceX. Credit: SpaceX/Iridium

However the launch is dependent on achieving FAA approval for the Falcon 9 launch.

All SpaceX Falcon 9 launches immediately ground to a halt following the colossal eruption of a fireball from the Falcon 9 at the launch pad that suddenly destroyed the rocket and completely consumed its $200 million Israeli Amos-6 commercial payload on Sept. 1 during a routine fueling and planned static fire engine test at Cape Canaveral Air Force Station in Florida.

The explosive anomaly resulted from a “large breach” in the cryogenic helium system of the second stage liquid oxygen tank and subsequent ignition of the highly flammable oxygen propellant.

“This launch is contingent upon the FAA’s approval of SpaceX’s return to flight following the anomaly that occurred on September 1, 2016 at Cape Canaveral Air Force Station, Florida,” Iridium said in a statement.

SpaceX quickly started an investigation to determine the cause of the anomaly that destroyed the rocket and its payload and significantly damaged the infrastructure at launch pad 40.

“The investigation has been conducted with FAA oversight. Iridium expects to be SpaceX’s first return to flight launch customer.”

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

The goal of the privately contracted mission is to deliver the first 10 Iridium NEXT satellites into low-earth orbit to inaugurate what will be a new constellation of satellites dedicated to mobile voice and data communications.

Iridium eventually plans to launch a constellation of 81 Iridium NEXT satellites into low-earth orbit.

“At least 70 of which will be launched by SpaceX,” per Iridium’s contract with SpaceX.

“We’re excited to launch the first batch of our new satellite constellation. We have remained confident in SpaceX’s ability as a launch partner throughout the Falcon 9 investigation,” said Matt Desch, chief executive officer at Iridium, in a statement.

“We are grateful for their transparency and hard work to plan for their return to flight. We are looking forward to the inaugural launch of Iridium NEXT, and what will begin a new chapter in our history.”

SpaceX Falcon 9 Stage 1 arriving in California for Iridium NEXT launch - with a Rainbow! Credit: SpaceX/Iridium
SpaceX Falcon 9 Stage 1 arriving in California for Iridium NEXT launch – with a Rainbow! Credit: SpaceX/Iridium

Altogether seven Falcon 9 launches will be required to deploy the constellation of 70 Iridium NEXT satellites by early 2018, if all goes well.

The initial batch of Iridium NEXT satellites for this launch began arriving at SpaceX’s Vandenberg AFB satellite processing facility in early August 2016. They were built by Orbital ATK.

Following up on earlier statements by SpaceX President Gwynne Shotwell, SpaceX founder and CEO Elon Musk had said in a televised CNBC interview on Nov. 4 that the firm was aiming to resume launches of the booster in mid-December.

“We are looking forward to return to flight with the first Iridium NEXT launch,” said Gwynne Shotwell, president and chief operating officer of SpaceX.

“Iridium has been a great partner for nearly a decade, and we appreciate their working with us to put their first 10 Iridium NEXT satellites into orbit.”

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016  after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com
Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Musk said the Sept 1 explosion at pad 40 was related to some type of interaction between the liquid helium bottles , carbon composites and solidification of the liquid oxygen propellant in the SpaceX Falcon 9 second stage.

“It basically involves a combination of liquid helium, advanced carbon fiber composites, and solid oxygen, Musk elaborated to CNBC.

“Oxygen so cold that it enters the solid phase.”

The explosion took place without warning as liquid oxygen and RP-1 propellants were being loaded into the second stage of the 229-foot-tall (70-meter) Falcon 9 during a routine fueling test and engine firing test at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl.

But the rocket blew up during the fueling operations and the SpaceX launch team never even got to the point of igniting the first stage engines for the static fire test.

Pad 40 is out of action until extensive repairs and testing are completed.

The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and called into question the rockets overall reliability.

The first Falcon 9 failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

SpaceX Falcon 9 second stage 1 arriving at Vandenberg AFB in California in early November 2016 for Iridium NEXT launch. Credit: SpaceX/Iridium
SpaceX Falcon 9 second stage arriving at Vandenberg AFB in California in early November 2016 for Iridium NEXT launch. Credit: SpaceX/Iridium

SpaceX maintains launch pads on both the US East and West coasts.

