SpaceX Sets Ambitious Falcon 9 ‘Return to Flight’ Agenda with Dual December Blastoffs

SpaceX ‘Return to Flight’ launch upcoming in December 2015 features 11 ORBCOMM satellites. SpaceX Falcon 9 rocket on Pad 40 at Cape Canaveral, FL, prior to launch on July 14, 2014 on prior ORBCOMM OG2 mission with six OG2 satellites. The USAF has certified the Falcon 9 to compete for US national security launches. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket after successful static hot-fire test on June 13 on Pad 40 at Cape Canaveral, FL.  Launch is slated for Friday, June 20, 2014  on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com
SpaceX ‘Return to Flight’ launch upcoming in December 2015 features 11 ORBCOMM satellites. SpaceX Falcon 9 rocket on Pad 40 at Cape Canaveral, FL, prior to launch on July 14, 2014 on prior ORBCOMM OG2 mission with six OG2 satellites. The USAF has certified the Falcon 9 to compete for US national security launches. Credit: Ken Kremer/kenkremer.com

SpaceX plans an ambitious ‘Return to Flight’ agenda with their Falcon 9 rocket comprising dual launches this coming December, nearly six months after their failed launch in June 2015 that culminated in the total mid-air loss of the rocket and NASA cargo bound for the crew aboard the International Space Station (ISS).

The double barreled salvo of Falcon 9 blastoffs both involve launches of commercial communications satellites – first for Orbcomm followed by SES – and are specifically devised to allow a gradually ramp up in complexity, as SpaceX introduces fixes for the launch failure and multiple improvements to the boosters overall design. Continue reading “SpaceX Sets Ambitious Falcon 9 ‘Return to Flight’ Agenda with Dual December Blastoffs”

See EPIC Views of Rotating Earth Daily from NASA’s New DSCOVR Observatory Website

Earth rotates through an entire day as captured in this animation of 22 still images taken on Sept. 17, 2015 by NASA’s Earth Polychromatic Imaging Camera (EPIC) camera on the Deep Space Climate Observatory (DSCOVR) spacecraft. Credits: NASA

At long last, beautiful new high resolution views of the rotating Earth can be seen daily by everyone at a new NASA website – all courtesy of images taken by NASA’s EPIC camera on board the Deep Space Climate Observatory (DSCOVR) spacecraft. And as seen in the time-lapse animation above, they provide a wonderful new asset for students everywhere to learn geography that’s just a finger tip away!

The EPIC camera, which stands for Earth Polychromatic Imaging Camera (EPIC), is located a million miles away on the DSCOVR real time space weather monitoring satellite and is designed to take full disk color images of the sunlit side of our home planet multiple times per day.

The EPIC NASA images are literally just a finger tip away, after a 17 year wait to get the satellite into the launch queue since it was first proposed by former VP Al Gore. They are all easily viewed at NASA’s new EPIC camera website which went online today, Monday, October 19, 2015.

To see the daily sequence of rotating images, visit the EPIC website link: http://epic.gsfc.nasa.gov/

This EPIC image was taken on Oct.17 and shows the Australian continent and a portion of Asia.

EPIC image taken on Oct. 17, 2015 showing the continent of Australia and a portion of Asia. Credit: NASA
EPIC image taken on Oct. 17, 2015 showing the continent of Australia and a portion of Asia. Credit: NASA

An annotated guide map illustration identifying the visible land masses accompanies each EPIC image and follows along as the Earth rotates daily.

What a great geography learning tool for student classrooms worldwide!

Annotated guide map identifying the visible land masses accompanies each EPIC image. Credit: NASA
Annotated guide map identifying the visible land masses accompanies each EPIC image. Credit: NASA

DSCOVR is a joint mission between NOAA, NASA, and the U.S Air Force (USAF) that is managed by NOAA. The satellite and science instruments were provided by NASA and NOAA.

EPIC is a four megapixel CCD camera and telescope mounted on DSCOVR and orbiting around the L1 Lagrange Point – a neutral gravity point that lies on the direct line between Earth and the sun.

NASA says that once per day they will post “at least a dozen new color images of Earth acquired from 12 to 36 hours earlier” taken by the agency’s EPIC camera. The EPIC images will be stored in an archive searchable by date and continent.

The image sequence will show “the Earth as it rotates, thus revealing the whole globe over the course of a day.”

“The effective resolution of the DSCOVR EPIC camera is somewhere between 6.2 and 9.4 miles (10 and 15 kilometers),” said Adam Szabo, DSCOVR project scientist at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, in a statement.

“The color Earth images are created by combining three separate single-color images to create a photographic-quality image equivalent to a 12-megapixel camera. The camera takes a series of 10 images using different narrowband filters — from ultraviolet to near infrared — to produce a variety of science products. The red, green and blue channel images are used to create the color images. Each image is about 3 megabytes in size.”

EPIC will capture “a constant view of the fully illuminated Earth as it rotates, providing scientific observations of ozone, vegetation, cloud height and aerosols in the atmosphere.”

Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014.  Credit: Ken Kremer/kenkremer.com
Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014. Credit: Ken Kremer/kenkremer.com

The couch sized probe was launched atop a SpaceX Falcon 9 on Feb. 11, 2015 from Cape Canaveral, Florida, to start the million mile journey to its deep space observation post at L1. The rocket was funded by the USAF.

The primary goal of the $340 million DSCOVR satellite is to monitor the solar wind and aid very important forecasts of space weather at Earth from L1.

L1 is located 1.5 million kilometers (932,000 miles) sunward from Earth. At L1 the gravity between the sun and Earth is perfectly balanced and the DSCOVR satellite orbits about that spot just like a planet.

The mission is vital because its solar wind observations are crucial to maintaining accurate space weather forecasts to protect US infrastructure such as power grids, aviation, planes in flight, all types of Earth orbiting satellites for civilian and military needs, telecommunications, ISS astronauts and GPS systems.

This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away.  Credit: NASA/NOAA
This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credit: NASA/NOAA

DSCOVR was first proposed in 1998 by then US Vice President Al Gore as the low cost ‘Triana’ satellite to take near continuous views of the Earth’s entire globe to feed to the internet as a means of motivating students to study math and science.

It was also dubbed “Goresat.”

The probe was eventually resurrected and partially rebuilt at NASA Goddard Space Flight Center as a much more capable Earth science satellite that would also conduct the space weather observations.

But Triana was shelved for purely partisan political reasons and the satellite was placed into storage at NASA Goddard.

