‘You Cannot Press Pause While You’re Flying A Jet’: Why Planes Help Astronauts Prepare For Space

Astronauts use planes to prepare psychologically for the rigors of spaceflight, since they must constantly filter out information to proceed safely. Credit: Canadian Space Agency/Youtube (screenshot)

In between these sweet, sweet video shots of jets in the video above, you’ll find some wisdom about why it’s so important that astronauts climb into these planes for training. Turns out that flying has a lot to do with preparing for very quick-changing situations in spaceflight — whether it’s in a cockpit or in a spacesuit.

“Psychologically, being in an aircraft is very similar to being in a rocket because you are dependent on this machinery,” says astronaut David Saint-Jacques in this new Canadian Space Agency video.

“You are in an uncomfortable cockpit. You’re wearing a helmet, oxygen mask. There’s tens of dials in front of you. You have to monitor all that data; the radio, on many channels talking at the same time. You have to constantly filter out what is important and to make decisions that could have big impacts. You cannot press pause while you’re flying a jet.”

Saint-Jacques and fellow Canadian Jeremy Hansen took part in this video to mark the 110th anniversary of the Wright brothers’ first powered flight, which took place Dec. 17, 1903.

And there’s more to this video than jets — you can see astronauts participating in spacewalks and also the ongoing European Space Agency CAVES expedition series in Sardinia, Italy. There’s even a quick glimpse of the Snowbirds, a famous military flying demonstration team in Canada (which Hansen flew with earlier this year).

For more information on the T-38s used for astronaut training, check out this NASA link.

A T-38 plane parked in front of space shuttle Discovery in this undated photo taken by NASA astronaut Story Musgrave, who flew six times in space in the 1980s and 1990s.
A T-38 plane parked in front of space shuttle Discovery in this undated photo taken by NASA astronaut Story Musgrave, who flew six times in space in the 1980s and 1990s.

Astronauts Get Three Spacewalks As An Early Christmas Present

The Expedition 38 crew tests spacesuits in preparation for December spacewalks to replace a pump for the International Space Station's cooling system. In the spacesuits are NASA astronauts Mike Hopkins (left) and Rick Mastracchio. Japanese astronaut Koichi Wakata is in the foreground, with Russian commander Oleg Kotov behind. Credit: NASA TV

The week before Christmas will be full of spacewalk preparations for Expedition 38 as they get ready to remove and replace a malfunctioning pump aboard the International Space Station.

NASA astronauts Rick Mastracchio and Mike Hopkins will participate in the spacewalks, NASA said today (Dec. 17), with Japanese astronaut Koichi Wakata handling robotic operations during the Dec. 21, Dec. 23 and Dec. 25 activities.

A new pump is needed to regulate temperatures in an external ammonia cooling loop that shut down automatically Wednesday (Dec. 11) when it got too cold. The loop keeps equipment at the right temperature on station. While the astronauts have been fine for the past week, several redundant systems and some experiments are offline. Luckily for the crew, other astronauts previously installed three spare pumps on station, which you can see in the graphic below.

Locations of spare pumps on the International Space Station as of December 2013. Credit: NASA
Locations of spare pumps on the International Space Station as of December 2013. Credit: NASA

Spacewalks are always a risky proposition, and NASA has not conducted any since Italian astronaut Luca Parmitano experienced a leak in an American spacesuit in July. As such, the agency spent several days trying to fix the cooling loop by other means.

A faulty control valve made the pump malfunction on Wednesday. The valve normally mixes warm ammonia that flows past external radiators on station with cooler ammonia that was put through those radiators. NASA first tried to control the valve from the ground, then focused its attention on an isolation control valve upstream from the pump that the agency hoped could serve as a backup. The isolation valve, however, was only designed to be closed or opened fully — not positioned in between.

As of 11 a.m. EST (4 p.m. UTC) today, NASA was working on a software patch to try to freeze the valve in different positions to manually regulate the flow of ammonia.

“The fidelity that we have here on the ground to precisely control when that valve starts moving and stops is on the order of about 0.2 seconds, 0.3 seconds, somewhere in that range. We really need the fidelity to be much higher than that,” said Judd Frieling, the Expedition 38 lead flight director, in an update on NASA Television.