On the Florida Space Coast, SpaceX plans to initially resume launches at the Kennedy Space Center (KSC) from pad 39A, the former shuttle pad that SpaceX has leased from NASA, while pad 40 is repaired and refurbished.

KSC launches could start as soon as early January 2017 with the EchoStar 23 communications satellite.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Delta 4 launch on Dec 7, GOES-R weather satellite, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6 & CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec 5-7: “ULA Delta 4 Dec 7 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Aims for Mid-December Falcon 9 Launch Resumption: Musk

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

Hoping to recover quickly after suffering a calamitous launch pad explosion of their Falcon 9 rocket at Cape Canaveral some two months ago, SpaceX is aiming to resume launches of the booster in mid-December, said company founder and CEO Elon Musk in a recent televised interview on Nov. 4.

Musk further indicated in the Nov. 4 interview with CNBC that they have discovered the problem that suddenly triggered the catastrophic Falcon 9 launch pad explosion that suddenly destroyed the rocket and $200 million Israeli Amos-6 commercial payload during a routine fueling and planned static fire engine test on Sept. 1.

“I think we’ve gotten to the bottom of the problem,” Musk said. “It was a really surprising problem. It’s never been encountered before in the history of rocketry.”

Musk said the issue related to some type of interaction between the liquid helium bottles , carbon composites and solidification of the liquid oxygen propellant in the SpaceX Falcon 9 second stage.

“It basically involves a combination of liquid helium, advanced carbon fiber composites, and solid oxygen, Musk elaborated.

“Oxygen so cold that it enters the solid phase.”

“Turning out to be the most difficult and complex failure we have ever had in 14 years,” Musk previously tweeted on Sept. 9.

“It’s never happened before in history. So that’s why it took us awhile to sort it out,” Musk told CNBC on Nov. 4.

SpaceX founder and CEO Elon Musk.  Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk. Credit: Ken Kremer/kenkremer.com

The explosion took place without warning as liquid oxygen and RP-1 propellants were being loaded into the second stage of the 229-foot-tall (70-meter) Falcon 9 during a routine fueling test and engine firing test at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl.

But the rocket blew up during the fueling operations and the SpaceX launch team never even got to the point of igniting the first stage engines for the static fire test.

Launch of the AMOS-6 comsat from pad 40 had been scheduled to take place two days later.

In company updates posted to the SpaceX website on Sept. 23 and Oct 28, the company said the anomaly appears to be with a “large breach” in the cryogenic helium system of the second stage liquid oxygen tank – but that the root cause had not yet been determined.

“The root cause of the breach has not yet been confirmed, but attention has continued to narrow to one of the three composite overwrapped pressure vessels (COPVs) inside the LOX tank.”

“Through extensive testing in Texas, SpaceX has shown that it can re-create a COPV failure entirely through helium loading conditions.”

The helium loading is “mainly affected by the temperature and pressure of the helium being loaded.”

“This was the toughest puzzle to solve that we’ve ever had to solve,”Musk explained to CNBC.

After the Sept. 1 accident, SpaceX initiated a joint investigation to determine the root cause with the FAA, NASA, the US Air Force and industry experts who have been “working methodically through an extensive fault tree to investigate all plausible causes.”

“We have been working closely with NASA, and the FAA [Federal Aviation Administration] and our commercial customers to understand it,” says Musk.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

Musk was not asked and did not say from which launch pad the Falcon 9 would launch or what the payload would be.

“It looks like we’re going to be back to launching around mid-December,” he replied.

SpaceX maintains launch pads on both the US East and West coasts.

“Pending the results of the investigation, we continue to work towards returning to flight before the end of the year. Our launch sites at Kennedy Space Center, Florida, and Vandenberg Air Force Base, California, remain on track to be operational in this timeframe,” SpaceX said on Oct 28.

At KSC launches will initially take place from pad 39A, the former shuttle pad that SpaceX has leased from NASA.

Pad 40 is out of action until extensive repairs and testing are completed.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016  after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com
Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and will call into question the rockets overall reliability.

The first Falcon 9 failure involved a catastrophic mid air explosion in the second stage about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

Although both incidents involved the second stage, SpaceX maintains that they are unrelated – even as they continue seeking to determine the root cause.