Thus the practical and teachable science and daily scenes of the gorgeously rotating Earth were lost – until now!

Former VP Al Gore was clearly delighted with today’s launch of NASA’s EPIC website in this pair of tweets:

“Today @NASA launched its site for #DSCOVR’s daily images. I look forward to seeing more from #DSCOVR,” tweeted Al Gore.

“DSCOVR’s site displaying new daily images of Earth from L1 was launched today! Congratulations to all those who made this happen!”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER will launch in February 2015 atop SpaceX Falcon 9 rocket.  Credit: Ken Kremer/kenkremer.com
NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER launched in February 2015 atop SpaceX Falcon 9 rocket. Credit: Ken Kremer/kenkremer.com
NOAA/NASA/USAF Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room.  Probe will launch in February atop SpaceX Falcon 9 rocket.  Credit: Ken Kremer - kenkremer.com
NOAA/NASA/USAF Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Probe launched in February 2015 atop SpaceX Falcon 9 rocket. Credit: Ken Kremer/kenkremer.com

Boeing Rejects Aerojet Rocketdyne Bid for ULA and Affirms Vulcan Rocket Support, Lockheed Martin Noncommittal

Rendering of the ULA Vulcan rocket blasting off. United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

Boeing has officially and publicly rejected a bid by Aerojet Rocketdyne to buy rocket maker United Launch Alliance (ULA), which the firm co-owns with rival aerospace giant Lockheed Martin. Furthermore Boeing affirmed support for ULA’s new next generation Vulcan rocket now under development, a spokesperson confirmed to Universe Today.

Aerojet Rocketdyne, which supplies critical rocket engines powering ULA’s fleet of Atlas and Delta rockets, recently made an unsolicited offer to buy ULA for approximately $2 Billion in cash, as Universe Today reported last week.

The Vulcan is planned to replace all of ULA’s existing rockets – which are significantly more costly than those from rival launch provider SpaceX, founded by billionaire entrepreneur Elon Musk.

Boeing never “seriously entertained” the Aerojet-Rocketdyne buyout offer, Universe Today confirmed with Boeing spokesperson Cindy Anderson.

Meanwhile in stark contrast to Boeing, Lockheed Martin has “no comment” regarding the Aerojet-Rocketdyne offer to buy ULA, Universe Today confirmed with Lockheed Martin Director External Communications Matt Kramer.

Furthermore Lockheed Martin is not only noncommittal about the future of ULA but is also “currently assessing our options” concerning the development of ULA’s Vulcan rocket, Kramer told me.

“With regard to reports of an unsolicited proposal for ULA, it is not something we seriously entertained for a number of reasons,” Boeing spokesperson Anderson told Universe Today.

“Regarding Aerojet and ULA, as a matter of policy Lockheed Martin does not have a comment,” Lockheed Martin spokesman Kramer told Universe Today.

Vulcan - United Launch Alliance (ULA)  next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

ULA was formed in 2006 as a 50:50 joint venture between Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

Who owns ULA is indeed of significance to all Americans – although most have never head of the company – because ULA holds a virtual monopoly on launches of vital US government national security payloads and the nation’s most critical super secret spy satellites that safeguard our national defense 24/7. ULA’s rocket fleet also launched scores of NASA’s most valuable science satellites including the Curiosity Mars rover, Dawn and New Horizons Pluto planetary probe.

Since 2006 ULA has enjoyed phenomenal launch success with its venerable fleet of Atlas V and Delta IV rockets.

“ULA is a huge part of our strategic portfolio going forward along with our satellites and manned space business. This bid we’ve really not spent much time on it at all because we’re focusing on a totally different direction,” said Chris Chadwick, president and chief executive of Boeing Defense, Space & Security, on Sept. 16 at the Air Force Association’s annual technology expo in National Harbor, Maryland – according to a report by Space News.

Boeing offered strong support for ULA and the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space that can propel payloads to low Earth orbit as well as throughout the solar system – including Pluto. It is slated for an inaugural liftoff in 2019.

Vulcan’s continued development is being funded by Lockheed Martin and Boeing, but only on a quarterly basis.

The key selling point of Vulcan is that it will be an all American built rocket and it will dramatically reduce launch costs to compete toe to toe with the SpaceX Falcon rocket family.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” ULA VP Dr. George Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

And there is a heated competition on which of two companies will provide the new American built first stage engine that will replace the Russian-built RD-180 that currently powers the ULA Atlas V.

Vulcan’s first stage will most likely be powered by the BE-4 engine being developed by the secretive Blue Origin aerospace firm owned by billionaire Jeff Bezos.

This week ULA announced an expanded research agreement with Blue Origin about using the BE-4.

But ULA is also evaluating the AR-1 liquid fueled engine being developed by Aerojet-Rocketdyne – the company that wants to buy ULA.

The Atlas V dependence on Russia’s RD-180’s landed at the center of controversy after Russia invaded Crimea in the spring of 2014, raising the ire of Congress and enactment of a ban on their use several years in the future.

ULA is expected to make a final decision on which first stage engine to use between Blue Origin and Aerojet-Rocketdyne, sometime in 2016.

The engine choice would clearly be impacted if Aerojet-Rocketdyne buys ULA.

Boeing for its part says they strongly support ULA and continued development of the Vulcan.

“Boeing is committed to ULA and its business, and to continued leadership in all aspects of space, as evidenced by the recent announcement of an agreement with Blue Origin,” Boeing spokesperson Anderson told me.

Lockheed Martin in complete contrast did not express any long term commitment to Vulcan and just remarked they were merely “actively evaluating continued investment,” as is their right as a stakeholder.

“We have made no long-term commitments on the funding of a new rocket, and are currently assessing our options. The board is actively evaluating continued investment in the new rocket program and will continue to do so,” Lockheed Director, External Communications Matt Kramer told Universe Today.

Another factor is that Aerojet-Rocketdyne has also sought to buy the rights to manufacture the Atlas V from ULA, which is currently planned to be retired several years after Vulcan is introduced, officials have told me.

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
Aerojet-Rocketdyne made a bid to buy ULA, manufacturer of the Atlas V, for approximately $2 Billion. MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

The Atlas V enjoys unparalleled success. Earlier this month on Sept. 2, ULA conducted its 99th launch with the successful blastoff of an Atlas V with the MUOS-4 military communications satellite from Cape Canaveral Air Force Station for the U.S. Navy.

