The commercial mission involves lofting the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.
Following a day’s delay due to inclement weather, SpaceX is now targeting an overnight launch of JCSAT-14 atop the upgraded version of the Falcon 9 for Friday, May 6 at 1:21:00 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.
The Falcon 9 launch is the 4th this year for SpaceX.
You can watch the launch live via a special live webcast from SpaceX.
The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:00 a.m. EDT – at SpaceX.com/webcast
The 229 foot tall Falcon 9 rocket has a 2 hour launch window that extends until Friday, May 6 at 3:21 a.m. EDT.
The weather currently looks very good. Air Force meteorologists are predicting a 90 percent chance of favorable weather conditions at launch time Friday morning.
In cases of any delays for technical or weather issues, a backup launch opportunity exits 24 later on Saturday at the same time.
The rocket has been rolled out to the launch pad on the transporter and raised to its vertical position.
The path to launch was cleared following this past weekend’s successful hold down static fire test of the Falcon 9 first stage Merlin 1-D engines. SpaceX routinely performs the hotfire test to ensure the ready is ready.
Via a fleet of 15 satellites, Tokyo, Japan based SKY Perfect JSAT provides high quality satellite communications to its customers.
The JCSAT-14 communications satellite was designed and manufactured by Space Systems/Loral for SKY Perfect JSAT Corporation.
It will succeed and replace the JCSAT-2A satellite currently providing coverage to Asia, Russia, Oceania and the Pacific Islands.
JCSAT-14 satellite will separate from the second stage and will be deployed about 32 minutes after liftoff from Cape Canaveral. The staging events are usually broadcast live by SpaceX via stunning imagery from onboard video cameras.
A secondary objective is to try and recover the first stage booster via a propulsive landing on an ocean-going platform.
During the last SpaceX launch on April 8, the first stage did successfully soft land on the ship at sea for the first time. But the rocket was moving somewhat slower and aiming for low Earth orbit.
This booster is again equipped with 4 landing legs and 4 grid fins.
Following stage separation, SpaceX will try to soft land the first stage on the “Of Course I Still Love You” drone ship positioned a few hundred miles off shore in the Atlantic Ocean.
But SpaceX officials say “a successful landing is unlikely” because with “this mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
SpaceX announced plans today, April 27, for the first ever private mission to Mars which involves sending an uncrewed version of the firms Dragon spacecraft to accomplish a propulsive soft landing – and to launch it as soon as 2018 including certain technical assistance from NASA.
Under a newly signed space act agreement with NASA, the agency will provide technical support to SpaceX with respect to Mars landing technologies for the new spacecraft known as a ‘Red Dragon’ and possibly also for science activities.
“SpaceX is planning to send Dragons to Mars as early as 2018,” the company posted in a brief announcement today on Facebook and other social media about the history making endeavor.
The 2018 commercial Mars mission involves launching the ‘Red Dragon’ – also known as Dragon 2 – on the SpaceX Falcon Heavy rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida. It’s a prelude to eventual human missions.
The Red Dragon initiative is a commercial endeavor that’s privately funded by SpaceX and does not include any funding from NASA. The agreement with NASA specifically states there is “no-exchange-of-funds.”
As of today, the identity and scope of any potential science payload is undefined and yet to be determined.
Hopefully it will include a diverse suite of exciting research instruments from NASA, or other entities, such as high powered cameras and spectrometers characterizing the Martian surface, atmosphere and environment.
SpaceX CEO and billionaire founder Elon Musk has previously stated his space exploration goals involve helping to create a Mars colony which would ultimately lead to establishing a human ‘City on Mars.’
Musk is also moving full speed ahead with his goal of radically slashing the cost of access to space by recovering a pair of SpaceX Falcon 9 first stage boosters via successful upright propulsive landings on land and at sea – earlier this month and in Dec. 2015.
The 2018 liftoff campaign marks a significant step towards fulfilling Musk’s Red Planet vision. But we’ll have to wait another 5 months for concrete details.
“Red Dragon missions to Mars will also help inform the overall Mars colonization architecture that SpaceX will reveal later this year,” SpaceX noted.
Musk plans to reveal the details of the Mars colonization architecture later this year at the International Astronautical Congress (IAC) being held in Guadalajara, Mexico from September 26 to 30, 2016.