SpaceX must determine the root cause before Falcon 9 launches are allowed to resume. Effective fixes must be identified and effective remedies must be verified and implemented.

Overview schematic of SpaceX Falcon 9. Credit: SpaceX
Overview schematic of SpaceX Falcon 9. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Makes Progress Replicating Failure that Caused Falcon 9 Pad Explosion

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

SpaceX is making significant progress in replicating the failure in the helium pressurization system that led to the catastrophic launch pad explosion of the firms Falcon 9 rocket during a routine fueling test at their Florida Space Coast launch complex on September 1.

The problem at the heart of the anomaly appears to be in the helium loading system. However the root cause of the explosion still remains elusive at this time.

“The Accident Investigation Team continues to make progress in examining the anomaly on September 1 that led to the loss of a Falcon 9 and its payload at Launch Complex 40 (LC-40), Cape Canaveral Air Force Station, Florida,” SpaceX announced in an Oct. 28 update.

The company had previously said in a statement issued on Sept. 23 that investigators had determined that a “large breach” in the cryogenic helium system of the second stage liquid oxygen tank likely triggered the catastrophic Falcon 9 launch pad explosion that suddenly destroyed the rocket and Israeli Amos-6 commercial payload during the routine fueling test almost two months ago.

“The root cause of the breach has not yet been confirmed, but attention has continued to narrow to one of the three composite overwrapped pressure vessels (COPVs) inside the LOX tank,” SpaceX explained in the new statement issued on Oct. 28.

“Through extensive testing in Texas, SpaceX has shown that it can re-create a COPV failure entirely through helium loading conditions.”

The helium loading is “mainly affected by the temperature and pressure of the helium being loaded.”

And SpaceX CEO and Founder Elon Musk had previously cited the explosion as “most difficult and complex failure” in the firms history.

“Turning out to be the most difficult and complex failure we have ever had in 14 years,” Musk tweeted on Friday, Sept. 9.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016  after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com
Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

The helium loading procedures may well need to be modified, as an outcome of the accident investigation, to enable safe loading conditions.

SpaceX is conducting a joint investigation of the Sept. 1 anomaly with the FAA, NASA, the US Air Force and industry experts who have been “working methodically through an extensive fault tree to investigate all plausible causes.”

The explosion also caused extensive damage to launch pad 40 as well as to the rockets transporter erector, or strongback, that holds the rocket in place until minutes before liftoff, and ground support equipment (GSE) around the pad – as seen in my photos of the pad taken a week after the explosion during the OSIRIS-REx launch campaign.

Fortunately, many other pad areas and infrastructure survived intact or in good condition.

Overview schematic of SpaceX Falcon 9. Credit: SpaceX
Overview schematic of SpaceX Falcon 9. Credit: SpaceX

The company is conducting an extensive series of ground tests at the firms Texas test site to elucidate as much information as possible as a critical aid to investigators.

“We have conducted tests at our facility in McGregor, Texas, attempting to replicate as closely as possible the conditions that may have led to the mishap.”

The explosion took place without warning at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl, during a routine fueling test and engine firing test as liquid oxygen and RP-1 propellants were being loaded into the 229-foot-tall (70-meter) Falcon 9. Launch of the AMOS-6 comsat was scheduled two days later.

Both the $60 million SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in a massive fireball that erupted suddenly during the planned pre-launch fueling and hot fire engine ignition test at pad 40 on Sept. 1. There were no injuries since the pad had been cleared.

The rocket disaster was coincidentally captured as it unfolded in stunning detail in a spectacular up close video recorded by my space journalist colleague Mike Wagner at USLaunchReport.

Watch this video:

Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport

SpaceX continues to work on root cause and helium loading procedures.

“SpaceX’s efforts are now focused on two areas – finding the exact root cause, and developing improved helium loading conditions that allow SpaceX to reliably load Falcon 9.”

The company also still hopes to resume Falcon 9 launches before the end of 2016.

“Pending the results of the investigation, we continue to work towards returning to flight before the end of the year. Our launch sites at Kennedy Space Center, Florida, and Vandenberg Air Force Base, California, remain on track to be operational in this timeframe.”

