TORONTO, CANADA – Canada’s robotic Canadarm2 will install the next two Urthecast cameras on the International Space Station, removing the need for astronauts to go outside to do the work themselves, the company announced today (Sept. 30).
Urthecast plans to place two Earth-facing cameras on the United States side of the station (on Node 3) to add to the two they already have on the Russian Zvezda module. Technical problems with the cameras forced the Russians to do an extra spacewalk to complete the work earlier this year.
The company plans to make images and streaming video of its imagery available to the general public and interested paying customers. One of the Russian-side cameras is facing technical difficulties with pointing, but more equipment is scheduled to blast up to fix it on a Soyuz flight this fall. The camera should be ready by December, Urthecast said.
The U.S.-side cameras will be an improvement over the Russian-side ones, as they will be able to take imagery in radar and multiple other wavelengths simultaneously – a first in space, the company said.
The suite will include a medium-resolution camera perpetually pointing down, and a high-resolution video camera that can focus on a target ahead of the station and swivel for 60 to 90 seconds to keep it in the frame as the station moves.
Urthecast made the announcement at the International Astronautical Congress, which is being held in Toronto this week. The company is working in association with NanoRacks, which is shipping the payload to the station and handling the installation.
Once the cameras are working fully, the company expects revenues will flow from customers willing to pay for the imagery. So far they have been funded by private investment and also by a $57 million initial public offering on the Toronto Stock Exchange in 2013.
Amid tensions surrounding international space collaboration, Russia is planning to spend $8 billion (321 billion rubles) on the International Space Station between 2016 and 2025, according to a Russian state agency report.
Deputy prime minister Dmitry Rogozin made the announcement at the Yuri Gagarin Cosmonaut Training Center in Star City, Russia. Part of the money will go to new “automatic spacecraft” and modules, said a translated version of the Russian-language ITAR-TASS report.
There was no mention in the report about Rogozin’s anger this spring concerning sanctions against Russia levied earlier this year after his nation placed soldiers inside Ukranian Crimea, which subsequently was annexed to Russia.
As part of policy with the Obama administration, this April NASA said it would cut most space ties with Russia except for those that are deemed essential to operation of the space station. In response, Rogozin wrote a tweet pointing out the Americans’ dependence on Russian Soyuz vehicles to bring astronauts to and from the station, an arrangement that has been in place since the space shuttle retired in 2011.
“After analyzing the sanctions against our space industry, I suggest to the USA to bring their astronauts to the International Space Station using a trampoline,” Rogozin wrote in Russian at the time.
The United States wants to extend operations of the station at least four years to 2024, but has not received commitments from its international partners yet. Rogozin’s reported announcement implies Russia would use the station through at least 2024, but it’s not clear if that is the case or what form any international collaboration would take.
SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission.
Credit: Ken Kremer – kenkremer.com
Story/launch date/headline updated[/caption]
KENNEDY SPACE CENTER, FL – SpaceX is on the cusp of launching the company’s fourth commercial resupply Dragon spacecraft mission to the International Space Station (ISS) shortly after midnight, Saturday, Sept. 20, 2014, continuing a rapid fire launch pace and carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.
Final preparations for the launch are underway right now at the Cape Canaveral launch pad with the stowage of sensitive late load items including a specially designed rodent habitat housing 20 mice.
Update 20 Sept: Poor weather scrubs launch to Sept. 21 at 1:52 a.m.
Fueling of the two stage rocket with liquid oxygen and kerosene propellants commences in the evening prior to launch.
If all goes well, Saturday’s launch of a SpaceX Falcon 9 rocket would be the second in less than two weeks, and the fourth over the past ten weeks. The last Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite on Sept. 7 – detailed here.
“We are ready to go,” said Hans Koenigsmann, SpaceX vice president of mission assurance, at a media briefing at the Kennedy Space Center today, Sept. 19.
Liftoff of the SpaceX Falcon 9 rocket on the CRS-4 mission bound for the ISS is targeted for an instantaneous window at 2:14 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at the moment Earth’s rotation puts Cape Canaveral in the flight path of the ISS.
You can watch NASA’s live countdown coverage which begins at 1 a.m. on NASA Television and NASA’s Launch Blog: http://www.nasa.gov/multimedia/nasatv/
The weather forecast is marginal at 50/50 with rain showers and thick clouds as the primary concerns currently impacting the launch site.