Boeing has also chosen the Atlas V as the launcher that will soon propel Americans astronauts riding aboard the commercially developed Boeing CST-100 ‘Starliner’ taxi to the Earth-orbiting International Space Station (ISS).

Starliner will eventually blastoff atop Vulcan after the Atlas V is retired in the next decade.

Lockheed provided me this update on Vulcan and ULA on Sept 21:

“Lockheed Martin is proud of ULA’s unparalleled track record of mission success, with 99 consecutive successful launches to date. We support the important role ULA plays in providing the nation with assured access to space. ULA’s Vulcan rocket takes the best performance elements of Atlas and Delta and combines them in a new system that will be superior in reliability, cost, weight, and capability. The government is working to determine its strategy for an American-made engine and future launch services. As they make those determinations we’ll adjust our strategy to make sure we’re aligned with the government’s objectives and goals.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

First view of upper half of the Boeing CST-100 'Starliner' crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
First view of upper half of the Boeing CST-100 ‘Starliner’ crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

SpaceX Provides a Peek Inside Their New Crew Vehicle

A look inside SpaceX's 'Crew Dragon' from an exterior window. Credit: SpaceX

SpaceX released new images today of the sleek interior of “Crew Dragon,” SpaceX’s spacecraft designed to carry humans to the International Space Station, and possibly other future destinations. If things go as hoped, the first commercial crew flights under the Commercial Crew Transportation Capability (CCtCap) program contract could take place in 2017.

UPDATE: SpaceX added a new video of the Crew Dragon in orbit, which you can see below, in addition to a video that provides views of the interior.

The futuristic interior is “designed to be an enjoyable ride,” says SpaceX. Four windows provide passengers with views of Earth, the Moon, and the wider Solar System right from their seats. The seats — which don’t look especially plush — are made from high-grade carbon fiber and Alcantara cloth.

SpaceX provided just snapshots of parts of the interior, and so its hard to get a feel for what the entire crew cabin will be like and how roomy it might be.

But with the white and black interior and the clean lines, the imagery is reminiscent of the interior of the spacecraft in “2001: A Space Odyssey.” See below for the non-HAL 9000 computer screen, and well as more images and a video scanning the interior:


Exterior of the Crew Dragon capsule. Credit: SpaceX.
Exterior of the Crew Dragon capsule. Credit: SpaceX.

NASA named four astronauts earlier this year who will fly on the first U.S. commercial spaceflights on either SpaceX or Boeing crew transportation vehicles. The agreement between NASA and the commercial companies is that at least one member of the two person crews for the initial flights will be a NASA astronaut – who will be “on board to verify the fully-integrated rocket and spacecraft system can launch, maneuver in orbit, and dock to the space station, as well as validate all systems perform as expected, and land safely,” according to a NASA statement.

The second crew member would likely be a company test pilot, but the details remain to be worked out.

There’s not been indication as of yet if the explosion of the SpaceX Falcon 9 rocket and Dragon cargo ship loaded with supplies for the International Space Station (ISS) on June 28, 2015 will have an impact on when the first crewed Dragon flights will take place. The explosion happened about 148 seconds after an initially successful launch. It was later determined an in-flight failure of a critical support strut inside the second stage liquid oxygen tank holding a high pressure helium tank in the Falcon 9 rocket was the likely cause of the accident.

Crew Dragon features an advanced emergency escape system to swiftly carry astronauts to safety if something were to go wrong. Credit: SpaceX.
Crew Dragon features an advanced emergency escape system to swiftly carry astronauts to safety if something were to go wrong. Credit: SpaceX.

SpaceX said the escape system provides a safe way to carry astronauts to safety if there is a problem and the crew would experience about the same G-forces as a ride at Disneyland.

Crew Dragon’s displays will provide real-time information on the state of the spacecraft’s capabilities – anything from Dragon’s position in space, to possible destinations, to the environment on board. Credit: SpaceX.
Crew Dragon’s displays will provide real-time information on the state of the spacecraft’s capabilities – anything from Dragon’s position in space, to possible destinations, to the environment on board. Credit: SpaceX.
Crew Dragon has an Environmental Control and Life Support System (ECLSS) that provides a comfortable and safe environment for crew members. During their trip, astronauts on board can set the spacecraft’s interior temperature to between 65 and 80 degrees Fahrenheit. Credit: SpaceX.
Crew Dragon has an Environmental Control and Life Support System (ECLSS) that provides a comfortable and safe environment for crew members. During their trip, astronauts on board can set the spacecraft’s interior temperature to between 65 and 80 degrees Fahrenheit. Credit: SpaceX.
Crew Dragon will be a fully autonomous spacecraft that can also be monitored & controlled by on board astronauts and SpaceX mission control in Hawthorne, California. Credit: SpaceX.
Crew Dragon will be a fully autonomous spacecraft that can also be monitored & controlled by on board astronauts and SpaceX mission control in Hawthorne, California. Credit: SpaceX.

Source: SpaceX

Aerojet-Rocketdyne Seeks to Buy United Launch Alliance for $2 Billion

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

America’s premier rocket launch services provider United Launch Alliance, or ULA, may be up for sale according to media reports, including Reuters and the Wall Street Journal. Any such sale would result in a major shakeup of the American rocket launching business with far reaching implications.

Aerojet-Rocketdyne has apparently made a bid to buy ULA for approximately $2 Billion in cash, based on behind the scenes information gathered from unnamed sources.

ULA was formed in 2006 as a 50:50 joint venture between aerospace giants Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

According to Reuters, Aerojet Rocketdyne recently proffered a $2 billion cash offer to buy ULA from Lockheed Martin and Boeing.

“Aerojet Rocketdyne board member Warren Lichtenstein, the chairman and chief executive of Steel Partners LLC, approached ULA President Tory Bruno and senior Lockheed and Boeing executives about the bid in early August,” sources told Reuters.

ULA’s Bruno declined to comment on the story via twitter.

“Wish I could, but as a matter of policy, we don’t comment on this type of story,” Bruno tweeted in response to inquiries.

Aerojet-Rocketdyne currently is a major supplier to ULA by providing first and second stage engines for use in the Atlas V and Delta IV rockets. They also manufacture the Space Shuttle Main Engines now being repurposed as the RS-25 to serve as first stage engines for NASA’s mammoth new SLS deep space rocket.

Since 2006 ULA has enjoyed phenomenal launch success with its venerable fleet of Atlas V and Delta IV rockets and also enjoyed a virtual launch monopoly with the US Government and for the nations most critical national security military payloads.