Landing on Mars is not easy. To date only NASA has successfully soft landed probes on Mars that returned significant volumes of useful science data.
In the meantime a few details about the SpaceX Red Dragon have emerged.
The main goal is to propulsively land something 5-10 times the size of anything previously landed before.
“These missions will help demonstrate the technologies needed to land large payloads propulsively on Mars,” SpaceX further posted.
NASA’s 1 ton Curiosityrover is the heaviest spaceship to touchdown on the Red Planet to date.
As part of NASA’s agency wide goal to send American astronauts on a human ‘Journey to Mars’ in the 2030s, NASA will work with SpaceX on some aspects of the Red Dragon initiative to further the agency’s efforts.
According to an amended space act agreement signed yesterday jointly by NASA and SpaceX officials – that originally dates back to November 2014 – this mainly involves technical support from NASA and exchanging entry, descent and landing (EDL) technology, deep space communications, telemetry and navigation support, hardware advice, and interplanetary mission and planetary protection advice and consultation.
“We’re particularly excited about an upcoming SpaceX project that would build upon a current “no-exchange-of-funds” agreement we have with the company,” NASA Deputy Administrator Dava Newman wrote in a NASA blog post today.
“In exchange for Martian entry, descent, and landing data from SpaceX, NASA will offer technical support for the firm’s plan to attempt to land an uncrewed Dragon 2 spacecraft on Mars.”
“This collaboration could provide valuable entry, descent and landing data to NASA for our journey to Mars, while providing support to American industry,” NASA noted in a statement.
The amended agreement with NASA also makes mention of sharing “Mars Science Data.”
As of today, the identity, scope and weight of any potential science payload is undefined and yet to be determined.
Perhaps it could involve a suite of science instruments from NASA, or other entities, such as cameras and spectrometers characterizing various aspects of the Martian environment.
In the case of NASA, the joint agreement states that data collected with NASA assets is to be released within a period not to exceed 6 months and published where practical in scientific journals.
The Red Dragon envisioned for blastoff to the Red Planet as soon as 2018 would launch with no crew on board on a critical path finding test flight that would eventually pave the way for sending humans to Mars – and elsewhere in the solar system.
“Red Dragon Mars mission is the first test flight,” said Musk.
“Dragon 2 is designed to be able to land anywhere in the solar system.”
However, the Dragon 2 alone is far too small for a round trip mission to Mars – lasting some three years or more.
“Wouldn’t be fun for longer journeys. Internal volume ~size of SUV.”
Furthermore, for crewed missions it would also have to be supplemented with additional modules for habitation, propulsion, cargo, science, communications and more. Think ‘The Martian’ movie to get a realistic idea of the complexity and time involved.
Red Dragon’s blastoff from KSC pad 39A is slated to take place during the Mars launch window opening during April and May 2018.
The inaugural liftoff of the Falcon Heavy is currently scheduled for late 2016 after several years postponement.
If all goes well, Red Dragon could travel to Mars at roughly the same time as NASA’s next Mission to Mars – namely the InSight science lander, which will study the planets deep interior with a package of seismometer and heat flow instruments.
InSight’s launch on a United Launch Alliance Atlas V is targeting a launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018. Liftoff was delayed from this year due to a flaw in the French-built seismometer.
Whoever wants to land on Mars also has to factor in the relevant International treaties regarding ‘Planetary Protection’ requirements.
Wherever the possibility for life exists, the worlds space agency’s who are treaty signatories, including NASA, are bound to adhere to protocols limiting contamination by life forms from Earth.
SpaceX intends to take planetary protection seriously. Under the joint agreement, SpaceX is working with relevant NASA officials to ensure proper planetary protection procedures are followed. One of the areas of collaboration with NASA is for them to advise SpaceX in the development a Planetary Protection Plan (PPP) and assist with the implementation of a PPP including identifying existing software/tools.
Red Dragon is derived from the SpaceX crew Dragon vehicle currently being developed under contract for NASA’s Commercial Crew Program (CCP) to transport American astronauts back and forth to low Earth orbit and the International Space Station (ISS).
SpaceX and Boeing were awarded commercial crew contracts from NASA back in September 2014.
Both firms hope to launch unmanned and manned test flights of their SpaceX Crew Dragon and Boeing CST-100 Starliner spacecraft to the ISS starting sometime in 2017.