“We need it to be on the order of 0.1 seconds. So the way we can reliably produce that is by putting some software on the computers on board that basically allows us to get that finer control. So engineers and coders, overnight, have been working on a software — we call it a patch — software fix, to one of the computers that controls that valve.”

NASA planned to upload the patch to the station this afternoon (EST) to see if it was possible to control the isolation valve by telling it to move, then cutting the power when it got to a certain spot. The agency did not say how successful that fix was, but will likely address that in a media briefing tomorrow at 3 p.m. EST (8 p.m. UTC).

Cooling problems have occurred on station before. The most recent failure was a leak in May, which the Expedition 35 crew fixed just days before some of the astronauts went home. A more prominent failure on the same cooling loop occurred in 2010, when Expedition 24 astronauts performed three spacewalks to replace a faulty pump.

Each of the three emergency spacewalks this month (Dec. 21, 23 and 25) will start at 7:10 a.m. EST (12:10 p.m. UTC) and take about 6.5 hours to perform, NASA added. The activities will be carried live on NASA Television, with coverage starting about an hour before each spacewalk is expected to begin.

How to See Spectacular Prime Time Night Launch of Antares Commercial Rocket to ISS on Dec. 19

Antares Launch – Maximum Elevation Map The Antares nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Dec 19, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences

Antares Launch – Maximum Elevation Map
The Antares nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Dec 19, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences[/caption]

UPDATE: The launch of Cygnus has been delayed until no earlier than January 7, 2014 due to the coolant leak at the International Space Station and necessary spacewalks to fix the problem. You can read more about the issue here and here.

WALLOPS ISLAND, VA – Orbital Sciences Corp. is marching forward with plans for a spectacular night blastoff of the firms privately developed Antares rocket and Cygnus cargo spacecraft on Thursday, Dec. 19 from a seaside pad at Wallops Island, Virginia on a mission for NASA that’s bound for the International Space Station (ISS).

The nighttime Antares liftoff is currently scheduled for prime time – at 9:19 p.m. EST from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island, Virginia. It should be easily visible to tens of millions of residents along a wide swath of the US East Coast spanning from South Carolina to southern Maine – weather permitting.

Here’s our guide on “How to See the Antares/Cygnus Dec. 19 Night Launch” – with your own eyes – complete with viewing maps and trajectory graphics from a variety of prime viewing locations; including Philadelphia, NYC, Baltimore and historic landmarks in Washington, DC.

Update: launch postponed to mid-January 2014 to allow NASA astronauts to conduct 3 EVA’s to swap out the ammonia pump module and restore full cooling capacity to the ISS

It will be visible to spectators inland as well, stretching possibly into portions of West Virginia and western Pennsylvania.

For example; Here’s the expected view from Rocky’s famous workout on the steps of the Philadelphia Art Museum.

Philadelphia
Philadelphia

The viewing maps are courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus resupply vessel aimed at keeping the ISS fully stocked and operational for science research.

Up top is the map showing the maximum elevation the rocket will reach in the eastern United States.

Capitol-East-Front-Steps
Capitol-East-Front-Steps

The flight is designated the Orbital-1, or Orb-1 mission.

Orb-1 is the first of eight commercial cargo resupply missions to the ISS by Orbital according to its Commercial Resupply Services (CRS) contract with NASA.

Of course you can still view the launch live via the NASA TV webcast.

This marks the maiden night launch of the two stage Antares rocket following a pair of daytime test and demonstration launches earlier this year, in April and September.

It’s important to note that the Dec. 19 liftoff is still dependent on NASA engineers resolving the significant issue with the ammonia cooling system that popped up late last week when a critical flow control valve malfunctioned.

If the pump valve can’t be brought back online, two American astronauts may make two or three unscheduled spacewalks starting later this week.

So in the event spacewalks are required, Antares launch could still slip a few days to the end of the launch window around Dec. 21 or Dec. 22. Thereafter the launch would be postponed until January 2014.

Battery Park, NYC
Battery Park, NYC

Here’s your chance to witness a mighty rocket launch – from the comfort of your home and nearby locations along the east coast.

And its smack dab in the middle of the Christmas and holiday season resplendent with shining bright lights.