And just last week, ULA conducted its 99th launch with the successful blastoff of an Atlas V with the MUOS-4 military communications satellite from Cape Canaveral Air Force Station for the U.S. Navy.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-7 mission for the U.S. Air Force launches from Cape Canaveral Air Force Station, Fl, on July 23, 2015.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-7 mission for the U.S. Air Force launches from Cape Canaveral Air Force Station, Fl, on July 23, 2015. Credit: Ken Kremer/kenkremer.com

But the recent emergence of rival SpaceX – founded by billionaire Elon Musk – with the lower cost Falcon 9 rocket and the end of the ULA’s launch monopoly for high value military and top secret spy satellites has the potential to undermine ULA’s long term business model and profitability. In May, the US Air Force certified the SpaceX Falcon 9 for national security payload launches.

Furthermore a Congressional ban on importing the Russian-made RD-180 first stage engines that power the Atlas V rocket, that takes effect in a few years, has threatened the rockets future viability. The Atlas V dependence on Russia’s RD-180’s landed at the center of controversy after Russia invaded Crimea in the spring of 2014.

To date the Atlas V enjoys a 100 percent success rate after over 50 launches.

The Falcon 9 no longer enjoys a 100 percent success rate after the launch failure on June 28, 2015 on a critical NASA cargo resupply mission to the International Space Station (ISS).

The Atlas V will also serve as the launch vehicle for Boeing’s new ‘Starliner’ space taxi to transport astronauts to the ISS as soon as 2017 – detailed in my onsite story here.

In response to the Congressional RD-180 engine ban and relentless cost pressures from SpaceX, ULA CEO Tory Bruno and ULA Vice President for Advanced Concepts and Technology George Sowers announced ULA will develop a cost effective new rocket named Vulcan using American made engines.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” Dr. Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space and slated for an inaugural liftoff in 2019.

Vulcan - United Launch Alliance (ULA)  next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

However, Lockheed Martin and Boeing are only providing funds to ULA on a quarterly basis to continue development of the Vulcan.

Vulcan’s first stage will most likely be powered by the BE-4 engine being developed by the secretive Blue Origin aerospace firm owned by billionaire Jeff Bezos.

Interestingly, ULA is also evaluating the AR-1 liquid fueled engine being developed by Aerojet-Rocketdyne.

The final decision on which engine to use is expected sometime in 2016.

The engine choice could clearly be impacted if Aerojet-Rocketdyne buys ULA.

Aerojet-Rocketdyne has also sought to buy the rights to manufacture the Atlas V from ULA, which is currently planned to be retired several years after Vulcan is introduced.

To this writer, ULA would seem to be worth far more than $2 Billion. They own manufacturing and rocket launch facilities on both coasts and in several states.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Orbital ATK on the Rebound With Antares Return to Flight in 2016

Two RD-181 integrated with the Orbital ATK Antares first stage air frame at the Wallops Island, Virginia Horizontal Integration Facility (HIF). Return to flight launch is expected sometime during Spring 2016. Credit: NASA/ Terry Zaperach

Orbital ATK is on the rebound with return to flight of their Antares rocket slated in early 2016 following the catastrophic launch failure that doomed the last Antares in October 2014 on a resupply mission for NASA to the International Space Station (ISS).

Engineers are making “excellent progress” assembling a modified version of Antares that is currently on track to blast off as soon as March 2016 with the company’s Cygnus resupply ship and resume critical deliveries of research experiments and life sustaining provisions to the multinational crews serving aboard the orbiting outpost.

“We are on track for the next Antares launch in early 2016,” said David Thompson, President and Chief Executive Officer of Orbital ATK in a progress update.

Resuming Antares launches is a key part of the company’s multipronged effort to fulfil their delivery commitments to NASA under the Commercial Resupply Services (CRS) contract.

“The focus all along has been to do everything we can to fulfill our commitments to delivering cargo to the space station for NASA,” Thompson stated.

“After the Antares launch failure last October … our team has been sharply focused on fulfilling that commitment.”

Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA's Wallops Flight Facility launch pad on Oct 26 - 2 days before the ??Orb-3? launch failure on Oct 28, 2014.  Credit: Ken Kremer - kenkremer.com
Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA’s Wallops Flight Facility launch pad on Oct 26 – 2 days before the Orb-3 launch failure on Oct 28, 2014. Credit: Ken Kremer – kenkremer.com

The key milestone was to successfully re-engine Antares with a new type of first stage engine that completely eliminates use of the original AJ26 engines that were refurbished 40 year leftovers – the NK-33 from Russia’s abandoned manned moon landing program.

After the launch failure, Orbital managers decided to ditch the trouble plagued AJ-26 and “re-engineered” the vehicle with the new RD-181 Russian-built engines that were derived from the RD-191.

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Orbital ATK holds a Commercial Resupply Services (CRS) contract from NASA worth $1.9 Billion to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware spread out over eight Cygnus cargo delivery flights to the ISS.

NASA has recently supplemented the CRS contract with three additional Cygnus resupply deliveries in 2017 and 2018.

However, the Cygnus missions were put on hold when the third operational Antares/Cygnus flight was destroyed in a raging inferno about 15 seconds after liftoff on the Orb-3 mission from launch pad 0A at NASA’s Wallops Flight Facility on Virginia’s eastern shore.

Until Antares flights can safely resume, Orbital ATK has contracted with rocket maker United Launch Alliance (ULA) to launch a Cygnus cargo freighter atop an Atlas V rocket for the first time, in early December – as I reported here.

The Antares rocket is being upgraded with the new RD-181 main engines powering the modified first stage core structure that replace the troublesome AJ26 engines whose failure caused the Antares Orb-3 launch explosion on Oct. 28, 2014.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

“We are making excellent progress in resuming our cargo delivery service to the International Space Station for NASA under the Commercial Resupply Services (CRS) contract,” said company officials.

Orbital ATK engineering teams have been working diligently on “integrating and testing the new RD-181 main engines.”

After engineers finished acceptance testing and certification of the RD-181, the first dual engine set was shipped to Orbital’s Wallops Island integration facility. They arrived in mid-July. A second set is due to arrive in the fall.

“The RD-181 engine provides extra thrust and higher specific impulse, significantly increasing the payload capacity of the Antares rocket. This state-of-the-art propulsion system is a direct adaptation of the RD-191 engine, which completed an extensive qualification and certification program in 2013, accumulating more than 37,000 seconds of total run time,” said Scott Lehr, President of Orbital ATK’s Flight Systems Group, in a statement.

