Feel like visiting a dwarf planet today? How about a comet or the planet Mars? Luckily for us, there are sentinels across the Solar System bringing us incredible images, allowing us to browse the photos and follow in the footsteps of these machines. And yes, there are even a few lucky humans taking pictures above Earth as well.
Below — not necessarily in any order — are some of the best space photos of 2014. You’ll catch glimpses of Pluto and Ceres (big destinations of 2015) and of course Comet 67P/Churyumov–Gerasimenko (for a mission that began close-up operations in 2014 and will continue next year.) Enjoy!
KENNEDY SPACE CENTER, FL – To ensure the highest possibility of success for the launch of a critical resupply mission to the International Space Station (ISS), SpaceX has announced the successful completion of a second static fire test of the first stage propulsion system of the firms commercial Falcon 9 rocket on Dec. 19.
The successful engine test clears the path towards a liftoff now rescheduled to early January 2015.
The launch of the Falcon 9 had been slated for Dec. 19, but NASA and SpaceX decided just 1 day before liftoff on Dec. 18 to postpone the launch of the CRS-5 resupply mission into the new year, when the first static fire test failed to run for its full duration of approximately three seconds.
“SpaceX completed a successful static fire test of the Falcon 9 rocket [on Dec. 19] in advance of the CRS-5 mission for NASA,” said SpaceX in a statement.
The second test was done because the first test of the Merlin 1D engines did not run for its full duration of about three seconds.
“While the Dec. 17 static fire test accomplished nearly all of our goals, the test did not run the full duration, ”SpaceX spokesman John Taylor confirmed to Universe Today.
“The data suggests we could push forward without a second attempt, but out of an abundance of caution, we are opting to execute a second static fire test prior to launch.”
Both tests were conducted at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
“We opted to execute a second test,” noted SpaceX.
The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter had been slated to liftoff on Dec. 19 on its next unmanned cargo run dubbed CRS-5 to the ISS under NASA’s Commercial Resupply Services (CRS) contract.
Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct 28 from NASA’s Wallops Flight Facility in Virginia, officials are being prudently cautious to ensure that all measures are being carefully rechecked to maximize the possibilities of a launch success.
The new launch date for CRS-5 is now set for no earlier than Jan. 6, 2015
“Given the extra time needed for data review and testing, coupled with the limited launch date availability due to the holidays and other restrictions, our earliest launch opportunity is now January 6 with January 7 as a backup,” said SpaceX.
The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.
The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.
CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
It seems a lot of the space stories of this year involve spacecraft making journeys: bouncing across a comet, or making their way to Mars. Private companies also figure prominently, both in terms of successes and prominent failures.
These are Universe Today’s picks for the top space stories of the year. Disagree? Think we forgot something? Let us know in the comments.
10. End of Venus Express
This month saw the end of Venus Express’ eight-year mission at the planet, which happened after the spacecraft made a daring plunge into part of the atmosphere to learn more about its properties. The spacecraft survived the aerobraking maneuvers, but ran out of fuel after a few engine burns to raise it higher. Soon it will plunge into the atmosphere for good. But it was a productive mission overall, with discoveries ranging from a slowing rotation to mysterious “glories”.
9. Continued discoveries by Curiosity and Opportunity
Methane? Organics? Water? Mars appears to have had these substances in abundance over its history. Continued work from the Curiosity rover — passing its second Earth year on Mars — found methane fluctuating in Gale Crater, and the first confirmed discovery of organics on the Martian surface. Opportunity is almost 11 years into its mission and battling memory problems, but the rover is still on the move (passing 41 kilometers) to an area that could be full of clay.
8. Siding Spring at Mars and the level of study of the comet by other missions at Mars
We had a rare opportunity to watch a comet make a grazing pass by Mars, not close enough to pose significant danger to spacecraft, but definitely close enough to affect its atmosphere! Siding Spring caught everyone’s attention throughout the year, and did not disappoint. The numerous spacecraft at the Red Planet caught glimpses, including from the surface and from orbit. It likely created a meteor shower and could alter the Martian atmosphere forever.
