Space junk is an ongoing concern for NASA, the European Space Agency and many others. After satellites live out their useful lives in orbit, more and more the agencies are trying to either move them far away from Earth, or to have the satellites burn up in the atmosphere. That’s basically to preserve orbital slots around the planet for others, and to reduce the risk of collisions.
But here’s an alternate approach — why not leave a few satellites handy for other missions to pick up? ESA recently opened a tender exploring this idea, and put a few thoughts out in a press release. Maybe leftover solid rocket fuel could be re-used. Metal alloys could be ground down for potential 3-D printing materials. Life support systems could use biodegradable materials. Since it costs so much to haul stuff into orbit, maybe it might be worthwhile to leave some available for future missions, ESA reasons.
“ESA’s new invitation for ‘Sustainable Materials Concepts’ is seeking companies to study various concepts of this approach, including considering the kinds of materials that could be reused as biological or technical nutrients – serving as resources for new other processes,” ESA stated.
“Also under consideration: what sustainable materials might replace current space-grade materials such as titanium and aluminium alloys or carbon-fibre epoxy resins? And how might the use of materials as biological or technical nutrients work in practice?”
What do you think satellites could be used for? Leave your thoughts in the comments.
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com See live SpaceX webcast link below[/caption]
CAPE CANAVERAL, FL – A new space era potentially dawns today, Nov. 25, with the planned maiden launch of the next generation SpaceX Falcon 9 commercial rocket from Cape Canaveral, FL, that could completely revolutionize how we access the high frontier and “rock the space industry to its core” by cutting cost and production times – if all goes well.
Just a day before liftoff, SpaceX founder and CEO Elon Musk personally briefed reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL, nearby the firms Cape Canaveral launch facility about today’s (Nov. 25) upcoming maiden launch of the companies upgraded Falcon 9 rocket, saying it was “very important” for the future.
“This launch is very important to the future of SpaceX. This is our toughest mission yet!” said Musk to a small group of reporters, including the author, gathered for Sunday’s exclusive pre-launch briefing.
“Whether or not this launch is successful, I’m confident we will certainly make it on some subsequent launch,” said Musk at the Cocoa Beach meeting with the media.
The Falcon 9 liftoff from Launch Complex 40 at Cape Canaveral, FL is scheduled for 5:37pm EST and will be webcast live by SpaceX for viewing at; www.spacex.com/webcast
Today’s (Nov. 25) inaugural blastoff of the privately developed Falcon 9 rocket with the commercial SES-8 HDTV and telecommunications satellite is especially noteworthy because it also features SpaceX’s first ever launch of any satellite to a Geostationary Transfer Orbit (GTO).
From the start, SpaceX designed the Falcon 9 rocket from a clean sheet aimed at radically reducing production and manufacturing costs and assembly times and thereby offer significantly lower launch price, says Musk.
“I don’t want to tempt fate, but I think it’s going to have a pretty significant impact on the world launch market and on the launch industry because our prices are the most competitive of any in the world,” Musk stated.
SES-8 also represents SpaceX’s first launch of a Falcon 9 carrying a commercial satellite to space from the Florida Space Coast.
“This is really rocking the industry. Everybody has to look out,” said Martin Halliwell, SES chief technical officer, who joined Musk at Sunday’s meeting.
The 3,138 kg (6,918 lbs) SES-8 satellite is a hybrid Ku- and Ka-band spacecraft that will provide TV and communications coverage for the South Asia and Asia Pacific regions.
The SES-8 spacecrft was built by Orbital Sciences Corp and will be lofted to a 295 x 80,000 km geosynchronous transfer orbit inclined 20.75 degrees.
SpaceX has signed nearly 50 commercial and government launch contracts and thus already sports a very crowded launch manifest ahead of today’s Falcon 9 launch.
All five launches of SpaceX’s Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station were either test launches or flights to the International Space Station, under contract to NASA.
The five Falcon 9 launches to date from the Florida Space Coast also featured the original, less powerful and shorter version of the booster and has a 100% success rate.