Engineers and technicians have now “integrated the two RD-181 engines with a newly designed and built thrust frame adapter and modified first stage airframe.”

Then they will add new propellant feed lines and first stage avionics systems.

Then comes the moment of truth. A “hot fire” test on the launch pad will be conducted by either the end of 2015 or early 2016 “to verify the vehicle’s operational performance and compatibility of the MARS launch complex.”

“Significant progress has been made in the manufacture and test of the modified hardware components, avionics and software needed to support the new engines,” said Mike Pinkston, Vice President and General Manager of Orbital ATK’s Antares Program.

“We are solidly on track to resume flying Antares in 2016.”

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Simultaneously, teams have been working hard to repair the Wallops launch pad which was damaged when the doomed Antares plummeted back to Earth and exploded in a hellish inferno witnessed by thousands of spectators and media including myself.

Repairs are expected to be completed by early 2016 to support a launch tentatively planned for as soon as March 2016.

SpaceX, NASA’s other commercial cargo company under contract to ship supplies to the ISS also suffered a launch failure of with their Falcon 9/Dragon cargo delivery rocket on June 28, 2015.

NASA is working with both forms to restart the critical ISS resupply train as soon as can safely be accomplished.

Be sure to read Ken’s earlier eyewitness reports about last October’s Antares failure at NASA Wallops and ongoing reporting about Orbital ATK’s recovery efforts – all here at Universe Today.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orbital ATK, SpaceX, Boeing, ULA, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Aug 29-31: “MUOS-4 launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

What’s Coming After Hubble and James Webb? The High-Definition Space Telescope

Artist’s conception of proposed proposed High-Definition Space Telescope, which would have a giant segmented mirror and unprecedented resolution at optical and UV wavelengths. (NASA/GSFC)

Decades after its momentous launch, the ever popular Hubble Space Telescope merrily continues its trajectory in low-earth orbit, and it still enables cutting-edge science. Astronomers utilized Hubble and its instruments over the years to obtain iconic images of the Crab Nebula, the Sombrero Galaxy, the Ultra Deep Field, and many others that captured the public imagination. Eventually its mission will end, and people need to plan for the next telescope and the next next telescope. But what kinds of space exploration do scientists want to engage in 20 years from now? What technologies will they need to make it happen?

A consortium of physicists and astronomers attempt to answer these questions as they put forward and promote their bold proposal for a giant high-resolution telescope for the next generation, which would observe numerous planets, stars, galaxies and the distant universe in stunning detail. In addition to encouraging support for scientific discoveries that could be made, the telescope’s advocates also must investigate the potential technical challenges involved in constructing and launching it. An event organized at a SPIE optics and photonics conference in San Diego, California on Tuesday served as another step in this long-term process.

The Association of Universities for Research in Astronomy (AURA), an influential organization of astronomers and physicists from 39 mostly US-based institutions, which operates telescopes and observatories for NASA and the National Science Foundation, laid out its proposal of a multi-wavelength High-Definition Space Telescope (HDST) in a new report last month. Julianne Dalcanton of the University of Washington and Sara Seager of the Massachusetts Institute of Technology—veteran astronomers with impressive knowledge and experience with galactic and planetary science—led the committee who researched and wrote the 172-page document.

“It’s the science community staking out a vision for what’s the next thing to do,” said Phil Stahl, former SPIE president and senior physicist at NASA’s Marshall Space Flight Center. Speaking at the optics and photonics conference about the telescope provided “an opportunity to speak to the people who will be building it,” as many of the audience work on instrumentation.

As the HDST’s name suggests, its 12-meter wide segmented mirror would give it much higher resolution than any current or upcoming telescopes, allowing astronomers to focus on many Earth-like “exoplanets” orbiting stars outside our solar system up to 100 light-years away, resolve stars even in the Andromeda Galaxy, and image faraway galaxies dating back 10 billion years of cosmic time into our universe’s past. The 24x increased sharpness compared to Hubble and the upcoming James Webb Space Telescope is similar to the dramatic improvement of an UltraHD TV over a standard television, according to Marc Postman, an astronomer at the Space Telescope Science Institute.

A simulated spiral galaxy as viewed by Hubble and the proposed High Definition Space Telescope at a lookback time of approximately 10 billion years. Image credit: D. Ceverino, C. Moody, G. Snyder, and Z. Levay (STScI)
A simulated spiral galaxy as viewed by Hubble and the proposed High Definition Space Telescope at a lookback time of approximately 10 billion years. Image credit: D. Ceverino, C. Moody, G. Snyder, and Z. Levay (STScI)

In particular, “exoplanets are the main science driver for the HDST,” said Seager. “Are there other planets like Earth, and are there signs of life on them?” Her and her colleagues’ excitement came through as she explained that, if the telescope comes to fruition, they predict it would find dozens, if not hundreds, of Earth-like planets in the habitable zone. They would look for evidence of oxygen and water vapor as well, transforming astronomers’ knowledge of such planets, currently limited to only 1 or 2 candidates detected by the Kepler telescope.

The Hubble telescope required 20 years of planning, technological development, and budget allocations before it was launched in 1990. Planning for NASA’s James Webb Space Telescope (JWST), which was also first proposed by AURA, began not long afterward. Rome wasn’t built in a day, but many years of preparations and research will come to fruition as it is set to launch in 2018. Its scientists and engineers hope that, like Hubble, it will produce spectacular images with its infrared cameras, become a household name, and expand our understanding of the universe.

Nevertheless, James Webb has been plagued by a ballooning budget and numerous delays, and Congress nearly terminated it in 2011. The telescope proved controversial even among some astronomers and space exploration advocates. As scientists develop the next generation of telescopes, JWST remains the multi-ton multi-billion-dollar elephant in the room. David Redding of Jet Propulsion Laboratory was quick to point out that, “for Hubble, almost every technology had to be invented!” For the proposed HDST, the task appears less daunting.

Nonetheless, scientists have technological challenges and difficult questions to look forward to. For example, they must choose among multiple competing designs and consider different methods for getting the telescope into space, possibly utilizing the Space Launch System (SLS). They also expect to leverage research on JWST’s sunshield, which will be necessary to keep the proposed telescope at an extremely stable temperature, and on its detectors, when developing optimized gigapixel-class cameras. Vibrational stability on the order of one trillionth of a meter will present an additional challenge for them.