7. Kepler K2
The Kepler space telescope lost the second of its four pointing devices last year, requiring a major rethink for the veteran planet hunter. The solution was a new mission called K2 that uses the pressure of the Sun to maintain the spacecraft’s direction, although it has to flip every 83 days or so to a new location to avoid the star’s glare. It’s not as precise as before, but with the mission approved we now know for sure K2 can locate exoplanets. The first confirmed one is a super-Earth.
6. MAVEN at Mars
Where did the Martian atmosphere go? Why was it so thick in the past, allowing water to flow on the surface, and so thin right now? The prevailing theory is that the Sun’s pressure on the Martian atmosphere pushed lighter isotopes (such as that of hydrogen) away from the planet, leaving heavier isotopes behind. NASA is now investigating this in more detail with MAVEN (Mars Atmosphere and Volatile Evolution), which arrived at the planet this fall.
5. India’s MOM
India made history this year as only the third entity to successfully reach the Red Planet (after the United States and Europe). While updates from the Mars Orbiter Mission have been slow in recent weeks, we know for sure that it observed Siding Spring at Mars and it has been diligently taking pictures of the Red Planet, such as this one of the Solar System’s largest volcano and a huge canyon on Mars.
4. Accidents by Virgin and Orbital
In one sobering week in October, the dangers of space travel were again made clear after incidents affected Virgin Galactic and Orbital Sciences. Virgin lost a pilot and seriously injured another when something went seriously awry during a flight test. Investigators have so far determined that the re-entry system turned on prematurely, but more details are being determined. Orbital meanwhile suffered the catastrophic loss of one of its Antares rockets, perhaps due to Soviet-era-designed engines, but the company is looking at other ways to fulfill its NASA contractual obligations to send cargo to the International Space Station.
3. SpaceX rocket landing attempts
SpaceX is attempting a daunting technological feat, which is bringing back its rocket first stages for re-use. The company is hoping that this will cut down on the costs of launch in the long term, but this technological innovation will take some time. The Falcon 9 rocket stage that made it back to the ocean in July was deemed a success, although the force of the landing broke it apart. Next, SpaceX is trying to place its rocket on an ocean platform.
2. Orion flight
NASA’s spacecraft for deep space exploration (Orion) successfully finished its first major uncrewed test this month, when it rode into orbit, made a high-speed re-entry and successfully splashed down in the ocean. But it’s going to be a while before Orion flies again, likely in 2017 or even 2018. NASA hopes to put a crew on this spacecraft type in the 2020s, potentially for trips to the Moon, an asteroid or (more distantly) Mars.
1. Rosetta
It’s been an exciting year for the Rosetta mission. First it woke up from a lengthy hibernation, then it discovered that Comet 67P/Churyumov-Gerasimenko looks a bit like a rubber duckie, and then it got up close and released the Philae lander. The soft touchdown did not go as planned, to say the least, as the spacecraft bounced for two hours and then came to rest in a spot without a lot of sunlight. While Philae hibernates and controllers hope it wakes up again in a few months, however, science results are already showing intriguing things. For example, water delivered to Earth likely came mostly from other sources than comets.
It’s been just over a year since China wowed the world with the first soft Moon landing in almost 40 years. The Chang’e-3 robotic lander made it all the way to Mare Imbrium (Sea of Rains) on Dec. 14, 2013, quickly deploying the Yutu rover for a spin.
Mission updates have been sparse in recent months, but the Planetary Society and a forum on Unmanned Spaceflight recently pointed out a new image archive. These pictures are so high-definition, it’s almost as good as being on the Moon beside the rover.
While some of the images are familiar to followers of the mission, what makes the image archive stick out is how high-definition many of them are.
A few great shots have been sent back from the surface, including a set from January that was combined into a 360-degree panorama by Marco Di Lorenzo and Universe Today’s Ken Kremer. But this archive contains a wealth of them.