This mighty new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level that rises to 1.5 million pounds as the rocket climbs to orbit.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to 13 stories for the original Falcon 9.
The payload fairing for SES-8 is 17 feet in diameter.
The Falcon 9/SES-8 launch window extends for 66 minutes until 6:43 p.m. EST.
Weather outlook is 80% favorable at this time.
SpaceX is planning a live webcast of the launch with commentary from SpaceX corporate headquarters in Hawthorne, CA.
The broadcast will begin at approximately 5:00 p.m. EDT and include detailed discussions about the Falcon 9 rocket, launch and flight sequences as well as about the SES-8 satellite.
Stay tuned here for continuing SpaceX & MAVEN news and Ken’s SpaceX launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.
Learn more about SpaceX, LADEE, MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations
Nov 22-25: “SpaceX launch, MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
Another blow was dealt to deep space exploration this past weekend. The announcement comes from Jim Green, NASA’s Planetary Science Division Director. The statement outlines some key changes in NASA’s radioisotope program, and will have implications for the future exploration of the outer solar system.
CORRECTION: This article has been updated after more information was received from Inspiration Mars. Tito was highlighting other countries’ interest in the Red Planet in his testimony and has no plans at this time to work with anyone but NASA.
Remember that proposal to send a couple in the direction of the Red Planet, loop around it and then come back to Earth? The founder of the Inspiration Mars project, Dennis Tito, outlined more details of his proposal before the House Science Subcommittee on Space yesterday (Nov. 20).
Inspiration Mars has released an Architecture Study Report that is the fruits of a 90-day study done not only by the foundation itself, but also working with “NASA centers and industry partners” to figure out the best way to launch humans there in late 2017 or 2018. But if it’s delayed, Tito is prepared to go to Russia or China instead, he warns.
Here’s the high-level summary:
Two launches using NASA’s forthcoming Space Launch System, one for cargo and one for crew;
The crew module would be from the crew transportation vehicle that NASA selected under its commercial crew program (see this Universe Today story yesterday for an update on funding concerns on that program);
The cargo and crew vehicles would dock in space and then head out to Mars.
“Given Russia’s clear recognition of the value and prestige of accomplishments in human space exploration, and their long-time interest in exploring Mars, my personal belief is that in all likelihood the Energia super-heavy rocket revival announcement signals Russian intent to fly this mission in 2021,” Tito stated.
“Their heavy lift rocket, along with their other designs for modules and the Soyuz, can fly this mission with modest upgrades to their systems.”
A third option would be using Chinese capabilities, he added, The Chinese may also be interested, he said, because the country — reportedly developing a large space station of its own — is likely “contemplating this opportunity to be the first on Mars.” Tito said he is informing Congress of his plans to go elsewhere as a “civic duty”, and that he wants to give NASA the first shot.
More food for thought as Congress mulls how much money to allocate to NASA in fiscal 2014. And Tito had strong words about his feelings on the funding: “If I may offer a frank word of caution to this subcommittee: The United States will carry out a Mars flyby mission, or we will watch as others do it – leaving us to applaud their skill and their daring.”
Extreme conditions surround the International Space Station’s scientific work, to say the least. It takes a rocketship to get there. Construction required more than 1,000 hours of people using spacesuits. Astronauts must balance their scientific work with the need to repair stuff when it breaks (like an ammonia coolant leak this past spring.)
But amid these conditions, despite what could have been show-stoppers to construction such as the Columbia shuttle tragedy of 2003, and in the face of changing political priorities and funding from the many nations building the station, there the ISS orbits. Fully built, although more is being added every year. The first module (Zarya) launched into space 15 years ago tomorrow. Humans have been on board continuously since November 2000, an incredible 13 years.
The bulk of construction wrapped up in 2011, but the station is still growing and changing and producing science for the researchers sending experiments up there. Below are some of the milestones of construction in the past couple of decades. Did we miss something important? Let us know in the comments.