The crew Dragon is also an advanced descendent of the original unmanned cargo Dragon that has ferried tons of science experiments and essential supplies to the ISS since 2012.
To enable propulsive landings, SpaceX recently conducted hover tests using a Dragon 2 equipped with eight side-mounted SuperDraco engines at their development testing facility in McGregor, TX.
These are “Key for Mars landing,” SpaceX wrote.
“We are closer than ever before to sending American astronauts to Mars than anyone, anywhere, at any time has ever been,” Newman states.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
The recovered SpaceX Falcon 9 first stage booster that successfully carried out history’s first upright touchdown from a just flown rocket onto a droneship at sea, has just been moved back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.
Space photographers and some lucky tourists coincidentally touring through Cape Canaveral Air Force Station in the right place at the right time on a tour bus, managed to capture exquisite up close images and videos (shown above and below) of the rockets ground transport on Tuesday, April 19, along the route from its initial staging point at Port Canaveral to a secure area on KSC.
It was quite a sight to the delight of all who experienced this remarkable moment in space history – that could one day revolutionize space flight by radically slashing launch costs via recycled rockets.
The boosters nine first stage Merlin 1 D engines were wrapped in a protective sheath during the move as seen in the up close imagery.
The SpaceX Falcon 9 had successfully conducted a dramatic propulsive descent and soft landing on a barge some 200 miles offshore in the Atlantic Ocean on April 8, about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 cargo mission for NASA to the International Space Station (ISS).
The used Falcon 9 booster then arrived back into Port Canaveral, Florida four days later, overnight April 12, after being towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The spent 15 story tall Falcon 9 booster was transported to KSC by Beyel Bros. Crane and Rigging, starting around 9:30 a.m.
After initial cleaning and clearing of hazards and processing to remove its four landing legs at the Port facility, the booster was carefully lowered by crane horizontally into a retention cradle on a multiwheel combination Goldhofer/KMAG vehicle and hauled by Beyel to KSC with a Peterbilt Prime Mover truck.
The Falcon 9 was moved to historic Launch Complex 39A at KSC for processing inside SpaceX’s newly built humongous hanger located at the pad perimeter.
Indeed this Falcon 9 first stage is now residing inside the pad 39A hanger side by side with the only other flown rocket to be recovered; the Falcon 9 first stage that accomplished a land landing back at the Cape in December 2015 – as shown in this image from SpaceX CEO Elon Musk titled “By land and sea”.
Watch this video of the move taken from a tour bus:
SpaceX engineers plan to conduct a series of some 12 test firings of the first stage Merlin 1 D engines to ensure all is well operationally in order to validate that the booster can be re-launched.
It may be moved back to Space Launch Complex-40 for the series of painstakingly inspections, tests and refurbishment.
SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.
The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.
The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.
Whenever it happens, it will count as the first relaunch of a used rocket in history.
SpaceX has leased Pad 39A from NASA and is renovating the facilities for future launches of the existing upgraded Falcon 9 as well as the Falcon Heavy currently under development.
Landing on the barge was a secondary goal of SpaceX and not part of the primary mission sending science experiments and cargo to the ISS crew under a resupply contract with for NASA.
Watch this SpaceX Falcon 9/Dragon CRS-8 launch video from my video camera placed at the pad:
Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Engineers at NASA’s Johnson Space Center in Houston used the space station’s high tech robotic arm to pluck the small module known as the Bigelow Expandable Activity Module (BEAM) out from the unpressurized rear truck section of the recently arrived SpaceX Dragon cargo freighter, and added it onto the orbiting laboratory complex.
BEAM was manufactured by Las Vegas-based Bigelow Aerospace under a $17.8 million contract with NASA. It will remain joined to the station for at least a two-year test period.
The 3115 pound (1413 kg) BEAM will test the use of an expandable space habitat in microgravity with humans for the first time.
It was extracted from the Dragon’s trunk overnight with the robotic Canadarm2 and then installed on the aft port of the Tranquility module at 5:36 a.m. EDT over a period of about 4 hours. The station was flying over the Southern Pacific Ocean at the moment of berthing early Saturday.
NASA astronaut and ISS Expedition 47 crew member Tim Kopra snapped a super cool photo of BEAM in transit, shown above.
BEAM was carried to orbit in a compressed form inside the Dragon’s truck following the April 8 blast off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 resupply mission for NASA to the ISS.