The lander/rover team made it to the surface last year equipped with high-definition video cameras, prepared to catch some of the first new views of the lunar surface from close up since the Apollo robotic/human and Soviet robotic moon landing era of the 1960s and 1970s.
Shortly before Yutu entered a planned hibernation for its second lunar night (about two weeks on Earth) in January, a technical problem was reported that was later identified as a problem with its solar panel.
A “control circuit malfunction”, according to the Xinhua news agency, left the rover at risk of not waking up after that second hibernation. The mast it controlled was supposed to lower and protect some of the rover’s sensitive electronics. Yutu survived the night, but was left unable to move through the third lunar day.
According to the Planetary Society (based on Chinese news media reports), there are no current status updates for Yutu, but Chang’e-3 is still working a year after the landing.
If you’ve spent any length of time underwater, you appreciate just how much drag it creates on your limbs — especially if you’re wearing a little clothing or carrying around diving equipment. Now, try to imagine using a pressurized spacesuit in that environment. You’re already puffed up like a balloon and have the drag to contend with.
Few of us will get that experience — NASA won’t let just anybody try on an expensive suit — but luckily for us, a person saying he is a diver (identifying himself only as Zugzwang5) posted about the experience on Reddit. The pictures alone are incredible, but the insights the diver provides show just how tough an astronaut has to be to get ready for spacewalking.
Using the spacesuit compared to a wetsuit, wrote Zugzwang 5 on Reddit, was “incredibly cumbersome”. He says he’s a contracted diver for Oceaneering working at NASA’s Neutral Buoyancy Laboratory in Houston, which has a model of the International Space Station in a huge pool for astronauts to practice spacewalking. Usually he’s inside a wetsuit, but the spacesuit was a completely different experience, he said.
There’s so much resistance from the suit and the water every motion takes tremendous effort. You might not guess it from my pictures, but I’m actually pretty fit, and I was exhausted by the end of the day. The hardest thing to get used to was moving up and down in the water column. I’ve been diving so long controlling my buoyancy is basically a force of will at this point, having to actually crawl and direct myself up and down was such a weird feeling.
Near the end of the marathon session, the diver had to bring back a simulated “incapacitated” astronaut to the airlock underwater, which he wrote was an extremely difficult task — especially while so tired.
So, for a real astronaut to pass their final evaluation they have to do a flawless incapacitated crew member rescue. this is actually very difficult as safely manipulating another suit is even more tiring and cumbersome than just moving your own. not only that but the airlock is very small, and safely (using proper tether technique) hooking someone else up into it is a surprisingly complex procedure where you have zero extra space to work with. Thirty minutes usually ends up being hardly enough time for the new guys, and even a vet will take more than 20.
Venus presents a special challenge to space explorers. Yes, there is a surface, but hellish temperatures and atmospheric pressure on the surface of Venus has a tendency to crush spacecraft fairly quickly. Short of building a submarine-rated surface explorer, maybe there’s a better way to look at the hothouse planet? A newly proposed NASA concept suggests using airships. Yes, airships with people in them.
But as you will see below, balloons and airships have been discussed extensively in the past decade by NASA and the Europeans as the best way of exploring Venus without needing to touch its hellish surface.
Venus may seem nothing but a distraction to an agency that is talking about exploring Mars in the 2030s (with Orion’s recent uncrewed test being the first advertised step of that, although critics say it won’t get us to the Red Planet). Leaving that aside, however, exploring Venus by balloon is not a new idea at all, even within NASA. The backers of the High Altitude Venus Operational Concept (HAVOC) even argue we should head to Venus before Mars, as one of the co-leads recently told Universe Today.
“A human mission to Venus is not on a lot of people’s radar, but we’ve really enjoyed working on the concepts for this mission,” said Langley’s Chris Jones, project co-lead, in an interview with Universe Today’s Nancy Atkinson. “This was an internal study: what does the future of humankind in space look like? Frankly, we see Venus as potentially no later than the second planetary destination that humans might go to, after Mars or even before Mars.”
