“Let me take you on a little trip … we’re gonna travel faster than light,” the Kinks sang 42 years ago. Well, maybe this was the warp ship they were dreaming of.
Howard White (who we can confirm was a NASA employee as late as 2013) has a vision for a warp-drive ship that he’s been working on for a few years. White, whose biography describes him as the advanced propulsion theme lead for NASA’s engineering directorate, recently released his new vision of the spaceship in collaboration with artist Mark Rademaker. The result is gorgeous. More pictures below the jump.
As for how realistic his concept is, as non-physicists it’s tough for us to evaluate. Essentially, White is proposing some modifications to this warp drive concept by Miguel Alcubierre, which would create a zone of warped space time in front of and behind the spaceship to get it to move quickly. But White has been making the professional and media circuit in recent years touting his theories, and they are getting attention.
While we as a community love exploring space, we also recognize it can be expensive. Launch costs, manufacturing and keeping a mission going all take money, which is why NASA (for example) runs reviews every couple of years to figure out which ongoing missions are providing the best return.
Planetary Resources — one of the companies that wants to mine asteroids, and is searching for them with NASA — has produced a new video envisioning a solution to that problem: harvesting fuel from asteroids. Leaving the legal concerns aside, the company points out this could be a way of better opening up exploration of the solar system.
“In space one resource above all others is extraordinarily expensive and without cheap access to it, growth is limited…FUEL,” Planetary Resources wrote. “The catalyst for rapid expansion into every frontier in history has been access to cheap, local resources. And in space, access to rocket fuel is currently neither cheap, nor local.
“But on asteroids,” it continued, “abundant quantities of hydrogen and oxygen can be used to create rocket fuel, the same stuff used by the space shuttle. This allows companies like Vivisat fuel spacetugs that will be used to keep satellites in their Geostationary slots, or fuel up your spacecraft before zooming off to Mars. The possibilities are endless!”
What’s the first thing you would say to Earth if you were sending a message from space? Well, the old computer expression “Hello, World!” seems apt. That in fact was the content of the video message sent by laser from an experiment on the International Space Station that aims to speed up communications in space.
Laser could change communications with spacecraft forever. For half a century we’ve been used to puttering around with radio waves, receiving a few bits of information at a time, which makes transmitting images and videos from distant planets an exercise of patience.
Enter the OPALS (Optical Payload for Lasercomm Science) payload, which transmitted the video (which you can watch above) at a maximum of 50 megabits per second — the standard speed for many home Internet connections. The testbed technology could speed up comms about 10 to 1,000 times faster than traditional radio, which would definitely get science information to the ground faster. The tradeoff is you have to be extremely precise.
“Because the space station orbits Earth at 17,500 mph [28,200 km/h], transmitting data from the space station to Earth requires extremely precise targeting,” NASA stated. “The process can be equated to a person aiming a laser pointer at the end of a human hair 30 feet away and keeping it there while walking.”
OPALS did this by communicating with a laser beacon at the Table Mountain Observatory in Wrightwood, California. The transmission took 148 seconds, and the video message itself only took 3.5 seconds for each copy to come to Earth — compared with 10 minutes under traditional methods!
Earth’s lifespan for life is finite. In about five billion years, our Sun will transform into a red giant and make our planet uninhabitable, to put it lightly, as our closest star gets bigger and swallows up Mercury and Venus. But perhaps there is a way to help our life colonize other spots in the universe.
One researcher’s vision would see microbes from our planet being sent to distant planetary systems in formation and seeding the area with exports from Earth.
The idea is of course highly theoretical and requires careful thought of the ethics (what if our life destroys others?) and technology (how to get the microbes out there)? But it’s something that Michael Mautner, a chemistry researcher at the Virginia Commonwealth University College of Humanities and Sciences, is considering.
“I suggest we give life a chance,” he said in an interview with Universe Today.
These are the steps that Mautner suggests for those considering his method of spreading life into the universe.
1. Think long-term. Many planets or systems are under formation, dozens if not hundreds of light-years away from us. We can send hardy microorganisms to start new life there, but travelling will take many thousands of years. This new life can then take millions or perhaps billions of years to evolve, some to intelligent life that can spread life further in the galaxy. Planning on such time-scales is key to our cosmological future.
2. Find a habitable system. One idea could be to look for a habitable planet; he observed that the Kepler space telescope has made great strides in showing us potentially habitable worlds from afar. As telescope technology improves, finding these worlds will be easier. That said, there’s a risk that any Earth-borne life could obliterate any native life there. His solution is to find star systems under formation instead: “There hasn’t been enough time for life, especially advanced life-forms, to start there,” he says.
3. Aim carefully. A planet would take a very precise aiming system, he acknowledges, but aiming for larger star-forming interstellar clouds where a planetary systems are being formed, would be easier for current technology.