At KSC launches will initially take place from pad 39A, the former shuttle pad that SpaceX has leased from NASA.

Pad 40 is out of action until extensive repairs and testing are completed.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and will call into question the rockets overall reliability.

The first Falcon 9 failure involved a catastrophic mid air explosion in the second stage about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

Although both incidents involved the second stage, SpaceX maintains that they are unrelated – even as they continue seeking to determine the root cause.

SpaceX must determine the root cause before Falcon 9 launches are allowed to resume. Effective fixes must be identified and effective remedies must be verified and implemented.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload and damaged the pad at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload and damaged the pad at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback after prelaunch explosion destroyed the rocket and AMOS-6 payload and damaged the pad. Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback after prelaunch explosion destroyed the rocket and AMOS-6 payload and damaged the pad. Credit: Ken Kremer/kenkremer.com

SpaceX’s Space Coast Launch Facilities Escape Hurricane Matthew’s Wrath, May Resume Launches this Year

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

SpaceX’s key launch facilities on the Florida Space Coast escaped the wrath of Hurricane Matthew’s 100 mph wind gusts late last week, suffering only some exterior damage to the satellite processing building, a company spokesman confirmed to Universe Today.

Furthermore, the aerospace firm still hopes to resume launches of their Falcon 9 rocket before the end of this year following September’s rocket explosion, according to remarks made by SpaceX President Gwynne Shotwell over the weekend.

“Hurricane Matthew caused some damage to the exterior of SpaceX’s payload processing facility [PPF] at Space Launch Complex-40 at Cape Canaveral Air Force Station,” SpaceX spokesman John Taylor told Universe Today.

The payload processing facility (PPF) is the facility where the satellites and payloads are processed to prepare them for flight and launches on the firm’s commercial Falcon 9 rockets.

Some exterior panels were apparently blown out by the storm.

The looming threat of a direct hit by the Category 4 storm Hurricane Matthew on Friday, Oct. 7, on Cape Canaveral and the Kennedy Space Center (KSC) forced the closure of both facilities before the storm hit. They remained closed over the weekend except to emergency personal.

The deadly storm also caused some minor damage to the Kennedy Space Center and USAF facilities on the base.

Meanwhile competitor ULA also told me their facilities suffered only minor damage.

However the base closure will likely result in a few days launch delay of the ULA Atlas V rocket carrying the NASA/NOAA GOES-R weather satellite to geostationary orbit, which had been slated for Nov. 4.

The PPF is located on Cape Canaveral Air Force Station, a few miles south of the Falcon 9 launch pad at Space Launch Complex-40 (SLC-40).

The PPF is inside the former USAF Solid Motor Assembly Building (SMAB) used for the now retired Titan IV rockets.

Fortunately, SpaceX has another back-up facility at pad 40 where technicians and engineers can work to prepare the rocket payload for flight.

“The company has a ready and fully capable back-up for processing payloads at its SLC-40 hangar annex building,” Taylor elaborated.

SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket on pad 40 with backup processing hanger visible, prior to launch of SES-9 communications satellite in March 2016 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

And except for the minor damage to the PPF facility where payloads are processed, SpaceX says there was no other damage to infrastructure at pad 40 or to Launch Complex 39A at the Kennedy Space Center.

“There was no damage the company’s facilities at Pad 39A at Kennedy Space Center,” Taylor told me.

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

However SLC-40 is not operational at this time, since it was heavily damaged during the Sept. 1 launch pad disaster when a Falcon 9 topped with the Israeli Amos-9 comsat exploded on the launch pad during a routine prelaunch fueling operation and a planned first stage static fire engine test.

Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

As SpaceX was launching Falcon 9 rockets from pad 40, they have been simultaneously renovating and refurbishing NASA’s former shuttle launch pad at Launch Complex 39A at the Kennedy Space Center (KSC) which they leased from NASA.

SpaceX plans to start launching their new Falcon Heavy booster from pad 39A in 2017 as well as human rated launches of the Falcon 9 with the Crew Dragon to the ISS.

However, following the pad 40 disaster, SpaceX announced plans to press pad 39A into service for commercial Falcon 9 satellite launches as well.

SpaceX President Gwynne Shotwell recently said that the company hoped to resume launches in November while they search for a root cause to the pad 40 catastrophe – as I reported here.