Why? Jones explained that because it takes a shorter time to get to Venus, that makes it a “stepping stone or practice run” to get humans to Mars. “The best would be a long lived surface lander, but technology issues for surface robotic missions are pretty significant, and a human mission to surface is nearly insurmountable. What’s left is a good platform for a science mission at mid-level altitudes, and it paints a good picture for a human mission in the atmosphere at 50 kilometers.”
The clouds of Venus, Jones said, present an ideal spot for humans to roam from a spacecraft. The conditions at 50 kilometers (31 miles) above the surface are about the same pressure and atmosphere as Earth.
“Air itself is a lifting gas at those altitudes,” he added, “so you don’t have to bring some ridiculous supply of helium for this to work. And the rest of the environmental parameters at 50 kilometers are actually quite nice: the gravity is about the same as on Earth’s surface, the atmospheric pressure is about the same as Earth, and we can potentially manufacture a significant amount of that air by processing carbon dioxide. These are some of the facts we saw early on that inspired us to do this.”
There also would be more solar power and protection from radiation than Mars, and the temperature — although fairly hot — would be possible to account for fairly easily in spacecraft designs.
Jones provided some details on how the crew would spend about 30 days exploring the planet after a journey there and back (440 days total). Bear in mind that the mission is just in the early stages of even thinking about development. Cost, timeline, approvals and many other hurdles would need to be overcome before it could even become a reality.
“The big parameters of Venus’ atmosphere is the big longitudinal winds,” Jones said. “If you just rode them, it would take you about 110 hours to circle the planet. The other component of winds would push you towards the poles. In order to stay near the equator where there is less turbulence, the airship would ride the longitudinal winds while using a propulsion system to counter those winds pushing you towards the poles.”
The concept arose from science objectives for the planet out of NASA’s Venus Exploration Analysis Group, Jones said, whose aims include understanding the atmosphere and its interaction with the surface. NASA’s Langley Research Center also has human objectives they considered, such as showing how people can work in deep space and develop advanced technologies to accomplish that.
The HAVOC mission would start with a series of phased exploration sorties. The first phase would be examining the Venusian atmosphere with a robotic mission, and the second would be crewed ride to orbit that would include deploying an uncrewed robotic airship in the atmosphere.
The third phase is the 30-day mission described above, while the fourth phase could potentially be as long as a year. If it gets to a Phase 5, that would be a “permanent presence in Venus’ atmosphere”, Jones said.
Of note: balloons have been discussed before within NASA, particularly by Venus exploration advocate Geoffrey Landis of NASA Glenn, and Jones told Universe Today that this new team found much inspiration from Landis’ previous work.
Universe Today interviewed Landis in 2008 about missions he proposed about human-colony airships and uncrewed solar-powered airplanes. And in this 2010 study, he suggested three ideas for exploring the surface using uncrewed low-altitude balloons. One would skim the clouds around 25 kilometers (15.6 miles) and two other concepts (more rigid, naturally), would fly about 5 kilometers (3 miles) high. This was presented at an American Institute of Aeronautics and Astronautics meeting that year.
“A notable advantage of the carbon dioxide atmosphere of Venus is that this allows a much wider range of lifting gasses for a balloon; not merely the hydrogen or helium usually used for terrestrial balloons,” Landis wrote in the paper. “Oxygen and nitrogen, in fact, are lifting gasses in the Venus atmosphere (although not good ones). At the altitudes considered, two other lifting gasses are water (which is a gas at the temperatures considered) and ammonia.”
Landis was also not deterred by harsh surface conditions. While Venus’ surface is difficult — its 480 Celsius (900 Fahrenheit) thick atmosphere destroyed the Soviet Venera probes in minutes — he’s secured early-stage NASA funding for a robotic landsailing rover concept nicknamed “Zephyr”. “Sailing on Venus! How cool is that? The project will have an exceptional public engagement factor,” the description page for the Venus Landsailing Rover reads.