4. Freeze the microbes. Transit in cold interstellar space will put the microbes into deep hibernation and also make them more radiation-resistant: “the challenge is to maybe be able to bio- engineer microbes that can survive for that period,” Mautner points out. He added that there are plenty of examples on Earth of extremophiles surviving harsh environments, such as outside in satellites in or in hot vents near the bottom of the ocean. And microbes are also capable of hibernating. They could then be woken up when they get to a region near planetary systems that allows for liquid water, in conditions that could let them grow.
Could humans follow in their wake? Mautner says he would be happy for humans to go, but it could take thousands of years or more to make the journey. He doesn’t rule out the possibility of cryogenics making that trip more possible, and says there is a “fair chance” that it could work.
Would you ‘Enter the Dragon’?
First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace[/caption]
We’ve shown you lots of exterior shots of SpaceX’s next generation manned Dragon V2 spacecraft after Billionaire entrepreneur and SpaceX CEO Elon Musk pulled the curtain off to reveal his future plans for human spaceflight on May 29 during a live webcast from SpaceX HQ in Hawthorne, Calif.
And we’ve shown you the cool animation to see exactly ‘How it Works!’ from launch to landing.
Now we’ve compiled a stunning collection of imagery revealing what it’s like to actually stand within the gleaming walls of the futuristic Dragon spaceship from an astronauts perspective.
Check out the gallery of Dragon V2 imagery above and below.
Experience this exciting new chapter of American ‘Commercial Human Spaceflight’ coming to fruition.
NASA’s Commercial Crew Program (CCP) is a public private partnership between NASA and a trio of amazing American aerospace companies – SpaceX, Boeing amd Sierra Nevada – to create inexpensive but reliable new astronaut spaceships to the High Frontier.
And NASA’s unprecedented commercial crew program is so far ahead of any international competitors that I think they’ll soon be knocking at the door and regret not investing in a similar insightful manner.
The goal is to get American’s back in space on American rockets from American soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to the International Space Station (ISS) and back.
“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview – here.
Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s CCP.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Mars, that ever-changing and beautiful Red Planet practically next door to us, is one of the most well-studied places humans have in the universe. We’ve sent spacecraft there for about 50 years. Yet there’s still a lot of mysteries out there.
NASA’s Mars Reconnaissance Orbiter is among the investigating spacecraft in the area checking out the planet’s past and looking for any interesting clues to tell us more about how Mars — and the Earth, and the solar system, and planets in general — formed. Mars had a wetter past (as the rovers have showed us), but where the water went and why its atmosphere are so thin are among the things scientists are trying to understand.
Luckily for us, the catalog of the University of Arizona’s High Resolution Imaging Science Experiment (HiRISE) is easily available online for all of us to marvel at. Here are just some of the pictures sent back from across the solar system. To see more, look below and check out this HiRISE web page.
Caption: Animation of SpaceX Dragon V2 astronaut transporter. Credit: SpaceX
Would you like to meet and fly aboard SpaceX’s next generation manned Dragon V2 spacecraft?
Well hop aboard for a ride, take a seat and prepare for the thrill of a lifetime to the International Space Station (ISS) and back.
Watch the cool animation above to see exactly ‘How it Works!’
Now you can experience the opening salvo in the exciting new chapter of ‘Commercial Human Spaceflight.’
The commercial crew effort is led by a trio of private American aerospace company’s (SpaceX, Boeing & Sierra Nevada) in an intimate partnership with NASA to get American’s back in space on American rockets from American Soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to orbit.
“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview.
Billionaire entrepreneur and SpaceX CEO Elon Musk let the curtain to the future drop on Thursday, May 29 to reveal his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA.
And with a flair worthy of the premiere of a blockbuster Hollywood Science Fiction movie he unveiled the gum-dropped shaped Dragon V2 – and the lively animation. Although its not known if he’ll provide the crews with musical entertainment during the trip too.
As you’ll quickly notice watching the animation, the sleek styled V2 manned Dragon is a far cry ahead of the current V1 cargo Dragon.
“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level,” said Musk.
The top of the V2 is equipped to open up and expose a docking probe so it’s able to dock autonomously at the ISS – and at the same port as NASA’s now retired space shuttle orbiters.
‘Catching a Dragon by the tail’- with the Canadian built robot arm as the stations astronauts like to say and berthing it at an Earth-facing port on the Harmony module, will be a thing of the past.
“No robotic arm necessary!” Musk explained.
And for departure there’s another big difference – powerful SuperDraco landing rockets for pinpoint touchdown accuracy rather than an ocean splashdown.
The animation shows a thrilling land landing back at the Kennedy Space Center launch base.