BEAM is a prototype inflatable habitat that could revolutionize the method of construction of future habitable modules intended for use both in Low Earth Orbit (LEO) as well as for deep space expeditions Beyond Earth Orbit (BEO) to destinations including the Moon, Asteroids and Mars.
The advantage of expandable habitats is that they offer a much better volume to weight ratio compared to standard rigid metallic structures such as all of the current ISS pressurized modules.
It is constructed of lighter weight reinforced fabric rather that metal. This counts as the first test of an expandable module and investigators want to determine how it fares with respect to protection again solar radiation, space debris and the temperature extremes of space.
Furthermore they also take up much less space inside the payload fairing of a rocket during launch.
Watch this animation showing how Canadarm2 transports BEAM from the Dragon spacecraft to a side berthing port on Tranquility where it will soon be expanded.
Current plans call for the module to be expanded in late May with air. It will expand to nearly five times from its compressed size of 8 feet in diameter by 7 feet in length to roughly 10 feet in diameter and 13 feet in length. Once inflated it will provide 565 cubic feet (16 m3) of habitable volume.
Exactly how it will expand is also an experiment and could happen in multiple ways. Therefore the team will exercise great caution and carefully monitor the inflation and check for leaks.
The astronauts will first enter BEAM about a week after the expansion. Thereafter they will visit it about 2 or 3 times per year for several hours to retrieve sensor data and assess conditions, say NASA officials.
Visits could perhaps occur even frequently more if NASA approves. says Bigelow CEO Robert Bigelow.
BEAM is an extraordinary test bed in itself.
But Robert Bigelow hopes that BEAM can be used to conduct science experiments after maybe a six month shakedown cruise, if all goes well, and NASA approves a wider usage.
Bigelow Aerospace has already taken in the next step in expandable habitats.
Earlier this week, Bigelow and rocket builder United Launch Alliance (ULA) announced they are joining forces to develop and launch the B330 expandable commercial habitat module in 2020 on an Atlas V. It is about 20 times larger and far more capable. Details in my story here.
Robert Bigelow says he hopes that NASA will approve docking of the B330 at the ISS.
The SpaceX Dragon spacecraft delivered almost 7,000 pounds of cargo.
CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
SpaceX has released a slew of up close photos showing the sensational “super smooth” touchdown last week of a Falcon 9 booster on a tiny droneship at sea located several hundred miles (km) off the East coast of Florida.
“This time it really went super smooth,” Hans Koenigsmann, SpaceX VP of Flight Reliability, told Universe Today at the NorthEast Astronomy and Space Forum (NEAF) held in Suffern, NY. “The rest is history almost.”
The dramatic propulsive descent and soft landing of the SpaceX Falcon 9 first stage took place last Friday, April 8 about 9 minutes after blasting off from Cape Canaveral Air Force Station at 4:43 p.m. EDT on the Dragon CRS-8 resupply mission for NASA to the International Space Station (ISS).
The breathtaking new photos show the boosters central Merlin 1D engine refiring to propulsively slow the first stage descent with all four landing legs unfurled and locked in place at the bottom and all four grid fins deployed at the top.
Why did it all go so well, comparing this landing to the prior attempts? Basically the return trajectory was less challenging due to the nature of the NASA payload and launch trajectory.
“We were more confident about this droneship landing,” Koenigsmann said at NEAF.
“I knew the trajectory we had [for CRS-8] was more benign, although not super benign. But certainly benigner than for what we had before on the SES-9 mission, the previous one. The [droneship] landing trajectory we had for the previous one on SES-9 was really challenging.”
“This one was relatively benign. It was really maybe as benign as for the Orbcomm launch [in December 2015] where we had the land landing.”
The diminutive ocean landing platform measures only about 170 ft × 300 ft (52 m × 91 m). SpaceX formally dubs it an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The ocean going ship is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks.
It was stationed some 200 miles off shore of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.
“The CRS-8 launch was one of the easiest ones we ever had.”
The revolutionary rocket recovery event counts as the first successful droneship landing of a rocket in history and is paving the way towards eventual rocket recycling aimed at dramatically slashing the cost of access to space.
The final moments of the 15 story tall boosters approach and hover landing was captured up close in stunning high resolution imagery recorded by multiple remote cameras set up right on the ocean going platform by SpaceX photographer Ben Cooper.