In a nutshell, Glenn has created electronics that can continue to function in temperatures similar to what are found on the surface. Simulations also show that solar cells would work, albeit at reduced efficiency. Hence the idea to use a heavily-reinforced landsail to take advantage of Venus’ 100-times-more-pressure-than-Earth atmosphere at the surface. Wind speeds are less than a meter of second, but have terrific force behind them. And at least some of Venus appears to be flat, with rocks only a centimeter thick in pictures from Venera.
Balloons have also been considered by the European Space Agency, particularly in the form of an uncrewed Venus Entry Probe discussed in detail in this presentation by Surrey Satellite Technology Ltd. It would include a Low Venus Orbiter that would map the planet to complement closer-to-ground measurements, a Venus Relay Satellite that would send information from the balloon, and the “aerobot” itself.
“The aerobot consists of a long-duration balloon and gondola … that will analyze the Venusian middle cloud layer at an altitude of ~55 km, where the environment is relatively benign. The balloon will deploy a swarm of active ‘ballast’ micro-sondes, which, once deployed, will determine vertical profiles of the lower atmosphere,” the presentation reads. More detailed information is available from this 2004 ESA workshop presentation by Surrey and this ESA webpage, which says the study was completed in 2005.
Students have even explored Venusian balloon ideas, such as in the 2014 Summer School Alpbach cosponsored by the European Space Agency. An uncrewed idea called EvolVe suggests a joint orbiter and balloon mission to see how tectonic activity and volcanoes affected the surface of Venus, among other scientific goals. The balloon would hover in the same general region, about 50 to 60 km (31 miles to 37 miles), and probe the surface using radar and other tools. It’s one of two concepts selected for further investigation that could lead to a science conference presentation and/or science journal publication.
Remember how breathless we felt when the Philae lander actually made it to the surface of its target comet a few weeks ago? Sure, the maneuvers didn’t go as planned, but the images the spacecraft obtained in its brief spurts of activity on the surface are still being shared and discussed eagerly by scientists (amid a controversial image release policy, to be sure.)
Well, the truck delivery for Philae — the Rosetta spacecraft, still doing maneuvers above — is going to do something special in February. The machine is going to scoot down real close to the comet, just before heating from the Sun could make it dangerous to do so due to gas and dust emissions.
The plan is to bring Rosetta to an astounding four miles (six kilometers) above Comet 67P/Churyumov–Gerasimenko, so close that the images sent back to Earth will have a resolution of just a few inches per pixel. Scientists hope to learn more about how reflective the comet is and also to better understand how gas is emitted as 67P draws close to the Sun.
“As the comet becomes more and more active, it will not be possible to get so close to the comet. So this opportunity is very unique,” stated Matt Taylor, the Rosetta project scientist from the European Space Research and Technology Center, in a NASA press release.
Rosetta’s closest view of the comet previous to this was a six-mile (10 kilometer) mapping orbit that it did for a short time before moving to release the Philae lander. After that, its orbit was expected to range between 20 km and 50 km (12.4 miles and 18.6 miles) through the end of this month.
Philae, meanwhile, made it down to the surface and did manage to send pictures back during its approximately 60 hours of activity, before shutting down due to a lack of sunlight hitting its solar panels. Philae is now wedged in a shady spot on the comet, but it’s possible more sunlight could fall in that area when the comet nears its closest approach to the Sun in 2015, between the orbits of Earth and Mars.
The European Space Agency is saying that about 20% of the mission’s science is expected to flow from Philae (at most), and 80% from Rosetta. Early results from both spacecraft present some intriguing properties about the comet. Based on the ratio of isotopes (types) of hydrogen on the comet, it’s more likely that it was asteroids that delivered water to Earth. Also, Philae was unable to dig very far into the surface, implying that underneath the dust must be something like a thick layer of ice.