Speaking at the annual meeting of the National Academy of Engineering in Washington, D.C. on Oct. 9 Shotwell indicated that investigators are making progress to determine the cause of the mishap.

“We’re homing in on what happened,” she said, according to a story by Space News. “I think it’s going to point not to a vehicle issue or an engineering design issue but more of a business process issue.”

Space News said that she did not elaborate further.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Big Breach In 2nd Stage Helium System Likely Triggered Catastrophic Falcon 9 Explosion: SpaceX

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

Investigators have determined that a “large breach” in the second stage helium system likely triggered the catastrophic Falcon 9 launch pad explosion that suddenly destroyed the rocket and Israeli commercial payload during a routine fueling test three weeks ago, SpaceX announced today, Friday, Sept. 23.

However, the root cause of the rupture and Sept. 1 disaster have not been determined, according to SpaceX, based on the results thus far discerned by the official accident investigation team probing the incident that forced an immediate halt to all SpaceX launches.

The Accident Investigation Team (AIT) is composed of SpaceX, the FAA, NASA, the U.S. Air Force, and industry experts.

“At this stage of the investigation, preliminary review of the data and debris suggests that a large breach in the cryogenic helium system of the second stage liquid oxygen tank took place,” SpaceX reported on the firm’s website in today’s anomaly update dated Sept. 23- the first in three weeks.

The helium system is used to pressurize the liquid oxygen tank from inside.

The explosion took place without warning at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl, during a routine fueling test and engine firing test as liquid oxygen and RP-1 propellants were being loade into the 229-foot-tall (70-meter) Falcon 9. Launch of the AMOS-6 comsat was scheduled two days later.

Indeed the time between the first indication of an anomaly to loss of signal was vanishingly short – only about “93 milliseconds” of elapsed time, SpaceX reported.

93 milliseconds amounts to less than 1/10th of a second. That conclusion is based on examining 3,000 channels of data.

SpaceX reported that investigators “are currently scouring through approximately 3,000 channels of engineering data along with video, audio and imagery.”

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016  after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com
Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload and damaged the pad at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Both the $60 million SpaceX rocket and the $200 million AMOS-6 Israeli commercial communications satellite payload were completely destroyed in a massive fireball that erupted suddenly during the planned pre-launch fueling and hot fire engine ignition test at pad 40. There were no injuries since the pad had been cleared.

The Sept. 1 calamity also counts as the second time a Falcon 9 has exploded in 15 months and the second time it originated in the second stage and will call into question the rocket’s reliability.

The first failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, when a strut holding the helium tank inside the liquid oxygen tank failed in flight during the Dragon CRS-7 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

However SpaceX says that although both incidents involved the second stage, they are unrelated – even as they continue seeking to determine the root cause.

“All plausible causes are being tracked in an extensive fault tree and carefully investigated. Through the fault tree and data review process, we have exonerated any connection with last year’s CRS-7 mishap.”

And they are thoroughly reviewing all rocket components.

“At SpaceX headquarters in Hawthorne, CA, our manufacturing and production is continuing in a methodical manner, with teams continuing to build engines, tanks, and other systems as they are exonerated from the investigation.”

But SpaceX will have to conduct an even more thorough analysis of every aspect of their designs and manufacturing processes and supply chain exactly because the cause of this disaster is different and apparently went undetected during the CRS-7 accident review.

And before Falcon 9 launches are allowed to resume, the root cause must be determined, effective fixes must be identified and effective remedies must be verified and implemented.

Large scale redesign of the second stage helium system may be warranted since two independent failure modes have occurred. Others could potentially be lurking. It’s the job of the AIT to find out – especially because American astronauts will be flying atop this rocket to the ISS starting in 2017 or 2018 and their lives depend on its being reliable and robust.

After the last failure in June 2015, it took nearly six months before Falcon 9 launches were resumed.

Launches were able to recommence relatively quickly because the June 2015 disaster took place at altitude and there was no damage to pad 40.

That’s not the case with the Sept. 1 calamity where pad 40 suffered significant damage and will be out of action for quite a few months at least as the damage is catalogued and evaluated. Then a repair, refurbishment, testing and recertification plan needs to be completed to rebuild and return pad 40 to flight status. Furthermore SpaceX will have to manufacture a new transporter-erector.