Landing the booster on land rather than at sea was actually an option this time around. But SpaceX managers wanted to try and nail a platform at sea landing to learn more and validate their calculations and projections.
“As Elon Musk said at the post-landing press conference of Friday, we could have actually come back to land- to land this one on land,” Koenigsmann elaborated.
“But we decided to land on the drone ship first to make sure that on the droneship we had worked everything out!”
“And that’s exactly what happened. So I felt this was only going out a little bit on the limb,” but not too much.”
Before the CRS-8 launch, Koenigsmann had rated the chances of a successful landing recovery rather high.
Three previous attempts by SpaceX to land on a droneship at sea were partially successful, as the stage made a pinpoint flyback to the tiny droneship, but it either hit too hard or tipped over in the final moments when a landing leg failed to fully deploy or lock in place.
“Everything went perfect with the launch,” Koengismann said. “We just still have to do the post launch data review.”
“I am really glad this went well.”
This recovered Falcon 9 booster finally arrived back into Port Canaveral, Florida four days later in the early morning hours of Tuesday, April 12 at about 1:30 a.m. EDT.
The primary goal of the Falcon 9 launch on April 8 was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).
Dragon arrived at the station on Sunday, April 10, loaded with 3 tons of supplies, science experiments and the BEAM experimental expandable module.
Landing on the barge was a secondary goal of SpaceX and not part of the primary mission for NASA.
Watch this launch video from my video camera placed at the pad:
Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com
The recovered booster will be cleaned and defueled, says SpaceX spokesman John Taylor.
SpaceX engineers will conduct a series of 12 test firings to ensure all is well operationally and that the booster can be re-launched.
SpaceX hopes to refly the recovered booster in a few months, perhaps as early as this summer.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
Even if we beat global warming, and survive long enough to face and survive the next ice age, Earth will still die. Even if we build a peaceful civilization, protect the planet from asteroids, fight off mutant plagues and whatever else comes our way, life on Earth will die. No matter what we do, the Sun will reach the end of its life, and render Earth uninhabitable.
So reaching for the stars is imperative. What sounds unrealistic to a great many people is a matter of practicality for people knowledgeable about space. To survive, we must have more than Earth.
A project launched by billionaire Yuri Milner, and backed by Mark Zuckerberg, intends to send tiny spacecraft to our nearest stellar neighbour, the Alpha Centauri system. With an expert group assembled to gauge the feasibility, and with the support of eminent cosmologist Stephen Hawking, this idea is gaining traction.
The distance to the Centauri system is enormous: 4.3 light years, or 1.34 parsecs. The project plans to use lasers to propel the craft, which should mean the travel time would be approximately 30 years, rather than the 30,000 year travel time that current technology restricts us to.
Of course, there are still many technological hurdles to overcome. The laser propulsion system itself is still only a nascent idea. But theoretically it’s pretty sound, and if it can be mastered, should be able to propel space vehicles at close to relativistic speeds.
There are other challenges, of course. The tiny craft will need robust solar sails as part of the propulsion system. And any instruments and cameras would have to be miniaturized, as would any communication equipment to send data back to Earth. But in case you haven’t been paying attention, humans have a pretty good track record of miniaturizing electronics.
Though the craft proposed are tiny, no larger than a microchip, getting them to the Alpha Centauri system is a huge step. Who knows what we’ll learn? But if we’re ever to explore another solar system, it has to start somewhere. And since astronomers think it’s possible that the Centauri system could have potentially habitable planets, it’s a great place to start.
The SpaceX Falcon 9 that triumphantly accomplished history’s first upright landing of the spent first stage of a rocket on a barge at sea – after launching a critical cargo payload to orbit for NASA – sailed back into port at Cape Canaveral overnight in the wee hours of this morning, April 12, standing tall.
The recovered 15 story tall Falcon 9 booster arrived back into Port Canaveral, Florida at about 130 a.m. early today, towed atop the ocean going platform that SpaceX dubs an ‘Autonomous Spaceport Drone Ship’ or ASDS.
The ship is named “Of Course I Still Love You” after a starship from a novel written by Iain M. Banks. The landing platform measures only about 170 ft × 300 ft (52 m × 91 m).
A small crowd of excited onlookers and space photographers savored and cheered the incredible moment that is surely changing the face and future of space exploration and travel.