A recent Rosetta blog post on the European Space Agency says that the team expects to take a break for the holidays from posting — unless, of course, they manage to track down the Philae lander in pictures. The location of the spacecraft is still unknown, but it’s believed that Rosetta’s high-resolution camera may be able to catch the lander or its glint — coupled with clues Philae’s experiments gave to its location.
In the 1960s, we thought the best way of sending stuff between Earth and space was through a transporter. These days, turns out all it takes is an e-mail and a special 3-D printer. The first tool created in space, a rachet, was made last week on the International Space Station using plans beamed from Earth. Now, we get to see if it actually works.
The printer has been active for a few weeks, making test items that had already been done on Earth. But for this particular item, manufacturer Made In Space chose to take an additional risk: creating a tool from plans that were done almost at the last minute, similar to how a real mission would work when astronauts have a sudden need for a part.
“Made In Space uplinked a design which did not exist when the printer was launched. In fact the ratchet was designed, qualified, tested, and printed in space in less than a week,” the company wrote on its blog.
And it wasn’t as simple as just sending up the plans and hoping for the best. NASA had to give the safety thumbs-up before it went up there. Also, the plans (once sent to the space station) were verified as okay to go by Made In Space engineers before the crew got the okay to print last week.
The rachet took about four hours to print in space, which is a heck of a lot faster than sitting around waiting for a cargo ship — especially when said ship is delayed, as what happened recently to the SpaceX Dragon that was supposed to launch on Friday (Dec. 19) and has now been pushed back to at least Jan. 6.
While the rachet could be of use for simple repairs in space, it won’t be staying up there long. Just as with all the other parts printed so far, it’s going to be sent back to Earth for analysis to make sure it can stand up to the rigors of a space mission. Made In Space will soon have a more robust printer going up to station, and wants to make sure all the kinks are worked out before then.
KENNEDY SPACE CENTER, FL – Due to technical problems encountered during a hot fire test of the first stage engines this week with the SpaceX Falcon 9 rocket, the planned Dec. 19 launch of the commercial rocket and NASA contracted Dragon cargo freighter to the International Space Station (ISS) on a critical resupply mission has been postponed a few weeks into the new year to Jan. 6 at the earliest “out of an abundance of caution,” SpaceX officials told Universe Today.
Prior to every launch, SpaceX performs an internally required full countdown dress rehearsal and hot fire test of the first stage propulsion systems.
The hot fire test attempted on Tuesday “did not run for its full duration” of about three seconds, SpaceX spokesman John Taylor confirmed to me.
Therefore SpaceX and NASA managers decided to postpone the launch in order to run another static fire test.
“We are opting to execute a second static fire test prior to launch,” Taylor said.
Due to the large amount of work required to test and analyze all rocket systems and the impending Christmas holidays, the earliest opportunity to launch is Jan. 6.
The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter had been slated to liftoff on its next unmanned cargo run dubbed CRS-5 to the ISS under NASA’s Commercial Resupply Services (CRS) contract.
Here is the full update from SpaceX.
“While the recent static fire test accomplished nearly all of our goals, the test did not run the full duration. The data suggests we could push forward without a second attempt, but out of an abundance of caution, we are opting to execute a second static fire test prior to launch.”
“Given the extra time needed for data review and testing, coupled with the limited launch date availability due to the holidays and other restrictions, our earliest launch opportunity is now Jan. 6 with Jan. 7 as a backup.
“The ISS orbits through a high beta angle period a few times a year. This is where the angle between the ISS orbital plane and the sun is high, resulting in the ISS’ being in almost constant sunlight for a 10 day period.
“During this time, there are thermal and operational constraints that prohibit Dragon from being allowed to berth with the ISS. This high beta period runs from 12/28/14-1/7/15”
“Note that for a launch on 1/6 , Dragon berths on 1/8.”
“Both Falcon 9 and Dragon remain in good health, and our teams are looking forward to launch just after the New Year.”
Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
For those following all the habitability results from the Curiosity rover lately, here’s a special treat — the Discovery Channel will air a behind-the-scenes documentary on the mission tonight (Dec. 18) at 10 p.m. Eastern.