Talk about tiny technology. The NASA PhoneSat 2.4, which is set to launch today (Nov. 19), is so small that the satellite can easy fit in just one of your hands. The agency is quite excited about this second in the series of PhoneSat launches; the first, in April, saw three “smartphone satellites” working in orbit for a week.
PhoneSat is scheduled to launch as a hitchhiker aboard a rocket that will carry the U.S. Air Force Office of Responsive Space ORS-3 mission. The payloads will lift off from the Mid Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia.
“It’s tabletop technology,” stated Andrew Petro, program executive for small spacecraft technology at NASA Headquarters in Washington.
“The size of a PhoneSat makes a big difference. You don’t need a building, just a room. Everything you need to do becomes easier and more portable. The scale of things just makes everything, in many ways, easier. It really unleashes a lot of opportunity for innovation.”
PhoneSat will be at a higher altitude than its predecessors, NASA added, allowing controllers to gather information on the radiation environment to see how well vital electronics would be affected. In the long run, the agency hopes these tiny machines can be used for Earth science or communications, among other things.
“For example, work is already underway on the Edison Demonstration of Smallsat Networks (EDSN) mission,” NASA stated. “The EDSN effort consists of a loose formation of eight identical cubesats in orbit, each able to cross-link communicate with each other to perform space weather monitoring duties.”
The launch is expected at 7:30 pm EST (12:30 a.m. UTC) and you can follow it on NASA TV.
OTTAWA, CANADA – The University of Saskatchewan hopes to fly a wrist-sized MRI to the International Space Station by 2016 in a standard Progress cargo flight, according to Gordon Sarty, a university professor specializing in medical imaging. Why is this important? It will help doctors keep track of the astronauts’ bone strength on orbit, Sarty says of his team’s invention.
With NASA aiming to run its first one-year mission to the station in 2015, there is renewed emphasis on keeping track of all the nasty things microgravity does to astronauts’ bodies in space. Crew members spend two hours a day exercising, but still come back to Earth having trouble balancing, with weaker bones and muscles, and possible facing changes to organs such as the eyes.
Although NASA runs MRIs on crew members before and after flights, Sarty said the ability to get even a simple scan in orbit would be useful — and quite quick. It would take just five to 10 minutes to perform, and would be simple for anyone to do as the scan would commence at the touch of a button.
The Canadian Space Agency is allowed just 44 kilograms (97 pounds) to get the MRI to orbit under its utilization agreement on station (which is based on funding). A full-size MRI able to fit in a standard payload rack would have been about 800 kilograms (1,765 pounds), Sarty said.
Modifications are necessary. Rather than using superconducting magnets to do the work in orbit, Sarty’s design proposes manipulating radio frequency waves instead. (More technical details here.) Sarty’s team currently has a $240,000 grant from the CSA to develop the technology, which goes for about the next year.
Sarty said the International Space Station needs to be outfitted to a “Level 4” standard of medical care, meaning that it would include medical imaging on board to help monitor crew health. NASA’s Human Research Program Utilization Plan for the station (published in 2012) identifies the addition of ultrasound as a boon to ISS’ medical capabilities.
As for “Level 4”, the NASA Space Flight Human Human System Standard (latest version available expired in 2012) defines Level 4 as “A moderate to high level of potential risk exists that personnel may experience medical problems on orbit. Risk to the mission is greater for medical issues beyond routine ambulatory medicine.” It also assumes a return to Earth can take days. Level 4 applies to Earth, lunar or planetary missions greater than 30 days, but no more than 210 days.
The upside for Earth research? The portable MRI could be repurposed, in a sense, to bring into more remote regions. This is especially true of Canada, where tens of thousands of people live in scattered communities in the remote north.
OTTAWA, CANADA – A small Canadian community seems an unlikely spot for an artist now working with Mars One (those people plotting a one-way trip to Mars) and asteroid mining concept company Deep Space Industries. But that’s how Bryan Versteeg got his start in life and — despite his remoteness — found space inspiration from an iconic Canadian technology.