“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter,” Musk said.
“I think that’s what a spaceship should be able to do.”
Musk and SpaceX are not alone aiming to get Americans back to space.
Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
Read my earlier “Dragon V2” unveiling event articles – here, here and here.
Enjoy!
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
NASA Administrator Charles Bolden discusses future of NASA human spaceflight during exploration forum at NASA Headquarters, Washington, DC. Credit: Ken Kremer- kenkremer.com
Story updated[/caption]
NASA GODDARD SPACE FLIGHT CENTER, MD – Why is NASA’s Commercial Crew Program to develop private human transport ships to low Earth orbit important?
That’s the question I posed to NASA Administrator Charles Bolden when we met for an exclusive interview at NASA Goddard.
The Commercial Crew Program (CCP) is the critical enabler “for establishing a viable orbital infrastructure” in the 2020s, NASA Administrator Charles Bolden told Universe Today in an exclusive one-on-one interview at NASA’s Goddard Space Flight Center in Greenbelt, Md.
Bolden, a Space Shuttle commander who flew four time to space, says NASA wants one of the new American-made private crewed spaceships under development by SpaceX, Boeing and Sierra Nevada – with NASA funding – to be ready to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017. Flights for other commercial orbital space ventures would follow later and into the next decade.
Since the shutdown of NASA’s space shuttle program following the final flight by STS-135 in 2011 (commanded by Chris Ferguson), America has been 100% dependent on the Russians to fly our astronauts to the space station and back.
“Commercial crew is critical. We need to have our own capability to get our crews to space,” Bolden told me, during a visit to the NASA Goddard cleanroom with the agency’s groundbreaking Magnetospheric Multiscale (MMS) science probes.
Administrator Bolden foresees a huge shift in how the US will conduct space operations in low earth orbit (LEO) just a decade from now. The future LEO architecture will be dominated not by NASA and the ISS but rather by commercial entrepreneurs and endeavors in the 2020s.
“There are going to be other commercial stations or other laboratories,” Bolden excitedly told me.
And the cash strapped Commercial Crew effort to build new astronaut transporters is the absolutely essential enabler to get that exploration task done, he says.
“Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration.”
“We have got to have a way to get our crews to space.”
“You know people try to separate stuff that NASA does into nice little neat packages. But it’s not that way anymore.”
Bolden and NASA are already looking beyond the ISS in planning how to use the new commercial crew spaceships being developed by SpaceX, Boeing and Sierra Nevada in a public- partnership with NASA’s Commercial Crew Program.
“Everything we do [at NASA] is integrated. We have to have commercial crew [for] a viable low Earth orbit infrastructure – a place where we can do testing – for example with what’s going on at the ISS today.”
“And in the out years you are going to be doing the same type of work.”
“But it’s not going to be on the ISS.”
“After 2024 or maybe 2028, if we extend it again, you are going to see the people on commercial vehicles. There are going to be other stations or other laboratories.”
“But there won’t be NASA operated laboratories. They will be commercially viable and operating laboratories.”
Private NewSpace ventures represent a revolutionary departure from current space exploration thinking. But none of these revolutionary commercial operations will happen if we don’t have reliable and cost effective human access to orbit from American soil with American rockets on American spaceships.
“We need to have our own capability to get our crews to space – first of all. That’s why commercial crew is really, really, really important,” Bolden emphasized.
The ongoing crises in Ukraine makes development of a new US crew transporter to end our total reliance on Russian spaceships even more urgent.
“Right now we use the Russian Soyuz. It is a very reliable way to get our crews to space. Our partnership with Roscosmos is as strong as it’s ever been.”
“So we just keep watching what’s going on in other places in the world, but we continue to work with Roscosmos the way we always have,” Bolden stated.
The latest example is this week’s successful launch of the new three man Russian-US- German Expedition 40 crew to the ISS on a Soyuz.
Of course, the speed at which the US develops the private human spaceships is totally dependent on the funding level for the Commercial Crew program.
Unfortunately, progress in getting the space taxis actually built and flying has been significantly slowed because the Obama Administration CCP funding requests for the past few years of roughly about $800 million have been cut in half by a reluctant US Congress. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.
And every forced postponement to CCP costs US taxpayers another $70 million payment per crew seat to the Russians. As a result of the congressional CCP cuts more than 1 Billion US Dollars have been shipped to Russia instead of on building our own US crew transports – leaving American aerospace workers unemployed and American manufacturing facilities shuttered.
I asked Bolden to assess NASA’s new funding request for the coming fiscal year 2015 currently working its way through Congress.
“It’s looking better. It’s never good. But now it’s looking much better,” Bolden replied.
“If you look at the House markup that’s a very positive indication that the budget for commercial crew is going to be pretty good.”
