XPRIZE Moon Robot Contest Deadline Pushed Back A Year To 2016

For the 18 teams racing to put a robot on the Moon, some good news — they have an extra year to get the job done. Citing the groups’ difficulty in technology and raising money, the Google Lunar XPRIZE competition said the teams will now have until Dec. 31, 2016 to accomplish their missions.

The challenge was first announced in 2007 and the number of teams has stayed fairly steady since at least 2010, when 21 teams were reported in a Universe Today story. Some of the groups are competing for milestone prizes, the latest of which will be announced Jan. 15.

Astrobiotic won two previous competitions for $500,000 (in mobility) and $250,000 (for imaging). The grand prize is still open to everybody, regardless if they choose to pursue the milestone prizes.

“We know the mission we are asking teams to accomplish is extremely difficult and unprecedented, not only from a technological standpoint, but also in terms of the financial considerations,” stated Robert Weiss, XPRIZE’s vice-chairman and president.

“It is for this reason that we have decided to extend the competition timeline. We firmly believe that a whole new economy around low-cost access to the Moon will be the result of the Google Lunar XPRIZE.”

While the deadline has been extended, the goal is the same: the winning team must ferry a robotic machine to the Moon, move 500 meters (1,640 feet) somehow (on, above or below the surface) and send two “mooncasts” back to Earth. In 2013, Weiss told Universe Today that some of the teams had signed launch contracts, but declined to provide many details due to confidentiality concerns.

You can see more details about the teams and their progress on the XPRIZE website. The grand prize is $20 million and there is an additional $10 million available in other prizes.

Robotic Moon Lander Concept Raises $942K, Meeting Goal With A Day To Go

Artist's conception of Lunar Mission One's robotic lander touching down on the surface. Credit: Lunar Missions Ltd.

Update, Dec. 18, 8:09 a.m. EST: Lunar Mission One closed its fundraising mission the night before at £672,447 ($1,052,413), short of its stretch goal of £700,000.

With just over a day to go in their crowdfunding campaign, a British group hoping to put a robotic lander on the moon in 2024 reached their fundraising goal of $932,000 (£600,000) overnight.

The money is supposed to move the project into more concrete phases after the founders spent seven years quietly developing their concept, but many of the details about the design and funding have yet to be unveiled.

“We plan to send an unmanned robotic landing module to the South Pole of the Moon – an area unexplored by previous missions,” the mission says on its Kickstarter page. “We’re going to use pioneering technology to drill down to a depth of at least 20m – 10 times deeper than has ever been drilled before – and potentially as deep as 100m.

“By doing this,” the statement adds, “we will access lunar rock dating back up to 4.5 billion years to discover the geological composition of the Moon, the ancient relationship it shares with our planet and the effects of asteroid bombardment. Ultimately, the project will improve scientific understanding of the early Solar System, the formation of our planet and the Moon, and the conditions that initiated life on Earth.”

Artist's conception of a moon drill that could potentially be used by Lunar Mission One's lunar lander. Credit: Lunar Missions Ltd.
Artist’s conception of a moon drill that could potentially be used by Lunar Mission One’s lunar lander. Credit: Lunar Missions Ltd.

“Stretch goals” for the organization include rewards for backers such as an e-commerce program, a massive open online course for educational purposes, a party for backers in London, and being “a leading role” in World Space Week 2015. The additional money, however, will also be used for drilling studies, putting together the science team and making a work plan.

With the money raised, the project now has the ambitious target of getting their lander on the moon by 2024. According to the schedule, the main mission contract should be awarded by 2017, design and development begins by 2018, and the final build commences in 2021.

RAL Space (which assisted with the Philae comet landing and 200 other space missions, according to the page) is serving as a technical advisor to the board. The project chair of Lunar Missions Ltd. (which is responsible for the project) is Ian Taylor, a former United Kingdom government science minister and co-chair of the parliamentary space committee.

As with other private ventures in space such as Mars One, however, Lunar Mission One is dealing with long timelines, a risky goal and a not-certain guarantee of success.

NASA and SpaceX targeting Dec. 19 for next Space Station Launch

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

NASA and SpaceX are now targeting Dec. 19 as the launch date for the next unmanned cargo run to the International Space Station (ISS) under NASA’s Commercial Resupply Services contract.

The fifth SpaceX cargo mission was postponed from Dec. 16 to Dec. 19 to “allow SpaceX to take extra time to ensure they do everything possible on the ground to prepare for a successful launch,” according to a statement from NASA.