“In a small, isolated Canadian community, I wasn’t really exposed to space exploration at all. I had no one around me who was in the industry. The only thing I had that talked to me about Canadians in space … was the Canadarm,” said Versteeg in a speech Nov. 15.
“So growing up as a kid I’d see this Canadian flag prominently featured on one of the most incredible industrial pieces of machinery put into space,” he added, saying one of his goals now is to “stick the Canadian flag where I can.” Flashing a picture of a futuristic Mars base sporting a flag, he said, “Why not? If this place is going to be built by anyone, it’s built by Canadians.”
Today, Versteeg does artistic work for Deep Space Industries as well as Mars One, work that initially first reached the space community because he put information out on his website and people who were interested in colonization came to him to share ideas, he said.
“I imagine concepts, and I work with people who are trying to develop concepts and show concepts. Although most of the work is self-directed, I worked on 40 projects in the past two years,” he said.
In a sense, he feels that Mars is even easier to communicate with than the far North a few decades ago. When he was living in Inuvik (in Canada’s Northwest Territories) in the 1980s, it would take 2.5 weeks to get a reply from a letter, he said.
Versteeg delivered his remarks at the Canadian Space Society’s annual summit, held this year (Nov. 14 to 15) in Ottawa, Canada.
Imagine you’re a space tourist wanting to blog about your experience. Too impatient to wait for the ride back to solid ground, you open up your laptop on the way home and post pictures and video of the experience just minutes after you were zooming through suborbital space.
That would only be possible if there was some sort of infrastructure available to send messages over the Internet or on text protocols, and according to Brian Barnett, there’s plenty of demand from the private sector, NASA and universities to do so. That’s why this morning, his company (Satwest) will put a temporary wi-fi hotspot in space aboard a rocket from Denver’s UP Aerospace Inc.
“It’s our first test of the technology in space,” Barnett told Universe Today. “We use the technology on the ground, and in airplanes already, and this will be the first test in space.”
Here’s how it works: on board the rocket will be a satellite phone and e-mail device. Once it launches from Spaceport America in New Mexico around 10 a.m. Eastern (3 p.m. UTC) today (if all stays to schedule), high school students at Bosque School in Albuquerque will send out famous space movie lines.
The information will be transmitted to a ground station in Phoenix, which will transmit the message to the nearest Iridium satellite.
That satellite will then relay the message to the Iridium satellite that is closest to the rocket, which will zoom to a maximum altitude of 70 miles (112 kilometers). That’s just past the 62-mile (100 kilometer) Karman line that is a commonly accepted point for the edge of space.
SatWest currently has a contract for NASA suborbital rocket communications because there is a demand for experimenters wanting to have two-way, real-time chats with their payloads while they’re in the middle of their work. Other customers include Virgin Galactic, the Federal Aviation Administration, Masten Space Systems and Armadillo Aerospace.
Astronauts on the International Space Station can already transmit messages to the ground using NASA systems, but Barnett said his option could be cheaper if it is installed up there. (He added he is speaking theoretically as his current contract parameters are for suborbital rocket flights only.)
“It’s only in the moment that you’re in your spacesuit, and that the hatches are closing, that you know that four hours later, you will be back on Earth.”
That’s European Space Agency astronaut Frank De Winne talking about the emotions an astronaut or cosmonaut feels as they leave the International Space Station in a Soyuz spacecraft. The new ESA video, posted above, shows just how hard the astronauts and ground teams have to work to make sure the spacecraft gets to the right spot.
From training, to calculating orbital trajectories, to making sure the landing site in Kazakhstan is free of debris, it’s easy to see how easily those landing teams get up to dozens and dozens of people.
The undocking itself can be complex; depending on which port the Soyuz is attached to, the International Space Station itself may have to change its position to make sure the spacecraft is in the right orientation to head back to Earth.
After navigating the hazards of space, sometimes the landing site can be treacherous as well. In Kazakhstan, the mounds of snow can build up in the area in the winter time; crews need to be prepared to retrieve the spacefarers in just about any weather condition.