The pace of progress in getting our crews back to orbit basically can be summed up in a nutshell.
“No Bucks, No Buck Rogers,” Chris Ferguson, who now leads Boeing’s crew effort, told me in a separate exclusive interview for Universe Today.
The BoeingCST-100, Sierra Nevada Dream Chaser and SpaceX Dragon ‘space taxis’ are all vying for funding in the next round of contracts to be awarded by NASA around late summer 2014 known as Commercial Crew Transportation Capability (CCtCap).
All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.
Altogether they have received more than $1 Billion in NASA funding under the current CCiCAP initiative. Boeing and SpaceX were awarded contracts worth $460 million and $440 million, respectively. Sierra Nevada was given what amounts to half an award worth $212.5 million.
SpaceX CEO Elon Musk just publicly unveiled his manned Dragon V2 spaceship on May 29.
Boeing’s Chris Ferguson told me that assembly of the CST-100 test article starts soon at the Kennedy Space Center.
NASA officials have told me that one or more of the three competitors will be chosen later this year in the next phase under CCtCAP to build the next generation spaceship to ferry astronauts to and from the ISS by 2017.
In order to certify the fitness and safety of the new crew transporters, the CCtCAP contracts will specify that “each awardee conduct at least one crewed flight test to verify their spacecraft can dock to the space station and all its systems perform as expected.”
Concurrently, NASA is developing the manned Orion crew vehicle for deep space exploration. The state-of-the-art capsule will carry astronauts back to the Moon and beyond on journeys to Asteroids and one day to Mars.
“We need to have our own capability to get our crews to space. Commercial Crew is critical to establishing the low Earth orbit infrastructure that is required for exploration,” that’s the bottom line message from my interview with NASA Administrator Bolden.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX Story updated[/caption]
SpaceX CEO and billionaire founder Elon Musk gushed with excitement as he counted down the seconds and literally pulled the curtain away to unveil his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast shortly after 10 p.m. EST (7 p.m. PST, 0200 GMT) this evening, Thursday, May 29, from SpaceX HQ.
The first photos from the event are collected herein. And I’ll be adding more and updating this story as they flow in.
Musk’s Dragon V2 unveiling was brimming with excitement like a blockbuster Hollywood Science Fiction movie premiere – with lights, cameras and action.
But this was the real deal and hopefully gets America moving again back to thrilling, real space adventures in orbit and beyond – reaching for the stars.
“The Dragon V2 is a 21st century spacecraft,” Musk announced to a wildly cheering crowd. “As it should be.”
“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level.”
“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter.”
“I think that’s what a spaceship should be able to do.”
“It will be capable of carrying seven astronauts. And it will be fully reusable.”
The sleek gleaming spaceship looks decidedly different from the current cargo Dragon V1.
Read my “Dragon V2” preview articles leading up to the May 29 event – here and here.
This new manrated Dragon is aimed at restoring US human launch access to space from American soil by carrying crews of up to seven US astronauts to low Earth orbit and eventually perhaps Mars – starting as soon as 2017.
Musk unveiled the gumdrop-shaped Dragon V2, or Version 2, to an overflow crowd of employees and media at SpaceX headquarters and design and manufacturing facility in Hawthorne, CA.
But Musk and SpaceX are not alone in striving to get Americans back to space.
Two other US aerospace firms – Boeing and Sierra Nevada – are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.
Altogether they have received more than $1 Billion in NASA funding.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
The ‘Dragon V2’ is an upgraded, man-rated version of the unmanned Dragon cargo spaceship that just completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
SpaceX is hosting a worldwide live premiere event tonight, May 29, unmasking the veil from the company’s commercial “Dragon V2” manned spaceship, the next step in US human spaceflight at 7 p.m. PST (10 p.m. EST, 0200 GMT).
And none other than billionaire entrepreneur Elon Musk, SpaceX CEO and founder, will be the master of ceremonies for the live show direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA!
You can watch LIVE here – via the embedded player above.
Alternatively you can watch courtesy of a streaming webcast courtesy of SpaceX at: www.spacex.com/webcast
Read my “Dragon V2” or “Dragon Version 2” preview story – here.
Musk’s (and NASA’s) goal is to restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017 and to put an end total US dependency on Russia’s Soyuz for astronaut rides to orbit and back.
“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” says SpaceX.
“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk tweeted recently to build anticipation.
Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.
The BoeingCST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.
The gumdrop-shaped ‘Dragon V2’ is an upgraded, man rated version of the unmanned Dragon spaceship that will carry a mix of cargo and up to a seven crewmembers to the International Space Station (ISS).
The cargo Dragon just successfully completed its third operational resupply mission to the ISS with a successful splashdown in the Pacific Ocean on May 18.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.