The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
The CRS-4 missions marks the start of a new era in Earth science. The truck of the Dragon is loaded Dragon with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.
RapidScat is NASA’s first research payload aimed at conducting Earth science from the stations exterior. The stations robot arm will pluck RapidScat out of the truck and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.
Dragon will also carry the first 3-D printer to space for studies by the astronaut crews over at least two years.
The science experiments and technology demonstrations alone amount too over 1644 pounds (746 kg) and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.
“This flight shows the breadth of ISS as a research platform, and we’re seeing the maturity of ISS for that,” NASA Chief Scientist Ellen Stofan said during a prelaunch news conference held today, Friday, Sept. 19 at NASA’s Kennedy Space Center.
After a two day chase, Dragon will be grappled and berth at an Earth-facing port on the stations Harmony module.
The Space CRS-4 mission marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
This week, SpaceX was also awarded a NASA contact to build a manned version of the Dragon dubbed V2 that will ferry astronauts crews to the ISS starting as soon as 2017.
NASA also awarded a second contact to Boeing to develop the CST-100 astronaut ‘space taxi’ to end the nation’s sole source reliance on Russia for astronaut launches in 2017.
Dragon V2 will launch on the same version of the Falcon 9 launching this cargo Dragon
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
NASA’s anticipated $3 billion to $4 billion annual budget for the International Space Station is “overly optimistic”, a new report from NASA’s Inspector General says.
Transportation costs will likely rise when NASA uses commercial spacecraft to access the station instead of Russian Soyuzes, the report said. Also, if international partners don’t commit to extending the station four extra years to 2024, NASA will need to pick up more of the financial burden.
“While ISS program officials have been seeking ways to reduce costs and consolidate resources, it is unclear whether these efforts will be sufficient to address anticipated cost increases, particularly because the program does not expect to maintain any funding reserves over the next several years,” the report reads.
In January, the Obama administration approved NASA’s request to extend the ISS until 2024. At the time, NASA said the extension would be beneficial for science and also for the companies that will send spacecraft to the station, which right now appear to be SpaceX and Boeing. (NASA has been purchasing Soyuz seats since the shuttle retired in 2011, and U.S. flights are slated to start up again in 2017.)
There are 16 nations participating in space station operations, however, and any extension may require the approval of some or all of them. Political tensions with major partner Russia (which manages much of the station) have increased since the Ukrainian invasion crisis erupted earlier this year, prompting international condemnation. NASA cut most scientific ties with Russia in April, but preserved the station — an activity the agency says is proceeding normally, despite the crisis.
Besides political ramifications, the report points to technical issues with the ISS that could make an extension difficult. Its solar arrays are degrading faster than predicted, causing power limitations, and NASA has limited capability to lift large replacements parts to the station since the shuttle’s retirement.
Even the station’s promise of science return is proving to be a challenge. ISS United States laboratory manager Center for the Advancement of Science in Space (CASIS) is facing “issues related to funding and patent licenses and data rights” that are “deterring commercial stakeholders from conducting research on the ISS,” the report notes.
The report suggests that NASA keep trying to secure commitments from the ISS partners to share station costs, and that the agency “prioritize the human health risks to long-term exploration” in terms of its scientific research. While the report praised NASA for taking its recommendations seriously, it chastised the agency for not having a list of risks to the ISS ready yet.
NASA’s spending on the ISS was $2.9 billion in fiscal 2013, with 43% of that money going to system operations and maintenance, and 34% to crew and cargo transportation. About 10% is allocated to research.
The report was signed by Paul Martin, the inspector general, and can be read in full at this link. This news report just skims the surface of what the actual report says, so we highly encourage you to read it.
NASA’s Dawn spacecraft experienced technical problems in the past week that will force it to arrive at dwarf planet Ceres one month later than planned, the agency said in a statement yesterday (Sept. 16).
Controllers discovered Dawn was in safe mode Sept. 11 after radiation disabled its ion engine, which uses electrical fields to “push” the spacecraft along. The radiation stopped all engine thrusting activities. The thrusting resumed Monday (Sept. 15) after controllers identified and fixed the problem, but then they found another anomaly troubling the spacecraft.