The two stage SpaceX Falcon 9 rocket boasting over 1.5 million pounds of thrust originally launched on Friday, April 8 at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
The primary goal of the Falcon 9 launch was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).
Before the launch, SpaceX managers rated the chances of a successful landing recovery rather high.
Three previous attempts by SpaceX to land on a barge at sea were partially successful, as the stage made a pinpoint flyback to the tiny ship but either hit too hard or tipped over in the final moments when a landing leg failed to fully deploy or lock in place.
“We were very optimistic of the chances of a successful landing on this mission,” Hans Koenigsmann told Universe Today in an exclusive post landing interview at the NorthEast Astronomy and Space Forum (NEAF) held in Suffern, NY.
Coincidentally, today marks two major anniversaries in the history of space flight; the 55th anniversary of the launch of Russia’s Yuri Gagarin, the first man in space on Vostok-1 on April 12, 1961; and the 35th anniversary of the launch of shuttle Columbia on America’s first space shuttle mission (STS-1) on April 12, 1981 with John Young and Bob Crippen.
The vision of SpaceX’s billionaire founder and CEO Elon Musk is to dramatically slash the cost of access to space by recovering the firms rockets and recycling them for reuse – so that launching rockets will one day be nearly as routine and cost effective as flying on an airplane.
The stage will now be painstakingly inspected, tested and refurbished.
The essential next step after recovery is recycling. Musk said he hopes to re-launch the booster this year.
At liftoff, Dragon was loaded with over 3.5 tons of research experiments and essential supplies for the six man crew living aboard the orbiting science complex.
Watch this launch video from my video camera placed at the pad:
Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com
The Dragon CRS-8 cargo ship successfully arrived at the station on Sunday, April 10 and was joined to the million pound station at the Earth-facing port of the Harmony module.
The secondary objective was to try and land the Falcon 9 first stage on the ASDS done ship located some 200 miles off shore in the Atlantic Ocean.
The action-packed and propulsive landing took place some 10 minutes after liftoff.
In the final moments of the descent to the drone ship, one of the first stage Merlin 1D engines was reignited to slow the boosters descent speed as the quartet of side-mounted landing legs at the boosters base were unfurled, deployed and locked into place.
The entire launch and landing sequence was webcast live on NASA TV and by SpaceX.
The recovered booster atop the “Of Course I Still Love You” barge was towed back to port by the Elsbeth III tug.
“Home sweet home”, said my friend and veteran space photographer Julian Leek, who witnessed the boosters arrival back in port overnight.
“It was really a sight to see. Pilots and tugs did a well coordinated job to bring her in.”
After daylight dawned, a crane lifted the recovered booster into a storage cradle where it will remain upright for a few days. Then it will be lowered and placed horizontally for transport a few miles north to a SpaceX processing hanger back at pad 39A at the Kennedy Space Center.
The booster will be cleaned and defueled, SpaceX spokesman John Taylor told the media.
SpaceX engineers will conduct a series of 12 test firings to ensure all is well operationally and that the booster can be re-launched.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
The U.S. SpaceX Dragon cargo craft arrived at the ISS following a carefully choreographed orbital chase inaugurated by a spectacular launch atop an upgraded SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station, Florida, on Friday, April 8.
As the massive Earth orbiting outpost was soaring some 250 miles (400 kilometers) over the Pacific Ocean west of Hawaii, British astronaut Tim Peake of ESA (European Space Agency), with the able assistance of NASA’s Jeff Williams, successfully captured the SpaceX Dragon CRS-8 resupply ship with the station’s Canadian-built robotic arm.
Peake painstakingly maneuvered and deftly grappled Dragon with the snares at the terminus of the 57 foot long (19 meter long) Canadarm2 at 7:23 a.m. EDT for installation on the million pound orbital lab complex.
“Looks like we’ve caught a Dragon,” Peake radioed back to Mission Control. The orbital operational was webcast live on NASA TV.
“Awesome capture by crewmate Tim Peake,” said fellow NASA crewmate Tim Kopra who snapped a series of breathtaking images of the approach and capture.
Ground controllers at Mission Control in Houston then issued commands to carefully guide the robotic arm holding the Dragon freighter to the Earth-facing port on the bottom side of the Harmony module for its month long stay at the space station.
The ship was finally bolted into place at 9:57 a.m. EDT as the station flew 250 miles (400 km) over southern Algeria.
Watch this NASA video compiling all the highlights of the arrival and mating of the SpaceX Dragon on April 10, 2016 carrying the BEAM habitat module and 3.5 tons of science and supplies. Credit: NASA
Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.
In a historic first, the arrival of the SpaceX Dragon cargo spacecraft marks the first time that two American cargo ships are simultaneously docked to the ISS. The Orbital ATK Cygnus CRS-6 cargo freighter only just arrived on March 26 and is now installed at a neighboring docking port on the Unity module.
Cygnus was launched to the ISS atop a ULA Atlas V barely two weeks earlier on March 22 – as I reported on and witnessed from the Kennedy Space Center press site.
“With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six,” say NASA officials.
The Dragon spacecraft is delivering almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory which was carried to orbit inside the Dragon’s unpressurized truck section.
BEAM is a prototype inflatable habitat that the crew will soon pluck from the Dragon’s truck with the robotic arm for installation on a side port of the Harmony module.
CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.
Friday’s launch marks the first for a Dragon since the catastrophic failure of the SpaceX Falcon 9 last June.
Dragon will remain at the station until it returns for Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the west coast of Baja California. It will be packed with almost 3,500 pounds off cargo and numerous science samples, including those biological samples collected by 1 year ISS crew member Scott Kelly, for return to investigators, hardware and spacewalking tools, some additional broken hardware for repair and some items of trash for disposal.
Video caption: 5 camera views of the SpaceX Falcon 9 launch of the CRS-8 mission to the ISS on 04/08/2016. Credit: Jeff Seibert/AmericaSpace
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
All around, today, April 8, was a great day for the future of space exploration. SpaceX successfully restarted their critical cargo flights for NASA to stock the International Space Station (ISS) with essential supplies and groundbreaking science experiments, while the innovative firm also successfully landed the first stage of their Falcon 9 rocket on a barge at sea.
The triumphant ‘Return to Flight’ launch of the upgraded SpaceX Falcon 9 with the Dragon CRS-8 cargo freighter was the primary goal of Friday’s launch and validated the hardware fixes put in place following the catastrophic failure of the previous Dragon CRS-7 cargo ship two minutes after liftoff on June 28, 2015 due to a faulty strut in the boosters second stage.
Landing the booster safely on a drone ship at sea was the secondary goal of the flight but is critical towards achieving the vision of rocket recovery and reusability at the heart of SpaceX Founder Elon Musk’s dream of slashing the cost of access to space and one day establishing a ‘City on Mars.”
The weather was fantastic in the sunshine state as the two stage SpaceX Falcon 9 rocket boasting over 1.3 million pounds of thrust launched on time Friday at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
The Dragon spacecraft is delivering almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory.
Friday’s launch marks the first for a Dragon since the catastrophic failure of the SpaceX Falcon 9 last June.
CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.
Packed aboard the Dragon’s unpressurized trunk section is the experimental Bigelow Expandable Activity Module (BEAM) – an experimental expandable capsule that the crew will attach to the space station. The 3115 pound (1413 kg) BEAM will test the use of an expandable space habitat in microgravity. BEAM will expand to roughly 13-feet-long and 10.5 feet in diameter after it is installed.
Among the new experiments arriving to the station will be Veggie-3 to grow Chinese lettuce in microgravity as a followup to Zinnias recently grown, an investigation to study muscle atrophy and bone loss in space, using microgravity to seek insight into the interactions of particle flows at the nanoscale level and use protein crystal growth in microgravity to help in the design of new drugs to fight disease, as well as reflight of 25 student experiments from Student Spaceflight Experiments Program (SSEP) Odyssey II payload that were lost during the CRS-7 launch failure.
“The cargo will allow investigators to use microgravity conditions to test the viability of expandable space habitats, assess the impact of antibodies on muscle wasting, use protein crystal growth to aid the design of new disease-fighting drugs and investigate how microbes could affect the health of the crew and their equipment over a long duration mission,” said NASA Deputy Administrator Dava Newman.
Dragon reached its preliminary orbit about 10 minutes after launch and deployed its solar arrays as targeted and as seen on the live webcast. It now begins a carefully choreographed series of thruster firings to reach the space station.
After a 2 day orbital chase Dragon is set to arrive at the orbiting outpost on Sunday, April 10.