If the astronomical community comes on board and prioritizes this project for the next decade, then it likely would be designed and constructed in the 2020s and then launched in the 2030s. In the meantime, they will need major investments of funding, research and development. According to Seager, it will certainly be worth it “to observe the whole universe at 100 parsec-scale resolution” and “discover dozens of Earths.” Adding emphasis, “that’s the killer app,” Postman concluded.

Congressional Slashes to NASA Commercial Crew Force Bolden to ‘Buy Russian’ rather than ‘Buy American’

US Congressional cuts to NASA’s commercial crew program forced NASA to buy more seats for US astronauts to launch on Russian Soyuz capsules like this one launched from the Baikonur Cosmodrome in Kazakhstan on Wednesday, July 22, 2015 EDT, rather than the American crew capsules under development by Boeing and SpaceX for NASA. Here the Soyuz TMA-17M capsule carries Expedition 44 Soyuz Commander Oleg Kononenko of the Russian Federal Space Agency (Roscosmos), Flight Engineer Kjell Lindgren of NASA, and Flight Engineer Kimiya Yui of the Japan Aerospace Exploration Agency (JAXA) into orbit to begin their five month mission on the International Space Station. Credits: NASA/A. Gemignani

In the face of drastic funding cuts by the US Congress to NASA’s commercial crew program (CCP) aimed at restoring America’s indigenous launch capability to fly our astronauts to the International Space Station (ISS), NASA Administrator Charles Bolden is being forced to spend another half a billion dollars for seats on Russia’s Soyuz spacecraft instead of astronaut transport ships built by American workers in American manufacturing facilities.

The end effect of significantly slashing NASA’s Fiscal 2016 commercial crew budget request by both the US Senate and the US House is to tell NASA to ‘Buy Russian’ rather than to ‘Buy American.’

The $490 million of US taxpayer dollars will pay for six astronaut seats on the Soyuz manned capsule in 2018 and 2019 – that are now required due to uncertainty over whether the pair of new crewed transporters being built by Boeing and SpaceX for NASA will actually be available in 2017 as planned.

Furthermore the average cost per seat under the new contract with Russia rises to $81.7 million compared to about $76 million for the most recent contract, an increase of about 7 percent.

In response to the Congressional CCP budget cuts, NASA Administrator Bolden sent a letter notifying Congressional lawmakers about the agency’s new contract modifications with the Russian space agency about future crewed flights to the space station.

“I am writing to inform you that NASA, once again, has modified its current contract with the Russian government to meet America’s requirements for crew transportation services. Under this contract modification, the cost of these services to the U.S. taxpayers will be approximately $490 million,” Bolden wrote in an Aug. 5 letter to the leaders of the House and Senate committees responsible for deciding NASA’s funding.

The budget situation is completely inexplicable given the relentless pressure from Congress, led be Sen. John McCain, on the Department of Defense and US aerospace firm United Launch Alliance (ULA) to stop purchasing and using the Russian-made RD-180 engines for the 100% reliable Atlas V rocket by 2019 – as a way to punish Russian’s President Vladimir Putin and his allies.

Because on the other hand, those same congressional ‘leaders’ clearly have no hesitation whatsoever in putting money into Putin’s allies pockets via the NASA commercial crew account – at the expense of jobs for American workers and while simultaneously potentially endangering the ISS as a hedge against possible Russian launch failures. Multiple Russian and American rockets have suffered launch failures over the past year.

Boeing and SpaceX were awarded contracts by NASA Administrator Bolden in September 2014 worth $6.8 Billion to complete the development and manufacture of their privately developed CST-100 and Crew Dragon astronaut transporters under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

The purpose of CCP is to end our “sole reliance” on the Russian Soyuz capsule and launch US astronauts on US rockets and spaceships from US soil by 2017.

With CCP we would continue to work cooperatively with the Russians to everyone’s benefit – but not be totally dependent on them.

Under NASA’s CCtCAP contract, the first orbital flights of the new ‘space taxis’ launching our astronauts to the International Space Station had been slated to blastoff in 2017. But that schedule was entirely dependent on NASA’s ability to pay both aerospace companies as they made progress on completing the contacted milestones absolutely critical to achieving flight status.

Bolden had already notified Congress in February that the new contract modification would become necessary if Congress failed to fully fund the CCP program to enable the 2017 flights.

Since the forced retirement of NASA’s trio of shuttle orbiters in 2011, all American and ISS partner astronauts have been forced to hitch a ride on the Soyuz for flights to the ISS and back.

“Our plans to return launches to American soil make fiscal sense,” Bolden said recently. “It currently costs $76 million per astronaut to fly on a Russian spacecraft. On an American-owned spacecraft, the average cost will be $58 million per astronaut.”

Instead, the Obama Administrations 2016 request for commercial crew (CCP) amounting to $1.244 Billion was dealt another blow, and slashed to only $900 million and $1.0 Billion by the Senate and House committees respectively.

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA
Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA

And this is just the latest in a lengthy string of cuts by Congress – which has not fully funded the Administration’s CCP funding requests, since its inception in 2010.

The budget significant budget slashes amounting to 50% or more by Congress, have already forced NASA to delay the first commercial crew flights of the private ‘space taxis’ from 2015 to 2017.

“Due to their continued reductions in the president’s funding requests for the agency’s Commercial Crew Program over the past several years, NASA was forced to extend its existing contract with the Russian Federal Space Agency (Roscosmos) to transport American astronauts to the International Space Station. This contract modification is valued at about $490 million,” said NASA.

So the net effect of Congressional CCP cuts has been to prolong US sole reliance on the Russian Soyuz manned capsule at a cost to the US taxpayers of hundreds of millions of dollars.

Indeed, given the crisis in Ukraine and recent Russian launch failures, one might think the Congress would eagerly embrace wanting to reduce our total dependence on the Russians for human spaceflight.

“Unfortunately, for five years now, the Congress, while incrementally increasing annual funding, has not adequately funded the Commercial Crew Program to return human spaceflight launches to American soil this year, as planned,” Bolden’s letter explains.

“This has resulted in continued sole reliance on the Russian Soyuz spacecraft as our crew transport vehicle for American and international partner crews to the ISS.”

“In 2010, I presented to Congress a plan to partner with American industry to return launches to the United States by 2015 if provided the requested level of funding.”

So if Congress had funded the commercial crew program, the US would have launched its first human crews on the CST-100 and crew Dragon to the ISS this year – 2015.