The Dragon spacecraft will launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Both the Falcon 9 rocket and its Dragon spacecraft are in good health, according to NASA.

The mission dubbed SpaceX CRS-5 is slated for liftoff at 1:20 p.m.

An on time liftoff will result in a rendezvous with the ISS on Sunday. The crew would grapple the Dragon with the stations 57 foot long robotic arm at about 6 a.m.

The SpaceX Dragon capsule is snared by the International Space Station's Canadarm 2. Credit: NASA
The SpaceX Dragon capsule is snared by the International Space Station’s Canadarm 2. Credit: NASA

US astronaut and station commander Barry Wilmore will operate the Canadarm2 to capture the SpaceX Dragon when it arrives Sunday morning. ESA astronaut Samantha Cristoforetti will assist Wilmore working at a robotics workstation inside the domed Cupola module during the commercial craft’s approach and rendezvous.

The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.

The SpaceX CRS-4 mission to the ISS concluded with a successful splashdown on Oct 25 after a month long stay.

The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.

With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.

Orbital Sciences has now contracted United Launch Alliance (ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.

How NASA Filmed Humans Last Leaving The Moon, 42 Years Ago

Still of the Apollo 17 spacecraft leaving the moon on Dec. 14, 1972. Credit: NASA/YouTube (screenshot)

When Apollo 17 lifted off from the moon, a camera captured the movements of the spacecraft — even though nobody was left behind to, say, establish a lunar base. How was that possible? With a camera on the lunar rover that could be controlled — or even programmed — from Earth.

Pretty impressive technology for the takeoff 42 years ago yesterday (Dec. 14) in 1972, although it took three tries to get the technique right.

As the Smithsonian National Air and Space Museum explains in a 2011 blog post, the camera was available on Apollos 15, 16 and 17. The television camera communicated from Earth using a high-gain antenna on the rover, but there was a slight time delay for the radio waves to travel (a couple of seconds) between the Earth and the Moon.

So the engineers suggested moving the rover a certain distance from the lunar module and setting the camera to automatically tilt to show the lunar liftoff when commanded from Earth.

That was the plan, at least. On Apollo 15, the tilt mechanism malfunctioned and the camera never moved upwards, allowing the lunar module to slip out of sight. And while the attempt on Apollo 16 gave a longer view of the lunar module rising up, the astronauts actually parked the rover too close to it, which threw off the calculations and timing of the tilt upwards so it left view just a few moments into the flight.

Ed Fendall was the person doing the controlling. In an oral history for NASA done in 2000, he recalled how complex the procedure was.

Now, the way that worked was this. Harley Weyer, who worked for me, sat down and figured what the trajectory would be and where the lunar rover would be each second as it moved out, and what your settings would go to. That picture you see was taken without looking at it [the liftoff] at all. There was no watching it and doing anything with that picture. As the crew counted down, that’s a [Apollo] 17 picture you see, as [Eugene] Cernan counted down and he knew he had to park in the right place because I was going to kill him, he didn’t — and Gene and I are good friends, he’ll tell you that — I actually sent the first command at liftoff minus three seconds. And each command was scripted, and all I was doing was looking at a clock, sending commands. I was not looking at the television. I really didn’t see it until it was over with and played back. Those were just pre-set commands that were just punched out via time. That’s the way it was followed.

How To Take Photos Of Earth While Whizzing At 17,000 MPH

A timelapse photo taken by Don Pettit on the International Space Station. Credit: Don Pettit/NASA

When you’re flying above Earth in a spaceship or space station, taking a clear picture below is more than a point-and-shoot job. As NASA astronaut Don Pettit explains in this video, you need to account for the motion of your little craft to get the best pictures below. And Pettit should know, being a photographer who captured many stunning timelapses in space.

“Apart from everything else an astronaut does on orbit, photography is actually part of our job,” Pettit said in the video. “We take pictures of Earth and the surroundings of Earth, the upper atmosphere. These pictures, in themselves, represent a scientific dataset, recorded now for over 14 years.”

The video is called “From Above” and is a production of SmugMug films, who also did an interview with Pettit. As it turns out, much of the photography taken in space is not of Earth — it’s engineering photography of window smudges or electrical connections to help diagnose problems happening in space.