NASA astronaut Jeff Williams and ESA (European Space Agency) astronaut Tim Peake will then reach out with the station’s Canadian-built robotic arm to grapple and capture the Dragon spacecraft.
Ground commands will be sent from Houston to the station’s arm to install Dragon on the Earth-facing bottom side of the Harmony module for its stay at the space station. Live coverage of the rendezvous and capture will begin at 5:30 a.m. on NASA TV, with installation set to begin at 9:30 a.m.
In a historic first, the launch of a SpaceX Dragon cargo spacecraft sets the stage for the first time that two American cargo ships will be simultaneously attached to the ISS. The Orbital ATK Cygnus cargo freighter launched just launched on March 22 and arrived on March 26 at a neighboring docking port on the Unity module.
Dragon will remain at the station until it returns for Earth on May 11 for a parachute assisted splash down in the Pacific Ocean off the west coast of Baja California. It will be packed with almost 3,500 pounds off cargo and numerous science samples, including those biological samples collected by 1 year ISS crew member Scott Kelly, for return to investigators, hardware and spacewalking tools, some additional broken hardware for repair and some items of trash for disposal.
SpaceX CRS-8 is the eighth of up to 20 missions to the ISS that SpaceX will fly for NASA under the Commercial Resupply Services (CRS) contract.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, ULA, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:
Apr 9/10: “NASA and the Road to Mars Human Spaceflight programs” and “Curiosity explores Mars” at NEAF (NorthEast Astronomy and Space Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club – http://rocklandastronomy.com/neaf.html
Apr 12: Hosting Dr. Jim Green, NASA, Director Planetary Science, for a Planetary sciences talk about “Ceres, Pluto and Planet X” at Princeton University; 7:30 PM, Amateur Astronomers Assoc of Princeton, Peyton Hall, Princeton, NJ – http://www.princetonastronomy.org/
Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html
NASA is about to reach another milestone in the development of its Space Launch System (SLS.) The SLS is designed to take humans on future deep space missions, and the heart of the system is the RS-25 engine. March 10th will be the first test of this flight-model engine, which will be the most powerful rocket in the world, once in its final configuration.
SLS is the future of space flight for NASA. It’s planned uses include missions to Mars and to an asteroid. The rockets for the system have to be powerful, and they have to have a proven track record. The RS-25 fits the bill: they are a high-performance system that has seen much use.
The RS-25 has been used on over 135 shuttle missions, and they have seen over 1 million seconds of hot-fire time during ground testing. For the SLS, four RS-25s will be used to generate over 2 million pounds of thrust, and they will operate in conjunction with two solid rocket boosters.
“This year is all about collecting the data we need to adapt these proven engines for SLS’s first flight,” says Steve Wafford, the SLS Engines Manager. The team conducted a series of tests on a developmental RS-25 engine last year, but this is the first one that will fly.
Ronnie Rigney is the RS-25 project manager at the Stennis Space Center, where the tests are being conducted. “Every test is important, but there really is a different energy level associated with flight engines. It’s hard to describe the feeling you get knowing you’re going to see that engine lift off into the sky one day soon. It’s a very exciting time for all of us here,” said Rigney.
The SLS will be built in 3 stages, called blocks:
Block 1 will have a 70 metric ton lift capability.
Block 1B will be more powerful for deeper missions and will have a 105 metric ton lift capability.
Block 2 will add a pair of solid or liquid propellant boosters and will have a 130 metric ton lift capability.
Each of these blocks will use 4 RS-25 engines, and in its Block 2 configuration it will be the most powerful rocket in the world.
Engine #2059 is more than just a test engine. It will be used on the second SLS exploration mission (EM2), which will carry 4 astronauts into lunar orbit to test the SLS spacecraft.
“You can’t help but be excited about the test on A-1 (test stand,) especially when you realize that the engines that carried us to the moon and that carried astronauts on 135 space shuttle missions were tested on this very same stand. We’re just adding to a remarkable history of space exploration,” said Stennis Space Center Director Rick Gilbrech.
The team at Stennis feels the characteristic enthusiasm that NASA is known for. “We’re not just dreaming of the future. We’re enabling it to happen right now,” said Rigney.
Though the March 10th test is definitely a milestone, there’s still lots more work to do. Testing on RS-25 engines and flight controllers will continue, and in 2017, testing of the core stage will take place. 4 RS-25 engines will be tested at the same time.