Dawn’s main antenna was also disabled, forcing the spacecraft to send signals to Earth (a 53-minute roundtrip by light speed) through a weaker secondary antenna and slowing communications. The cause of this problem hasn’t been figured out yet, but controllers suspect radiation affected the computer’s software. A computer reset has solved the issue, NASA added. The spacecraft is now functioning normally.
“As a result of the change in the thrust plan, Dawn will enter into orbit around dwarf planet Ceres in April 2015, about a month later than previously planned. The plans for exploring Ceres once the spacecraft is in orbit, however, are not affected,” NASA’s Jet Propulsion Laboratory stated in a press release.
Dawn is en route to Ceres after orbiting the huge asteroid Vesta between July 2011 and September 2012. A similar suspected radiation blast three years ago also disabled Dawn’s engine before it reached Vesta, but the ion system worked perfectly in moving Dawn away from Vesta when that phase of its mission was complete, NASA noted.
Among Dawn’s findings at Vesta is that the asteroid is full of hydrogen, and it contains the hydrated mineral hydroxyl. This likely came to the asteroid when smaller space rocks brought the volatiles to its surface through low-speed collisions.
Spacecraft can experience radiation through energy from the Sun (particularly from solar flares) and also from cosmic rays, which are electrically charged particles that originate outside the Solar System. Earth’s atmosphere shields the surface from most space-based radiation.
Wow! See that bright streak in the photo above? That’s a shot of the Expedition 40 crew making a flawless return from the International Space Station yesterday (Sept. 10) … a shot taken from space itself.
“Our view of the picture perfect reentry of TMA-12M,” wrote Expedition 41 astronaut Reid Wiseman, who just hours before bid farewell to Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). The re-entry was in fact so perfect that TV cameras caught the parachute immediately after deployment, which doesn’t always happen.
As you can see in the video replay below, the Soyuz made a bulls-eye landing near Dzhezkazgan, Kazakhstan at 10:23 p.m. EDT (2:23 a.m. UTC). There are now only three people tending to the space station until the rest of the Expedition 41 crew launches, which is expected to happen Sept. 25.
Shortly after midnight this morning, Sunday, Sept. 7, SpaceX scored a major success with the spectacular night time launch of the commercial AsiaSat 6 satellite from Cape Canaveral, Florida, that briefly turned night into day along the Florida Space Coast.
A SpaceX Falcon 9 rocket carrying the AsiaSat 6 communications satellite blasted off at 1 a.m. EDT today from Space Launch Complex 40 on Cape Canaveral Air Force Station at the opening of the launch window.
The two stage, 224 foot-tall (68.4 meter-tall) Falcon 9 rocket performed flawlessly, soaring to space and placing the five ton AsiaSat 6 into a geosynchronous transfer orbit.
SpaceX confirmed a successful spacecraft separation about 32 minutes after liftoff and contact with the satellite following deployment at about 1:30 a.m. EDT.
The Falcon 9 delivered AsiaSat 6 satellite into a 185 x 35,786 km geosynchronous transfer orbit at 25.3 degrees.
Sunday’s liftoff marked a sweet success for SpaceX since it was the second successive launch of an AsiaSat communications satellite in about a month’s time. AsiaSat is a telecommunications operator based in Hong Kong.
The first launch of the two satellite series with AsiaSat 8 took place from Cape Canaveral on Aug. 5.
The launch was webcast live by SpaceX on the firm’s website.
The private satellites will serve markets in Southeast Asia and China.
Thailand’s leading satellite operator, Thaicom, is a partner of AsiaSat on AsiaSat 6 and will be using half of the satellite’s capacity to provide services under the name of THAICOM 7, according to the press kit.
The AsiaSat 6 launch was originally scheduled for Aug. 26, just 3 weeks after AsiaSat 8, but was postponed at the last minute after the detonation of a Falcon 9R test rocket at a SpaceX test site in Texas.
SpaceX CEO Elon Musk said the team needed to recheck the rocket systems to insure a successful blastoff since both rockets use Merlin 1D engines, but are configured with different software.
The Falcon 9 first stage is loaded with liquid oxygen (LOX) and rocket-grade kerosene (RP-1) propellants and powered by nine Merlin 1D engines that generate about 1.3 million pounds of liftoff thrust.
The second stage is powered by a single, Merlin 1D vacuum engine.