“These things need to be documented so the images can be downlinked for engineers on the ground to assess what’s happening to the systems on space station,” Pettit said in the interview. “We get training specifically on doing these engineering images, which, for the most part, are not really interesting to the public.”

A Martian Blue Snake, Brought To You By Canadians And A Spacecraft

A false-color image of part of Cerberus Fossae on Mars. The view shows two rifts intersecting with each other, with sand (in deep blue) and dust. Credit: NASA/JPL-Caltech/University of Arizona/Western University Planetary Sciences Division

Here’s the awesome thing about space and social media: in some cases, you can often follow along with a mission almost as soon as the images come to Earth. A group of Canadians is taking that to the next level this month as they take control of the 211th imaging cycle of a powerful camera on the Mars Reconnaissance Orbiter.

While some images need to be kept back for science investigations, the team is sharing several pictures a day on Twitter and on Facebook portraying the views they saw coming back from the High Resolution Imaging Science Experiment (HiRISE) camera. The results are astounding, as you can see in the images below.

“It’s mind-blowing to realize that when the team, myself included, first look at the images, we are likely the first people on Earth to lay eyes upon a portion of the Martian surface that may have not been imaged before at such high resolution,” stated research lead Livio Tornabene, who is part of Western University’s center for planetary science and exploration.

The team will capture up to 150 images between Nov. 30 and Dec. 12, and already have released close to two dozen to the public. Some of the best are below.

Mars Landing Recipe: Orion, A Big Rocket And Pretty-On-Paper Spacecraft

A futuristic Mars lander portrayed in a December 2014 video from Boeing called "The Path To Mars." Credit: Boeing / YouTube (screenshot)

Can the just-flown Orion spacecraft truly get us to Mars? NASA has been portraying the mission as part of the roadmap to the Red Planet, but there are observers who say a human landing mission is an unrealistic goal given the budget just isn’t there right now in Congress.

That doesn’t stop Boeing from dreaming, though. In this new video, the prime contractor for the future Space Launch System rocket suggests that going to Mars will take six spacecraft elements. Two are in the works right now — Orion and SLS — while a Mars lander and other bits are just ideas right now, but shown in the video.

According to Boeing, the missing elements include a deep-space tug, a habitat, a lander and a rocket designed to get up out of the Mars gravity well. They also suggest it will take several SLS launches to assemble all the pieces to bring humans to the Red Planet.

“I think we’ll be able to colonize Mars someday,” said Mike Raftery, director of Boeing Space Exploration Systems, in the video. “It’ll take time. It may take hundreds of years. But that’s not unusual for humans. It’s really about establishing a human foothold on the planet. It’s a natural evolution of humanity to take this challenge on.”

That said, the video does hold to the old joke that a Mars landing is always 20 years in the future; the opening sequence suggests that the landing would take place in the 2030s and that those first astronauts are between the ages of 10 to 20 right now. What will it take to make the Mars mission possible? Let us know in the comments.

Edit, 3:39 p.m. EST: Thank you to a reader on Twitter, who pointed out this presentation by Boeing that explains the concepts in more detail.

Why NASA’s Orion Spacecraft Flew Old, Slow Computers Into Orbit

The Orion spacecraft floats in the Pacific Ocean after an uncrewed orbital flight test Dec. 5, 2014. In the background is the recovery ship, the USS Anchorage. Credit: NASA

It’s funny to think that your smartphone might be faster than a new spaceship, but that’s what one report is saying about the Orion spacecraft. The computers are less-than-cutting-edge, the processors are 12 years old, and the speed at which it “thinks” is … slow, at least compared to a typical laptop today.

But according to NASA, there’s good reasoning behind using older equipment. In fact, it’s common for the agency to use this philosophy when designing missions — even one such as Orion, which saw the spacecraft soar 3,600 miles (roughly 5,800 kilometers) above Earth in an uncrewed test last week and make the speediest re-entry for a human spacecraft since the Apollo years.

The reason, according to a Computer World report, is to design the spacecraft for reliability and being rugged. Orion — which soared into the radiation-laden Van Allen belts above Earth — needs to withstand that environment and protect humans on board. The computer is therefore based on a well-tested Honeywell system used in 787 jetliners. And Orion in fact carries three computers to provide redundancy if radiation causes a reset.

Up close view of Orion inside the mobile service tower pad 37 at Cape Canaveral Air Force Station in Florida one day prior to launch.   Credit: Ken Kremer - kenkremer.com
Up close view of Orion inside the mobile service tower pad 37 at Cape Canaveral Air Force Station in Florida one day prior to launch. Credit: Ken Kremer – kenkremer.com

“The one thing we really like about this computer is that it doesn’t get destroyed by radiation,” said Matt Lemke, NASA’s deputy manager for Orion’s avionics, power and software team, in the report. “It can be upset, but it won’t fail. We’ve done a lot of testing on the different parts of the computer. When it sees radiation, it might have to reset, but it will come back up and work again.”

A 2013 NASA presentation points out that the agency is a common user of commercial off-the-shelf (COTS) electronics. This usually happens for three reasons: officials can’t find military or aerospace alternatives, unknown risks are a part of the mission, or a mission has “a short lifetime or benign space environment exposure”. NASA makes sure to test the electronics beyond design limits and will often make accommodations to make it even safer. Ideally, the use of proven hardware overall reduces risk and cost for a mission, if used properly.

“The more understanding you have of a device’s failure modes and causes, the higher the confidence level that it will perform under mission environments and lifetime,” the presentation says. “Qualification processes are statistical beasts
designed to understand/remove known reliability risks and uncover unknown risks inherent in a part.”

Artist's conception of NASA's Space Launch System. Credit: NASA
Artist’s conception of NASA’s Space Launch System. Credit: NASA

In fact, the rocket that is eventually supposed to pair up with Orion will also use flight-tested systems for at least the first few flights. The Space Launch System, which NASA hopes will heft Orion on the next test flight in 2017 or 2018, will use solid rocket boosters based on those used with the shuttle. But NASA adds that upgrades are planned to the technology, which flew on shuttle missions in space starting in 1981.

“Although similar to the solid rocket boosters that helped power the space shuttle to orbit, the five-segment SLS boosters include several upgrades and improvements implemented by NASA and ATK engineers,” NASA wrote in a 2012 press release. “In addition, the SLS boosters will be built more affordably and efficiently than shuttle boosters, incorporating new and innovative processes and technologies.”

A handful of other prominent space recycling uses in space exploration:

Crazy Space Christmases: Moon Readings, Food Cans And Emergency Repairs

"AstroButch [Butch Wilmore] has set up our Xmas tree in the lab and hung socks for us," tweeted astronaut Samantha Cristoforetti from the International Space Station Dec. 7, 2014. Credit: Samantha Cristoforetti/Twitter

If you think the upside-down Christmas tree above is bizarre — that’s one of the latest activities of Expedition 42 astronauts in space right now — think back to the history of other holidays in orbit.

We’ve seen a vital telescope undergo repairs, an emergency replacement of part of a space station’s cooling system, and even a tree made of food cans. Learn more about these fun holiday times below.

Reading from above the moon (Apollo 8, 1969)

In this famous reading from the Bible, astronauts Frank Borman, Jim Lovell and Bill Anders shared their experience looking at the Moon on Dec. 24, 1968. The Apollo 8 crew was the first to venture to lunar orbit, just seven months before the Apollo 11 crew made it all the way to the surface.

Food can “Christmas tree” (Skylab 4, 1973)

A "Christmas tree" created out of food cans by the Skylab 4 crew in 1973. Credit: NASA
A “Christmas tree” created out of food cans by the Skylab 4 crew in 1973. Credit: NASA

Living on the Skylab station taught astronauts the value of improvisation, such as when the first crew (under NASA’s instructions) repaired a sunshield to stop electronics and people from roasting inside. Skylab 4 took the creativity to Christmas when they created a tree out of food cans.

Hubble Space Telescope repair (STS-103, 1999)

The Hubble Space Telescope during a 1999 repair mission with STS-103 crew members Mike Foale (left, for NASA) and Claude Nicollier (European Space Agency). Credit: NASA
The Hubble Space Telescope during a 1999 repair mission with STS-103 crew members Mike Foale (left, for NASA) and Claude Nicollier (European Space Agency). Credit: NASA

When the Hubble Space Telescope was in hibernation due to a failed gyroscope, the STS-103 crew made repairs in December 1999 that culminated with the final spacewalk on Christmas Day. The telescope remains in great shape to this day, following another repair mission in 2009.

First Christmas on the International Space Station (Expedition 1, 2000)

The Expedition 1 crew with fresh oranges on the International Space Station in December 2000. From left, Yuri Gidzenko (Roscosmos), Bill Shepherd (NASA) and Sergei Krikalev (Roscosmos). Credit: NASA
The Expedition 1 crew with fresh oranges on the International Space Station in December 2000. From left, Yuri Gidzenko (Roscosmos), Bill Shepherd (NASA) and Sergei Krikalev (Roscosmos). Credit: NASA

The Expedition 1 crew was the first on the International Space Station to spend Christmas in orbit. “On this night, we would like to share with all-our good fortune on this space adventure; our wonder and excitement as we gaze on the Earth’s splendor; and our strong sense — that the human spirit to do, to explore, to discover — has no limit,” the crew said in a statement on Christmas Eve, in part.

Ammonia tank replacement (Expedition 38, 2013)

Just last year, an ammonia tank failure crippled a bunch of systems on the International Space Station and forced spacewalkers outside to fix the problem, in the middle of a leaky suit investigation. The astronauts made the final repairs ahead of schedule, on Christmas Eve.

Did Philae Land In That Comet Crater? One Month Later, The Search Continues

A mosaic of Comet 67P/Churyumov-Gerasimenko taken Dec. 2 with the Rosetta spacecraft. The shadowed area is a crater in which Philae is expected to be. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Don’t forget about Philae! The comet lander made a touchdown a month ago this week on its target, marking the first time we’ve ever made a soft landing on such a body. Celebrations were quickly mixed with confusion, however, as controllers realized the spacecraft drifted quite a ways off target. In fact, we still don’t know exactly where it is.

The parent Rosetta spacecraft is working well in orbit and still transmitting images of the comet while Philae hibernates in a shady spot below. This latest image here shows a clear view of where the European Space Agency thinks the lander arrived — somewhere in the rim of that shadowy crater you see up front.

“The internal walls are seen in quite some detail. It is thought that Philae’s final touchdown site might be located close to the rim of this depression, but further high-resolution imaging is still being obtained and analyzed to confirm this,” the agency wrote in a statement concerning the image of Comet 67P/Churyumov-Gerasimenko.

This is based on data collected from Philae in a brief science surge on the surface. Recently, information based on measured magnetic fields showed the spacecraft likely hit an object — perhaps a crater rim — as it drifted for two hours on the surface, unsecured by the harpoons that were supposed to fire to hold it in place.

The distortion at bottom of this mosaic of Comet 67P/Churyumov-Gerasimenko occured as imagers made image joining adjustments for the comet's rotation and the movements of the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
The distortion at bottom of this Dec. 1, 2014 mosaic of Comet 67P/Churyumov-Gerasimenko occured as imagers made image joining adjustments for the comet’s rotation and the movements of the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Searches for the lander are ongoing, but it’s hard to pick it out on such a boulder-strewn landscape. Yet the agency is doing its mightiest, and has made some progress on the problem since the landing took place. Rosetta caught several glimpses of the lander during its journey across the surface. And they have data from an experiment that communicated between Rosetta and Philae which could help pinpoint the location.

Rosetta science results have been quiet in the past week, although ESA has released several images of the comet. This comes as the agency has been criticized for its data release policy regarding the mission. It’s a vigorous debate, with there being examples of more open missions (such as Curiosity) and more closed missions (such as the Hubble Space Telescope) to compare Rosetta’s releases with.

As these activities continue, however, Rosetta will remain transmitting information from 67P through at least part of 2015, watching the comet increase in activity as both draw closer to the Sun. Jets and gas are visible already in some of the recent images of the comet, which you can see below.

Comet 67P/Churyumov-Gerasimenko viewed by the Rosetta spacecraft on Nov. 30, 2014 showing off layered material in the "neck" of the comet. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Comet 67P/Churyumov-Gerasimenko viewed by the Rosetta spacecraft on Nov. 30, 2014 showing off layered material in the “neck” of the comet. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Erupting gas and dust is just visible in the "neck" region of Comet 67P/Churyumov-Gerasimenko in this montage taken Nov. 26, 2014 by the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Erupting gas and dust is just visible in the “neck” region of Comet 67P/Churyumov-Gerasimenko in this montage taken Nov. 26, 2014 by the Rosetta spacecraft. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Gas and dust stream from Comet 67P/Churyumov–Gerasimenko in this mosaic from the Rosetta spacecraft taken Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Gas and dust stream from Comet 67P/Churyumov–Gerasimenko in this mosaic from the Rosetta spacecraft taken Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0