Weather outlook appears rather promising at this time – 95% favorable chance of lift off.

National Mall, Washington, DC
National Mall, Washington, DC

The rocket was rolled out to the Wallops launch pad this morning by Orbital’s technicians.

Cygnus is loaded with approximately 1465 kg (3,230 lbs.) of cargo for the ISS crew for NASA.

NASA Television coverage of the Antares launch will begin at 8:45 p.m. on Dec. 19 – www.nasa.gov/ntv

Stay tuned here for Ken’s Antares launch reports from NASA Wallops Flight Facility, VA.

Ken Kremer

Iwo Jima memorial
Iwo Jima memorial
Dover
Dover

Spacewalk, Or Backup Valve? NASA Works The Space Station Cooling Problem

The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA

While Expedition 38 astronauts Rick Mastracchio and Michael Hopkins get their spacesuits and the Quest airlock ready in case they need to do a spacewalk to fix a cooling problem on board the station, NASA engineers have come up with an alternate proposal that could allow an interim fix from the ground.

A faulty flow control valve inside an external pump caused one of the station’s two main cooling loops to shut down automatically on Wednesday when the loop became too cold. This forced NASA to power down noncritical systems and some experiments as they moved the most needed systems on to a single loop.

After playing with the balky valve for several days, controllers determined it can’t be worked normally. Yet there is another valve nearby that possibly can.

Just “upstream” of the control valve is an isolation valve that possibly can be manipulated to control the temperature, said Kenny Todd, the ISS mission operations integration manager. While the valve is usually either open or closed to do its work, it is possible that it could be positioned at positions in between to warm up the coolant.

NASA Television graphic of where spare cooling pumps are located on station as of Dec. 13, 2013. On that day, NASA was weighing whether spacewalks were necessary to deal with a cooling problem caused by a malfunctioning flow control valve inside of a pump. Credit: NASA TV
NASA Television graphic of where spare cooling pumps are located on station as of Dec. 13, 2013. On that day, NASA was weighing whether spacewalks were necessary to deal with a cooling problem caused by a malfunctioning flow control valve inside of a pump. Credit: NASA TV

“Can we use it as a regulator, if you will, to restrict the flow coming from the radiator and by doing that, that would help to put the temperature in the loop a little warmer,” Todd said in an update broadcast on NASA Television today (Dec. 16) that you can watch in full below.

He added, “We’re taking a valve and using it for a different purpose than we’d originally intended.” This means that software must be adapted to control the valve from the ground, among other things. The hardware vendor (which Todd did not name) has said that theoretically this finer control would be possible.

It’s too early to say if this fix could work in the short term, let alone the long term, which is why Mastracchio and Hopkins are standing by ready to do a spacewalk if need be. NASA has experience with this kind of repair before, most notably in 2010 when astronauts aboard Expedition 24 performed three spacewalks to deal with a broken pump in the same cooling loop. There are three spare pumps aboard station that could swap out the crippled one.

NASA and Mastracchio have both said that the crew is doing fine. The largest scheduling changes are reportedly related to science experiments being suspended, as well as adding in some spacewalk preparation activities. Also, the Cygnus cargo spacecraft’s planned launch has been pushed back at least one day to Dec. 19; last week, NASA said the station’s cooling problem means it is violating certain “commit criteria” for the launch to move forward.

We’ll keep you updated as events warrant.

Second Monkey Travels Safely To Space And Back, Iran Reports

Iran’s space program reportedly launched its second monkey into space on a 15-minute flight on Saturday (Dec. 14).

Reports from the Islamic Republic News Agency said the ballistic flight reached as high as 75 miles (120 kilometers). That’s just beyond the Karman line of 62 miles (100 kilometers) that many authorities cite as the boundary of space.

“The President said that thank God, Iranian astronauts launched into the space the second monkey, Fargam, on the first day of the Week of Research, the ‘Pajouhesh’ explorer and landed in full safety and health,” read a dispatch on IRNA, which is the official state agency in Iran.

The launch has not been verified outside of Iran. In January, the country announced the launch of a first monkey, Pishgam (which means “Pioneer” in Farsi).