Since the explosion showered debris over a wide area, searchers have been prowling surrounding areas and other nearby pads at the Cape and Kennedy Space Center, hunting for evidentiary remains that could provide clues or answers to the mystery of what’s at the root cause this time.

Searchers have recovered “the majority of debris from the incident has been recovered, photographed, labeled and catalogued, and is now in a hangar for inspection and use during the investigation.”

To date they have not found any evidence for debris beyond the immediate area of LC-40, the company said.

SpaceX CEO Elon Musk had previously reported via twitter that the rocket failure originated somewhere in the upper stage near the liquid oxygen (LOX) tank during fueling test operations at the launch pad, for what is known as a hot fire engine ignition test of all nine first stage Merlin 1D engines.

Engineers were in the final stages of loading the liquid oxygen (LOX) and RP-1 kerosene propellants that power the Falcon 9 first stage for the static fire test which is a full launch dress rehearsal. The anomaly took place about 8 minutes before the planned engine hot fire ignition.

And the incident took place less than two days before the scheduled Falcon 9 launch of AMOS-6 on Sept. 3 from pad 40.

The explosion also caused extensive damage to the launch pad as well as to the rockets transporter erector, or strongback, that holds the rocket in place until minutes before liftoff, and ground support equipment (GSE) around the pad – as seen in my recent photos of the pad taken a week after the explosion during the OSIRIS-REx launch campaign.

Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com

Fortunately, many other pad areas and infrastructure survived intact or in “good condition.”

“While substantial areas of the pad systems were affected, the Falcon Support Building adjacent to the pad was unaffected, and per standard procedure was unoccupied at the time of the anomaly. The new liquid oxygen farm – e.g. the tanks and plumbing that hold our super-chilled liquid oxygen – was unaffected and remains in good working order. The RP-1 (kerosene) fuel farm was also largely unaffected. The pad’s control systems are also in relatively good condition.”

The rocket disaster was coincidentally captured as it unfolded in stunning detail in a spectacular up close video recorded by my space journalist colleague Mike Wagner at USLaunchReport.

Watch this video:

Video Caption: SpaceX – Static Fire Anomaly – AMOS-6 – 09-01-2016. Credit: USLaunchReport

Even as investigators and teams of SpaceX engineers sift through the data and debris looking for the root cause of the helium tank breach, other SpaceX engineering teams and workers prepare to restart launches from the other SpaceX pad on the Florida Space Coast- namely Pad 39A on the Kennedy Space Center.

So the ambitious aerospace firm is already setting its sights on a ‘Return to Flight’ launch as early as November of this year, SpaceX President Gwynne Shotwell said on Sept. 13 at a French space conference.

“We’re anticipating getting back to flight, being down for about three months, so getting back to flight in November, the November timeframe,” Shotwell announced during a panel discussion at the World Satellite Business Week Conference in Paris, France – as reported here last week.

SpaceX reconfirmed the November target today.

“We will work to resume our manifest as quickly as responsible once the cause of the anomaly has been identified by the Accident Investigation Team.”

“Pending the results of the investigation, we anticipate returning to flight as early as the November timeframe.”

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

As SpaceX was launching from pad 40, they have been simultaneously renovating and refurbishing NASA’s former shuttle launch pad at Launch Complex 39A at the Kennedy Space Center (KSC) – from which the firm hopes to launch the new Falcon Heavy booster in 2017 as well as human rated launches of the Falcon 9 with the Crew Dragon to the ISS.

So now SpaceX will utilize pad 39A for commercial Falcon 9 launches as well. But much works remains to finish pad work as I recently witnessed.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Up close view of top of mangled SpaceX Falcon 9 strongback with dangling cables (at right) as seen on Sept. 7 after prelaunch explosion destroyed the rocket and AMOS-6 payload at Space Launch Complex-40 at Cape Canaveral Air Force Station, FL on Sept. 1, 2016 . Credit: Ken Kremer/kenkremer.com
Overview schematic of SpaceX Falcon 9. Credit: SpaceX
Overview schematic of SpaceX Falcon 9. Credit: SpaceX