Today’s liftoff was critical in clearing the path for the next SpaceX launch – the CRS-4 cargo resupply mission for NASA bound for the International Space Station (ISS).
The Falcon 9 launch of the cargo Dragon on the CRS-4 mission is currently targeted for no earlier than Sept. 19. But a firm launch date has not been set.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Picking a landing site on Mars is a complex process. There’s the need to balance scientific return with the capabilities of whatever vehicle you’re sending out there. And given each mission costs millions (sometimes billions) of dollars — and you only get one shot at landing — you can bet mission planners are extra-cautious about choosing the right location.
A recent paper in Eos details just how difficult it is to choose where to put down a rover, with reference to the upcoming European ExoMars mission that will launch in 2018.
In March, scientists came together to select the first candidate landing sites and came up with four finalist locations. The goal of ExoMars is to look for evidence of life (whether past or present) and one of its defining features is a 2-meter (6.6-foot) drill that will be able to bore below the surface, something that the NASA Curiosity rover does not possess.
“Among the highest-priority sites are those with subaqueous sediments or hydrothermal deposits,” reads the paper, which was written by Bradley Thomson and Farouk El-Baz (both of Boston University). Of note, El-Baz was heavily involved in landing site selection for the Apollo missions.
“For example,” the paper continues, “some of the clearest morphological indicators of past aqueous activity are channel deposits indicative of past fluvial activity or the terminal fan, or delta deposits present within basins.”
But no landing site selection is perfect. The scientists note that Curiosity, for all of its successes, seems unlikely to achieve its primary science objectives in its two-year mission because the commissioning phase took a while, and the rover moves relatively slowly.
What could change the area of the landing could be using different types of entry, descent and landing technologies, the authors add. If the parachute opened depending on how far the spacecraft was from the ground — instead of how fast it was going — this could make the landing ellipse smaller.
This could place the rover “closer to targets of interest that are too rough for a direct landing and reducing necessary traverse distances,” the paper says.
You can read the paper in its entirety at this link, which also goes over the history of selecting landing sites for the Apollo missions as well as the Mars Exploration Rovers (Spirit and Opportunity).
What’s your vision for solar system exploration? And how cool would it be to send it literally into the solar system?
NASA is offering its fans the chance to compose a tweet or send a picture showing how we can step out into the cosmos. The best ones among these will be placed aboard a spacecraft that will zoom to an asteroid in 2016.
The “time capsule” will be placed aboard the Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer (OSIRIS-REx). If all goes to plan, it will meet with the asteroid Bennu in 2019, pick up a sample and then return it to Earth in 2023.
And by the way, you can also send your name to Bennu via this form (a joint initiative of NASA and the Planetary Society.) Seems a good chance to get your name off of Earth, until the time when space travel becomes affordable to ordinary citizens.
For more details about the tweets and images time capsule, visit this NASA website. Make sure to submit your message before Sept. 30.
No injuries are reported after a SpaceX rocket prototype detonated in Texas today (Aug. 22) after an anomaly was found in the rocket, the company said in a statement.
“Today’s test was particularly complex, pushing the limits of the vehicle further than any previous test,” SpaceX said in a statement (which you can read in full below the jump.) “As is our practice, the company will be reviewing the flight record details to learn more about the performance of the vehicle prior to our next test.”
The company said it would provide more updates as it found information. SpaceX founder Elon Musk issued a brief statement of his own on Twitter:
Three engine F9R Dev1 vehicle auto-terminated during test flight. No injuries or near injuries. Rockets are tricky …
Earlier today, in McGregor, Texas, SpaceX conducted a test flight of a three-engine version of the F9R test vehicle (successor to Grasshopper.) During the flight, an anomaly was detected in the vehicle and the flight termination system automatically terminated the mission.
Throughout the test and subsequent flight termination, the vehicle remained in the designated flight area. There were no injuries or near injuries. An FAA representative was present at all times.
With research and development projects, detecting vehicle anomalies during the testing is the purpose of the program. Today’s test was particularly complex, pushing the limits of the vehicle further than any previous test. As is our practice, the company will be reviewing the flight record details to learn more about the performance of the vehicle prior to our next test.
SpaceX will provide another update when the flight data has been fully analyzed.
Here are some recent Universe Today stories on the rocket: