Neil Armstrong — the first man on the moon, who died in 2012 — will now be the namesake of one of NASA’s research centers. A new law designated the Armstrong Flight Research Center took effect March 1, replacing the old name since 1976, the Dryden Flight Research Center.
Former NASA deputy administrator Hugh L. Dryden will still see his name in the area, however, as the center’s 12,000-square-mile (31,000-square-kilometer) Western Aeronautical Test Range is now called Dryden Aeronautical Test Range.
“I cannot think of a more appropriate way to honor these two leaders who broadened our understanding of aeronautics and space exploration,” stated NASA administrator Charles Bolden.
“Both Dryden and Armstrong are pioneers whose contributions to NASA and our nation still resonate today. Armstrong was the first person to walk on the moon. Dryden’s expertise at the National Advisory Committee for Aeronautics and then at NASA established America’s leadership in aerospace, and his vision paved the way for Armstrong to take those first steps.”
At the center, Armstrong is probably best remembered for his flights in the X-15, a rocket-powered aircraft that set several altitude and speed records in the 1960s. At what was then the NACA High-Speed Flight Station, he flew seven times in that particular experimental aircraft, along with 41 other kinds of aircraft, between 1955 and 1962. Armstrong was also involved with development of a predecessor to a lunar landing training vehicle used in the Apollo missions (which almost killed Armstrong in a practice run for Apollo 11).
Armstrong’s connection with the research center continued after he left the astronaut corps, when he was NASA’s deputy associate administrator for aeronautics. In this capacity, NASA wrote, he was “overseeing aeronautical research programs being conducted at the center, particularly its pioneering work on developing digital electronic flight control systems.”
The center is located on California’s Edwards Air Force Base. Renaming was directed in legislation authored by Rep. Kevin McCarthy (R) of California’s 22nd district (and also the house majority whip), NASA stated. After the bill passed the U.S. House of Representatives in 2013 and the Senate in January, President Barack Obama signed the name into law Jan. 16. A renaming ceremony is expected in the spring.
Armstrong is the second astronaut to have a center named after him. The Lewis Research Center in Cleveland was renamed Glenn Research Center after Sen. John Glenn (D) in 1999. Glenn flew twice in space. In 1962, Glenn became the first American to orbit the Earth. He then returned to space in 1998 at the age of 77, becoming the oldest person to fly in space to date.
1st stage of SpaceX Falcon 9 rocket newly equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk
Story updated[/caption]
The next commercial SpaceXFalcon 9 rocket that’s set to launch in March carrying an unmanned Dragon cargo vessel will also be equipped with a quartet of landing legs in a key test that will one day lead to cheaper, reusable boosters, announced Elon Musk, the company’s founder and CEO.
The attachment of landing legs to the first stage of SpaceX’s new and more powerful, next-generation Falcon 9 rocket counts as a major step towards the firm’s eventual goal of building a fully reusable rocket.
Before attempting the use of landing legs “SpaceX needed to gain more confidence” in the new Falcon 9 rocket, Musk told me in an earlier interview.
Blastoff of the upgraded Falcon 9 on the Dragon CRS-3 flight is currently slated for March 16 from Cape Canaveral Air Force Station, Florida on a resupply mission to bring vital supplies to the International Space Station (ISS) in low Earth orbit for NASA.
“Mounting landing legs (~60 ft span) to Falcon 9 for next month’s Space Station servicing flight,” Musk tweeted, along with the up close photos above and below.
“SpaceX believes a fully and rapidly reusable rocket is the pivotal breakthrough needed to substantially reduce the cost of space access,” according to the firm’s website.
SpaceX hopes to vastly reduce their already low $54 million launch cost when a reusable version of the Falcon 9 becomes feasible.
Although this Falcon 9 will be sprouting legs, a controlled soft landing in the Atlantic Ocean guided by SpaceX engineers is still planned for this trip.
“However, F9 will continue to land in the ocean until we prove precision control from hypersonic thru subsonic regimes,” Musk quickly added in a follow-up twitter message.
In a prior interview, I asked Elon Musk when a Falcon 9 flyback would be attempted?
“It will be on one of the upcoming missions to follow [the SES-8 launch],” Musk told me.
“What we need to do is gain more confidence on the three sigma dispersion of the mission performance of the rocket related to parameters such as thrust, specific impulse, steering loss and a whole bunch of other parameters that can impact the mission.”
“If all of those parameters combine in a negative way then you can fall short of the mission performance,” Musk explained to Universe Today.
When the upgraded Falcon 9 performed flawlessly for the SES-8 satellite launch on Dec 3, 2013 and the Thaicom-6 launch on Jan. 6, 2014, the path became clear to attempt the use of landing legs on this upcoming CRS-3 launch this March.
Atmospheric reentry engineering data was gathered during those last two Falcon 9 launches to feed into SpaceX’s future launch planning, Musk said.
That new data collected on the booster stage has now enabled the approval for landing leg utilization in this March 16 flight.
SpaceX engineers will continue to develop and refine the technology needed to accomplish a successful touchdown by the landing legs on solid ground back at the Cape in Florida.
Extensive work and testing remains before a land landing will be attempted by the company.
Ocean recovery teams will retrieve the 1st stage and haul it back to port much like the Space Shuttle’s pair of Solid Rocket Boosters.
This will be the second attempt at a water soft landing with the upgraded Falcon 9 booster.
The two stage Falcon 9 rocket and Dragon cargo carrier are currently in the final stages of processing by SpaceX technicians for the planned March 16 night time liftoff from Space Launch Complex 40 at 4:41 a.m. that will turn night into day along the Florida Space Coast.
“All four landing legs now mounted on Falcon 9,” Musk tweeted today, Feb. 25.
SpaceX has carried out extensive landing leg and free flight tests of ever increasing complexity and duration with the Grasshopper reusable pathfinding prototype.
SpaceX is under contract to NASA to deliver 20,000 kg (44,000) pounds of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.
To date SpaceX has completed two cargo resupply missions. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013.
The Falcon 9 and Dragon were privately developed by SpaceX with seed money from NASA in a public-private partnership.
The goal was to restore the cargo up mass capability the US completely lost following the retirement of NASA’s space shuttle orbiters in 2011.
SpaceX along with Orbital Sciences Corp are both partnered with NASA’s Commercial Resupply Services program.
This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.
The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news – and upcoming launch coverage at Cape Canaveral & the Kennedy Space Center press site.
I’ll admit it: I’m too young to remember 1984. I wish I did, however, because it was a banner year for the Manned Maneuvering Unit. NASA astronaut Dale Gardner, for example, used this jet backpack to retrieve malfunctioning satellites, as you can see above. (FYI, Gardner died Wednesday (Feb. 19) of a brain aneurysm at the age of 65.)
After three shuttle flights, however, NASA discontinued use of the backpack in space for several reasons — most famously, safety considerations following the shuttle Challenger explosion of 1986. But thirty years on, the problem of dead satellites is growing. There are now thousands of pieces whipping around our planet, occasionally causing collisions and generally causing headaches for people wanting to launch stuff into orbit safely.
Space agencies such as NASA and the European Space Agency have been working hard on reducing debris during launches, but there’s still stuff from decades before. And when a satellite goes dead, if it’s in the wrong orbit it could be circling up there for decades before burning up. How do you fix that?
Robotics has come a long way in 30 years, so space agencies are looking to use those instead to pick up derelict satellites since that would pose far less danger to astronauts. One example is the e.DeOrbit mission recently talked about by ESA, which would pick up debris in polar orbits of altitudes between 800 and 1,000 kilometers (about 500 to 620 miles).
The mission would use autonomous control and image sensors to get up close to the drifting satellite, and then capture it in some way. Several ideas are being considered, ESA added. A big enough net could easily nab the satellite, or perhaps one could clamp on using tentacles or grab it with a harpoon or robotic arm. Here’s a 2013 proposal with more information on e.DeOrbit. ESA noted there is a symposium coming up May 6 to discuss this in more detail.
e.DeOrbit is one of just several proposals to pick satellites up. A Swiss idea called CleanSpace One appears to use a sort of pincer claw to grab satellites for retrieval. The Phoenix program (proposed by Defense Advanced Research Projects Agency) would take useable parts off of broken satellites for use in new satellites, and in past years DARPA had some ideas to remove satellites from orbit as well. Another option is satellite refueling to make these machines useable again, a possibility that NASA, Canada and many others are taking seriously.
What do you think is the best solution? Leave your thoughts in the comments.
ORLANDO, FLORIDA – There’s something about this city that brings out the crazy travel planner in me. I visited here four times betting a shuttle would launch, luckily winning on three occasions. I also once took an epic bus trip from here as far south as Fort Lauderdale before zooming back north, looking at space exhibits up and down the coast.
This time, it was to catch the Vehicle Assembly Building tour before it was gone. Tours inside the iconic, huge structure — best known as the spot where the Apollo rockets and space shuttle went through final assembly before going to the pad — are closing down on Sunday (Feb. 23). Warned by Ken Kremer and others that soon the public couldn’t get inside, I booked a ticket late last month after the announcement was made.
I came in search of the past, but what I saw instead was the future — an agency preparing to hand over a launch pad to SpaceX, and at least part of an Orion spacecraft on the VAB floor, ready to be shipped to Langley, Virginia.
It’s hard to convey the size of one of the world’s largest buildings. It’s so big that it can form its own weather inside, without proper air conditioning. It stands almost twice as high as the Statue of Liberty, at 160 meters (525 feet) tall and 158 meters (518 feet) wide.
The 3.25-hectare (8-acre) building needed to be so huge to hold the 363-foot (111-meter) Apollo/Saturn vehicles in the 1960s and 1970s, and then was modified for use of the shuttle in the 1970s until just a few years ago.
What surprised me, however, was how narrow the main floor appeared. That’s because there are all of these catwalks on either side of the space for workers to get access to different parts of the spacecraft.
Tours of this building were off-limits between 1978 and 2011, when the shuttle program was launching its vehicles in earnest. After the program retired, however, NASA opened the VAB and nearby facilities (including the Launch Control Center and Launch Pad 39A) up to visitors. As these areas are now being used by contractors and the Orion/Space Launch System, however, the agency is closing down public access so the work of getting to space can continue.
Meanwhile, we were lucky enough to glimpse at least part of an Orion spacecraft prototype ready for shipping to Langley, Virginia, with about a dozen people busily milling around it as it lay on the back of a tractor trailer. It’s unclear to me how much of the spacecraft was inside that package, but our tour guide told us it was the whole thing. Yes, the truck looked really tiny in the big building.
Our group also had the chance to visit Launch Pad 39A, one of the two pads used in the Apollo program and also for shuttle. It was eerie to see the pad still in its shuttle configuration, complete with the clamshell-like structure that used to protect the vehicle from the weather until just prior to launch.
All that is going to be torn down for scrap shortly as SpaceX likely takes over the pad, our guide told us, and it’s unclear how long pad tours will continue. Likely those will be gone soon as well. Meanwhile, I took special delight standing in the “flame trench” where noxious chemicals from the launch used to flow. You certainly didn’t want to be close to this spot when a Saturn V or shuttle stack took off.
By the way, the first thing I thought of when I saw the huge pipes on the side of the picture below is the 1996 movie Apollo 13, which has a dramatic launch sequence that includes a neat pan across the coolant tubing. That’s about the time when I decided I wanted to see the VAB and launch pads, so it only took me 18 years to get out here.
Although these tours are likely changing or closing, these steps are to get the complex ready for manned launches again, if the current plan and funding holds as NASA hopes.
In the meantime, there are other things to see at the center. The picture at the top of this article shows the Vehicle Assembly Building just before the launch of STS-129, my first experience seeing a shuttle rocket into space.
That shuttle happened to be Atlantis, which today is handily displayed nearby in the KSC Visitor Complex. Weird, I thought, as I looked at the immense vehicle’s bulk. The last time I saw you in November 2009, you were on your way to orbit and making a lot of noise.
I wonder how much things will change at KSC in the next four years.
If it weren’t for that blue sky and those trees in behind, we’d be convinced that this little robot is landing on Mars. The Morpheus Lander once again proved how hard-core amazing these free flights are, as the automated robot soared 467 feet (142 meters) high Feb. 10 before jaunting sideways and making a bang-on-target landing.
“Today we went as high as the top of Great Pyramid of Giza,” the NASA Morpheus Lander Twitter feed said, adding that the team was enjoying “celebratory brownies” to mark the milestone. You can watch the whole video below (and we dare you not to gape during that sideways maneuver.)
The goal of Morpheus is to figure out landing technologies for other planets at a low cost, and lately the project has hit a series of literal highs as the robot made successful free flight after free flight. An earlier prototype crashed and burned in 2012, but the team implemented redesigns and has not lost a craft since.
On Feb. 14, Morpheus also completed a series of ground “hot fire” tests to gather data on how the engines are performing. On that day, the project’s Twitter feed assured followers that another free flight test would come “very soon.”
The issue of “what to wear?” takes on an extra dimension of life and death when it comes to space travel. Upon exiting a spacecraft on a spacewalk, an astronaut becomes his very own personal satellite in orbit about the Earth and must rely on the flimsy layer of his suit to provide them with a small degree of protection from radiation and extreme fluctuations of heat and cold.
We recently had a chance to see the past, present and future of space suit technology in the Smithsonian Institutions’ touring Suited for Space exhibit currently on display at the Tampa Bay History Center in Tampa, Florida.
Tampa Bay History Center Director of Marketing Manny Leto recently gave Universe Today an exclusive look at the traveling display. If you think you know space suits, Suited for Space will show you otherwise, as well as give you a unique perspective on a familiar but often overlooked and essential piece of space hardware. And heck, it’s just plain fascinating to see the design and development of some of these earlier suits as well as videos and stills of astronauts at work – and yes, sometimes even at play – in them.
One of the highlights of the exhibit are some unique x-ray images of iconic suits from space travel history. Familiar suits become new again in these images by Smithsonian photographer Mark Avino, which includes a penetrating view of Neil Armstrong’s space suit that he wore on Apollo 11.
Space suits evolved from pressure suits developed for high-altitude flights in the 1950’s, and Suited for Space traces that progression. It was particularly interesting to see the depiction of Wiley Post’s 1934 suit, complete with steel cylindrical helmet and glass portal! Such early suits resembled diving bell suits of yore — think Captain Nemo in a chemsuit. Still, this antiquated contraption was the first practical full pressure suit that functioned successfully at over 13,000 metres altitude.
No suit that has been into space is allowed to tour due to the fragility of many historic originals that are now kept at the Smithsonian, though several authentic suits used in training during the U.S. space program are on display. We thought it was interesting to note how the evolution of the spacesuit closely followed the development of composites and materials through the mid-20th century. You can see the progression from canvas, glass and steel in the early suits right up though the advent of the age of plastic and modern fabrics. Designs have flirted with the idea of rigid and semi-rigid suits before settling on the modern day familiar white astronaut suit.
Spacesuit technology has also always faced the ultimate challenge of protecting an astronaut from the rigors of space during Extra-Vehicular Activity, or EVA.
Cosmonaut Alexey Leonov performed the first 12 minute space walk during Voskhod 2 back in 1965, and NASA astronaut Ed White became the first American to walk in space on Gemini 4 just months later. Both space walkers had issues with over-heating, and White nearly didn’t make it back into his Gemini capsule.
Designing a proper spacesuit was a major challenge that had to be overcome. In 1962, Playtex (yes THAT Playtex) was awarded a contract to develop the suits that astronauts would wear on the Moon. Said suits had 13 distinct layers and weighed 35 kilograms here on Earth. The Playtex industrial division eventually became known as the International Latex Corporation or ILC Dover, which still makes spacesuits for ISS crewmembers today. It’s also fascinating to see some of the alternate suits proposed, including one “bubble suit” with arms and legs (!) that was actually tested but, thankfully, was never used.
These suits were used by astronauts on the Moon, to repair Hubble, build the International Space Station and much more. Al Worden recounts performing the “most distant EVA ever” on the return from the Moon in his book Falling to Earth. This record will still stand until the proposed asteroid retrieval mission in the coming decade, which will see astronauts performing the first EVA ever in orbit around Earth’s Moon.
And working in a modern spacesuit during an EVA is anything but routine. CSA Astronaut Chris Hadfield said in his recent book An Astronaut’s Guide to Life on Earth that “Spacewalking is like rock climbing, weightlifting, repairing a small engine and performing an intricate pas de deux – simultaneously, while encased in a bulky suit that’s scraping your knuckle, fingertips and collarbone raw.”
And one only has to look at the recent drama that cut ESA astronaut Luca Parmitamo’s EVA short last year to realize that your spacesuit is the only thin barrier that exists between yourself and the perils of space.
“We’re delighted to host our first Smithsonian Institution Travelling Exhibition Service (SITES) and we think that Florida’s close ties to NASA and the space program make it a great fit for us,” said Rodney Kite-Powell, the Tampa Bay History Center’s Saunders Foundation Curator of History.
Be sure to catch this fascinating exhibit coming to a city near you!
-And you can see these suits in action on the up and coming future EVAs for 2014.
-Here’s the schedule for Suited for Space Exhibit tour.
-Astronaut Nicole Stott (veteran of STS-128, -129, -133, & ISS Expeditions 20 and 21) will also be on hand at the Tampa Bay History Center on March 2014 (Date to be Announced) to present Suited for Space: An Astronaut’s View.
– Follow the Tampa Bay History Museum of Twitter as @TampaBayHistory.
Astronauts fired up the International Space Station’s Yard-a-Pult (actually, we mean the Japanese Kibo arm’s satellite launcher) this week to send out a flock of Doves or tiny satellites that take pictures of the Earth below. An incredible 28 satellites from Planet Labs of San Francisco are expected to swarm into orbit — the largest fleet yet, NASA says — but there have been delays in launching some of them.
The aim? To provide Earth observation information for any purpose that is needed, whether it’s disaster relief or looking to learn more about the Earth’s environment. Planet Labs and NASA say that commercial applications could include real estate, mapping, construction and oil and gas monitoring.
Deployments of two satellites each began on Tuesday and Wednesday, but NASA noted there are “glitches” (which the agency didn’t specify) that are holding up the launch of other ones. There’s no estimated date yet for sending out the rest of the satellites.
“We believe that the democratization of information about a changing planet is the mission that we are focused on, and that, in and of itself, is going to be quite valuable for the planet,” stated Robbie Schingler, co-founder of Planet Labs.
Expedition 38’s Rick Mastracchio and Koichi Wakata both commented on the unusual launches. “Two small satellites are deployed from our launcher here on the space station. Each a little bigger than loaf of bread,” Mastracchio tweeted, while Wakata wrote, “Congratulations on the successful deploy of the satellites by the NanoRacks CubeSat Deployer and Kibo robotics!”
For more information on Flock 1, check out the Planet Labs website. You can also check out an animation of how NanoRacks CubeSats deploy in the animation below (which includes a clip from the song “We Are Young” by Fun.)
If you were to find yourself on the Red Planet, what would you do when you get there? Those who made the second round of the Mars One mission (which aims to establish a colony on Mars in the next decade) are a step closer to answering that question. In interviews with Universe Today, applicants Andrew Rader, Max Fagin and Brian Hinson explained what they’ll do if they embark on a planned one-way trip to the Red Planet.
It’s impossible in three interviews to capture the diversity of more than 1,000 second-round applicants, so we encourage you to head over to Mars One’s website to browse the full list of people. As for these three would-be Marstronauts, we have their application videos and their plans for Mars exploration below the jump.
Max Fagin, 26, United States
With a resume including the NASA Academy and the Mars Desert Research Station, you’d expect that Fagin would be interested in the conventional astronaut program. He wants to try for Mars One first, however, because the Red Planet is the destination he prefers.
“Applying to become an astronaut at NASA is still an option, but at the moment they don’t have Mars as a destination,” he said. “Right now it’s the asteroids, which is cool, I’d love to see that, but it’s not something I’m willing to risk my life over.” Going to Mars would provide a greater payoff, he added, in that a new home base could be established for humanity.
One question intriguing Fagin is how to make a vehicle that travels to Mars better optimized to be used on the surface. He believes that the design will need to be changed somehow post-landing to make it possible to perform agriculture and do other duties on station. (He is in fact doing graduate engineering work at Indiana’s Purdue University right now to study more about this problem.)
Fagin is looking forward to diversifying his training if he does get selected. He’s strong in engineering, he said, but feels that learning medical skills, for example, will position all crew members well to work on the surface.
Brian Hinson, 44, United States
As you can see by the application video, Hinson is not afraid of standing out. He’s been to 39 countries and describes himself as experienced in learning about different cultures. He’s a private pilot and has also tested himself physically, for example by mountain-climbing to altitudes above 19,685 feet (6,000 meters).
“The whole Mars thing came up, and it sounds like the greatest adventure of all time,” said Hinson, who co-founded the company Skin Beautiful Dermaceuticals with his wife, Kathleen Eickholt (who is supportive of the Mars mission, but doesn’t necessarily want him to leave, he adds).
Hinson is a lifelong space enthusiast, but says his math capabilities weren’t enough to consider the NASA astronaut program. He would contribute to the mission as an engineer: “I think I could help out with hydroponics, recycle the water and everything else … [and also] picking up samples for scientists back home.”
From spending as long as 2.5 weeks on trips with strangers, Hinson added that he thinks psychological aspects will be key to success of the crew. He added that he expects the Mars One training process will include extended periods of time in isolation, perhaps something similar to the six months a science crew typically spends in Antarctica.
Andrew Rader, 34, Canada
Rader’s skills span both the technical and the human, as he earned a Ph.D. in aerospace engineering from the Massachusetts Institute of Technology and also was crowned “Canada’s Greatest Know-It-All” in a reality show competition hosted by the Discovery Channel. Mars One will only succeed as a venture if it can be “sold” to the public as a worthy endeavor, he said, adding that space enthusiasts will be among the hardest to convince because of their knowledge.
“Mars One could possibly happen if it gains enough support, if everyone donated a dollar, or space enthusiasts donated a hundred dollars [each], or billionaires donated a chunk, it could happen,” he added.
He characterizes the first few years of the colony as a time when people need to focus on the basic parts of Maslow’s hierarchy of needs. Keeping people safe and fed will come before scientific return for the first bit. His first goal on the surface will be to make the base as self-sustaining as possible. If that works out, he’d be happy to do things such as maintain rovers to pick up samples for people to analyze back at a Mars “lab”. (Having robots do surface exploration would reduce the risk of radiation, he said.)
Space is the long-term solution to the survival of our species, Rader adds, with the ultimate destination being outside the solar system. To get there first, however, you need stepping stones, and he believes Mars is the most likely destination for humans. “Mars is a very challenging place to go for us, but it is within our technological capabilities, and going there would create the technological incentives to go further.”
A week ago today, Slate published an article asking “What Is NASA for?” After the author opened the article comparing the United States’ space agency to a panda, he described a sort of loss of direction that fell upon NASA after the moon landings concluded in 1972. He then cited a litany of concerns he has about the agency, including human spaceflight scientific results not appearing in top journals, and the cost of the International Space Station.
Then Twitter space fans responded with a flurry of tweets under the hashtag #WhatIsNASAFor (3,994 tweets and retweets according to this graph cited by NASA Watch). Participants included NASA officials, journalists, industry and people who follow NASA and space exploration as a hobby. Several people also wrote essays in longer form (such as Deep Space Industries’ Rick Tumlinson, who argued the agency is in the middle of a paradigm shift). Below, we’ve collected some of the most interesting responses from Twitter.
Predicting climate change
Virginia’s Angela Gibson, who says in her profile that she has attended NASA Socials in the past, points to NASA’s ability to do scientific work to better understand climate change. She pointed to this animation of 2013’s warming trend as an example.
Scientific inquiry and the human spirit
As always, Bad Astronomy’s Phil Plait writes an eloquent essay talking about the benefits of NASA, which range from real-time observations of the Earth’s immediate environment to the longer-term goals of promoting scientific research.
NASA Socials
Frequent NASA Social attendee Charissa S. talks about the first NASA launch tweetup, STS-129, as a part of why NASA means so much to her. (Full disclosure: this article’s author also attended the tweetup as a reporter.)
About six years ago, the Canadarm — Canada’s iconic robotic arm used in space — was almost sold to a company in the United States, along with other space technology from MacDonald, Dettwiler and Associates. The Canadian government blocked the sale and swiftly came out with a promise: a space policy to better support Canada’s industry.
That promise was made in September 2008. “Time is of the essence,” then-Industry Minister Jim Prentice told reporters upon announcing a space policy would be created. Today, 65 months later, the government released the high-level framework of that policy. Astronauts, telescopes and yes, the Canadarm are all prominently mentioned in there.
A lot has happened in six years. Policy-makers used to cite successor Canadarm2’s role in space station construction. Now the arm also does things that were barely imaginable in 2008 — namely, berthing commercial spacecraft such as SpaceX’s Dragon at the International Space Station. It shows how quickly space technology can change in half a decade.
At 13 pages, there isn’t a lot of information in Canada’s framework yet to talk about, but there are some statements about government priorities. Keep the astronaut program going (which is great news after the success of Chris Hadfield). A heavy emphasis on private sector collaboration. And a promise to keep funding Canada’s contribution to the James Webb Space Telescope, NASA’s next large observatory in space.
These are the Top 5 priorities listed in the plan:
Canada First: Serving Canada’s interests of “sovereignty, security and prosperity.” As an example: The country has a huge land-mass that is sparsely populated, so satellites are regularly used to see what ship and other activity is going on in the territories. This is a big reason why the Radarsat Constellation of satellites is launching in 2018.
Working together globally: Canada has a tiny space budget ($488.7 million in 2013-14, $435.2 million in 2014-15 and $382.9 million in 2015-16), so it relies on other countries to get its payloads, astronauts and satellites into space. This section also refers to Canada’s commitment to the International Space Station, which (as with other nations) extends to at least 2024. That’s good news for astronauts Jeremy Hansen and David Saint-Jacques, who are waiting for their first trip there.
Promoting Canadian innovation: The James Webb Telescope (to which Canada is contributing optics and a guidance system) is specifically cited here along with the Canadarm. Priority areas are Canada’s historic strengths of robotics, optics, satellite communications, and space-based radar, as well as “areas of emerging expertise.”
Inspiring Canadians: Basically a statement saying that the government will “recruit, and retain highly qualified personnel,” which in more real terms means that it will need to keep supporting Canadian space companies financially through contracts, for example, to make this happen.
That last point in particular seemed to resonate with at least one industry group.
“A long-term strategic plan for Canada’s space program is critical for our industry. In order to effectively invest in innovation, technology and product development, we rely heavily on knowing what the government’s priorities for the space program are,” stated Jim Quick, president of the Aerospace Industries Association of Canada (a major group that represents the interests of private space companies.)
While we wait for more details to come out, here’s some valuable background reading. The space-based volume of the Emerson Report (the findings of a government-appointed aerospace review board listed in 2012) called for more money for and more stable funding of the Canadian Space Agency, among other recommendations.
And here’s the government’s point-by-point response in late 2013. In response to funding: “The CSA’s total funding will remain unchanged and at current levels. The government will also leverage existing programs to better support the space industry.” Additionally, the CSA’s space technologies development program will be doubled to $20 million annually by 2015-16, which is still below the Emerson report’s recommendation of adding $10 million for each of the next three years.
What are your thoughts on the policy? Let us know in the comments.