NASA has selected experienced astronauts Robert Behnken, Eric Boe, Douglas Hurley and Sunita Williams to work closely with The Boeing Company and SpaceX to develop their crew transportation systems and provide crew transportation services to and from the International Space Station.  Credits: NASA
NASA has selected experienced astronauts Robert Behnken, Eric Boe, Douglas Hurley and Sunita Williams to work closely with The Boeing Company and SpaceX to develop their crew transportation systems and provide crew transportation services to and from the International Space Station. Credits: NASA

Bolden also repeated his request to work with the leaders of Congress in the best interests of our country.

“I am asking that we put past disagreements behind us and focus our collective efforts on support for American industry – the Boeing Corporation and SpaceX – to complete construction and certification of their crew vehicles so that we can begin launching our crews from the Space Coast of Florida in 2017.”

Currently, both Boeing and SpaceX are on track to meet the 2017 objective – but only if the CCP funds are restored.

Otherwise the contracts will have to be renegotiated and progress will be severely reduced – all at added cost. Another instance of pennywise and pound foolish.

“Our Commercial Crew Transportation Capability (CCtCap) contractors are on track today to provide certified crew transportation systems in 2017,” says Bolden.

“Reductions from the FY 2016 request for Commercial Crew proposed in the House and Senate FY 2016 Commerce, Justice, Science, and Related Agencies appropriations bills would result in NASA’s inability to fund several planned CCtCap milestones in FY 2016 and would likely result in funds running out for both contractors during the spring/summer of FY 2016.”

“If this occurs, the existing fixed-price CCtCap contracts may need to be renegotiated, likely resulting in further schedule slippage and increased cost.”

Overall, it’s just a terrible state of affairs for the future of US human spaceflight, as Congress once again places partisan politics ahead of the interests of the American people.

The fact is that the commercial crew space taxis from Boeing and SpaceX are the fastest, cheapest and most efficient pathway to get our astronaut crews to the Earth orbiting space station and back.

Common sense says we must restore our independent path to the ISS – safely and as quickly as possible.

SpaceX and Boeing are building the private crew Dragon and CST-100 spaceships to resume launching US astronauts from US soil aboard Falcon 9 and Atlas V rockets (similar to these) to the International Space Station in 2017 - depending on funding from Congress. Credit:  Ken Kremer/kenkremer.com
SpaceX and Boeing are building the private crew Dragon and CST-100 spaceships to resume launching US astronauts from US soil aboard Falcon 9 and Atlas V rockets (similar to these) to the International Space Station in 2017 – depending on funding from Congress. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Moon Transits Earth in Eye-poppingly EPIC View from 1 Million Miles Away

This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credit: NASA/NOAA

This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credit: NASA/NOAA
See YouTube version and EPIC camera below[/caption]

An eye-poppingly ‘EPIC’ view of the sunlit far side of the Moon transiting the sunlit side of Earth was recently captured by NASA’s Earth Polychromatic Imaging Camera (EPIC) camera from one million miles away. “Wow!” – is an understatement!

The stunning animation of the Moon crossing in front of the Earth, shown above, and seemingly unlike anything else, was created from a series of images taken in July by NASA’s EPIC camera flying aboard the orbiting Deep Space Climate Observatory (DSCOVR), a space weather monitoring satellite, according to a NASA statement.

Have just witnessed NASA’s New Horizons flyby of the Pluto-Charon double planet system, the similarity to what some call the Earth-Moon double planet system is eerie. You could imagine ones heart going out to Earth’s Australian continent as an upside down version of Pluto’s bright heart shaped ‘Tombaugh Regio’ region in the southern hemisphere.

EPIC is a four megapixel CCD camera and telescope mounted on DSCOVR and orbiting at the L1 Lagrange Point – a neutral gravity point that lies on the direct line between Earth and the sun.

The goal of the $340 million DSCOVR is to monitor the solar wind and aid very important forecasts of space weather at Earth from L1.

EPIC will capture “a constant view of the fully illuminated Earth as it rotates, providing scientific observations of ozone, vegetation, cloud height and aerosols in the atmosphere.”

L1 is located 1.5 million kilometers (932,000 miles) sunward from Earth. At L1 the gravity between the sun and Earth is perfectly balanced and the DSCOVR satellite orbits about that spot just like a planet.

The EPIC images “were taken between 3:50 p.m. and 8:45 p.m. EDT on July 16, showing the moon moving over the Pacific Ocean near North America,” NASA said.

This image shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away.  Credits: NASA/NOAA
This image shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credits: NASA/NOAA

You can see Earth’s North Pole at the upper left side of the images which results from the orbital tilt of Earth from the vantage point of the spacecraft at the L1 Lagrange Point.

EPIC will take full disk color images of the sunlit side of Earth at least six times per day.

They will be made publically available by NASA at a dedicated website, when the camera starts its regular daily science observation campaign of the home planet in about a month during September.

NASA says the images will show varying views of the rotating Earth and they will be posted online some 12 to 36 hours after they are acquired.

Each image is actually a composite of three images taken in the red, green and blue channels of the EPIC camera to provide the final “natural color” image of Earth. Since the images are taken about 30 seconds apart as the moon is moving there is a slight but noticeable artifact on the right side of the moon, NASA explained.

Altogether, “ EPIC takes a series of 10 images using different narrowband spectral filters — from ultraviolet to near infrared — to produce a variety of science products. The red, green and blue channel images are used in these color images.”

EPIC should capture these Earth-Moon transits about twice per year as the orbit of DSCOVR crosses the orbital plane of the moon.

The closest analog according to NASA came in May 2008 when NASA’s Deep Impact spacecraft “captured a similar view of Earth and the moon from a distance of 31 million miles away. The series of images showed the moon passing in front of our home planet when it was only partially illuminated by the sun.”

We never see the far side of the moon from Earth since the bodies are tidally locked. And its quite apparent from the images, that the moon’s far side looks completely different from the side facing Earth. The far side lacks the large, dark, basaltic plains, or maria, that are so prominent on the Earth-facing side.

“It is surprising how much brighter Earth is than the moon,” said Adam Szabo, DSCOVR project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

“Our planet is a truly brilliant object in dark space compared to the lunar surface.”

DSCOVR is a joint mission between NOAA, NASA, and the U.S Air Force (USAF) that is managed by NOAA. The satellite and science instruments were provided by NASA and NOAA.

Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014.  Credit: Ken Kremer/kenkremer.com/AmericaSpace
Technician works on NASA Earth science instruments and Earth imaging EPIC camera (white circle) housed on NOAA/NASA Deep Space Climate Observatory (DSCOVR) inside NASA Goddard Space Flight Center clean room in November 2014. Credit: Ken Kremer/kenkremer.com

The couch sized probe was launched atop a SpaceX Falcon 9 on Feb. 11, 2015 from Cape Canaveral, Florida, to start a million mile journey to its deep space observation post. The rocket was funded by the USAF.

DSCOVR was first proposed in 1998 by then US Vice President Al Gore as the low cost ‘Triana’ satellite to take near continuous views of the Earth’s entire globe to feed to the internet as a means of motivating students to study math and science. It was eventually built as a much more capable Earth science satellite that would also conduct the space weather observations.

But Triana was shelved for purely partisan political reasons and the satellite was placed into storage at NASA Goddard and the science was lost until now.

It was also dubbed “Goresat.’

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Video caption: This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft’s Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth – one million miles away. Credit: NASA/NOAA

NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER will launch in February 2015 atop SpaceX Falcon 9 rocket.  Credit: Ken Kremer/kenkremer.com/AmericaSpace
NOAA/NASA Deep Space Climate Observatory (DSCOVR) undergoes processing in NASA Goddard Space Flight Center clean room. Solar wind instruments at right. DSCOVER launched in February 2015 atop SpaceX Falcon 9 rocket. Credit: Ken Kremer/kenkremer.com
Launch of NOAA DSCOVR satellite from Cape Canaveral Air Force Station on Feb. 11, 2015 to monitor solar storms and space weather.   Credit:  Julian Leek
Launch of NOAA DSCOVR satellite from Cape Canaveral Air Force Station on Feb. 11, 2015 to monitor solar storms and space weather. Credit: Julian Leek

Faulty Support Strut Likely Caused SpaceX Falcon 9 Rocket Failure: Elon Musk

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

The in-flight failure of a critical support strut inside the second stage liquid oxygen tank holding a high pressure helium tank in the Falcon 9 rocket, is the likely cause of the failed SpaceX launch three weeks ago on June 28, revealed SpaceX CEO and chief designer Elon Musk during a briefing for reporters held today, July 20, to explain why the critical cargo delivery run for NASA to the space station suddenly turned into a total disaster after a promising start.

The commercial booster and its cargo Dragon payload were unexpectedly destroyed by an overpressure event 139 seconds after a picture perfect blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on June 28 at 10:21 a.m. EDT.

Musk emphasized that the failure analysis is still “preliminary” and an “initial assessment” based on the investigation thus far. SpaceX has led the investigation efforts under the oversight of the FAA with participation from prime customers NASA and the U.S. Air Force.

The root cause appears to be that the second stage strut holding the high pressure helium tank inside the 2nd stage broke at a bolt – far below its design specification and thereby allowing the tank to break free and swing away.

“The strut that we believe failed was designed and certified to handle 10,000 lbs of force, but failed at 2,000 lbs, a five-fold difference,” Musk explained.

“During acceleration of the rocket to 3.2 G’s, the strut holding down the helium tank failed. Helium was released, causing the over pressurization event.”

To date no other issues have been identified as possible failure modes, Musk elaborated.

The helium tanks are pressurized to 5500 psi and were breached during the over pressurization. The purpose of the helium tanks is to pressurize the first and second stage propellant tanks.

SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

“We tested several hundred struts. On the outside they looked normal. But inside there was a problem,” Musk explained

“Detailed close-out photos of stage construction show no visible flaws or damage of any kind,” according to a SpaceX statement.

The struts are produced by an outside vendor that Musk would not identify. He added that in the future, SpaceX will likely choose a different vendor to manufacture the struts.

He said the struts were made from a type of stainless steel and would also likely be redesigned.

“The material of construction will be changed to Inconel,” Musk told me in response to a question.

Hundreds of the original type struts have been used to date on the first and second stages of the Falcon 9 with no issues. In the future, they will also be independently certified for use, by an outside contractor instead of the vendor.

The nine first stage Merlin 1D engines of the Falcon 9 were still firing nominally during the start of the mishap, said Musk. The first stage had nearly completed its planned firing duration when the explosion took place.

“The event happened very quickly, within 0.893 seconds,” Musk stated, from the first indication of an issue to loss of all telemetry.

“Preliminary analysis suggests the overpressure event in the upper stage liquid oxygen tank was initiated by a flawed piece of support hardware (a “strut”) inside the second stage,” noted SpaceX in a statement.

Video caption: Launch video of the CRS-7 launch on June 28, 2015 from a remote camera placed at Launch Complex 40. The launch would fail around two minutes later. Credit: Alex Polimeni/Spaceflight Now

The blastoff of the Dragon CRS-7 cargo mission for NASA was the first failure of the SpaceX Falcon 9 rocket after 18 straight successes and the firms first launch mishap since the failure of a Falcon 1 in 2008.

The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

Umbilicals away and detaching from SpaceX Falcon 9 launch  from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter.  Credit: Ken Kremer/kenkremer.com
Umbilicals away and detaching from SpaceX Falcon 9 launch from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter. Credit: Ken Kremer/kenkremer.com

The Dragon cargo freighter survived the explosion but was destroyed when it impacted the Atlantic Ocean.

“But the Dragon might have been saved if the parachutes had been deployed,” said Musk.

Unfortunately the software required to deploy the parachute was not loaded onboard.

“The new software required to deploy the parachutes will be included on all future Dragons, V1 and V2,” said Musk, referring to the cargo and crew versions of the SpaceX Dragon spaceship.

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

The NASA cargo was valued at about $110 million. The launch itself was not insured.

The investigation board is reviewing data from over 3,000 telemetry channels as well as video and physical debris, he noted.

The next launch of a Falcon 9 will be postponed at least a few months until “no earlier than September” Musk indicated.

Two Falcon 9 launches had been set for August from Vandenberg AFB and Cape Canaveral. And the next launch to the ISS had been slated for September on the Dragon CRS-8 mission.

Musk said the next payload to be launched aboard a Falcon 9 has yet to be determined.

Starting in 2017, the Falcon 9 will launch astronauts to the ISS aboard the Crew Dragon.

Overall CRS-7 was the seventh SpaceX commercial resupply services mission and the eighth trip by a Dragon spacecraft to the station since 2012.

CRS-7 marked the company’s seventh operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

………….

Learn more about SpaceX, ULA, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

July 21/22: “SpaceX, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings/afternoon for July 22 Delta IV launch of USAF WGS-7 satellite