The United States, Soviet Union and France sent primates themselves into space in the 1960s, many of which did not survive the trip. “Ham” is among the most famous monkey space voyagers; the U.S. chimp launched into space and landed safely on Jan. 31, 1961, a few months before astronaut Al Shepard became the first American person in space that May.

Chinese rover & lander beam back Portraits with China’s Flag shining on Moon’s Surface

Yutu rover emblazoned with Chinese Flag as seen by the Chang'e 3 lander on the moon on Dec. 15, 2013. Credit: China Space

Yutu rover emblazoned with Chinese Flag as seen by the Chang’e-3 lander on the moon on Dec. 15, 2013. Notice the rover tire tracks left behind in the loose lunar topsoil. Credit: China Space
Story updated[/caption]

China’s ambitious lunar space exploration program achieved another stunning success Sunday night, Dec 15, when the countries inaugural Chang’e-3 lunar lander and rover beamed back portraits of one another snapped from the Moon’s surface – that also proudly displayed the brilliant red Chinese national flag shining atop an extraterrestrial body for the very first time in human history.

“I announce the complete success of the Chang’e-3 mission,” said Ma Xingrui, chief commander of China’s lunar program, during a live CCTV broadcast as the portraits were shown to a worldwide audience from huge screens mounted at the mission control at the Beijing Aerospace Control Center (BACC) in Beijing.

Chinese President Xi Jinping was on hand to personally witness the momentous events in real time.

A wave of cheers and high fives rocked around mission control as the startling imagery of the ‘Yutu’ rover and Chang’e-3 lander nestled atop the Moon’s soil in the Bay of Rainbows was received around 11:42 p.m. Sunday, local Beijing time, 10:42 a.m. EST, via China’s own deep space tracking network.

Xi Jinping’s presence was a clear demonstration of China’s confidence in its lunar team and the importance of this space spectacular to China’s prestige and technological prowess.

China thus became only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

China’s ‘Yutu’ rover had just rolled majestically onto the Moon’s soil hours earlier on Sunday, Dec. 15, at 4:35 a.m. Beijing local time – barely seven hours after the Chang’e-3 mothership touched down atop the lava filled plains of the Bay of Rainbows on Dec. 14.

The rover’s wheels left behind noticeable tire tracks as it drove across the loose lunar topsoil.

Read my earlier detailed accounts of the Dec. 15 drive by Yutu onto the lunar surface illustrated with an extensive photo gallery – here; and of the stunning Dec. 14 landing – here.

CCTV showed China’s President gleefully shaking hands and extending congratulations with many members of the mission team at BACC after seeing the high resolution photos of the Chang’e-3 rover emblazoned with China’s flag for himself.

Chang'e 3 lander as seen by the rover Yutu on the moon on Dec. 15, 2013.  Credit: China Space
Chang’e 3 lander as seen by the rover Yutu on the moon on Dec. 15, 2013. Credit: China Space

It’s been nearly four decades since the prior lunar landing was accomplished by the Soviet Union’s Luna 24 sample return spacecraft back in 1976.

America’s last visit to the Moon’s surface occurred with the manned Apollo 17 landing mission – crewed by astronauts Gene Cernan and Harrison ‘Jack’ Schmitt , who coincidentally ascended from the lunar soil on Dec. 14, 1972 – exactly 41 years ago.

“The Central Committee of the Communist Party and the Central Military Commission [responsible for China’s space program] sends congratulations to all the staff that participated in the successful completion of the mission and China’s first soft landing on the moon,” said the Chinese vice premier Ma Kai during the CCTV broadcast.

“The rover and lander are working properly and reaching the goals set.”

“Chang’e-3 is China’s most complicated space mission,” said Kai. “This shows China is dedicated to the peaceful uses of space.”

“There are many more complicated and difficult tasks ahead.”

Chang'e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013.  Note landing ramp at bottom. Credit: CCTV
Chang’e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013. Note landing ramp at bottom. Credit: CCTV

Indeed so far the Chang’e-3 mission has been primarily a highly successful demonstration of the extremely challenging engineering required to accomplish China’s first lunar landing.

Now the science phase can truly begin.

Over 4600 images have already been transmitted by Chang’e-3 since the Dec. 14 touchdown.

After rolling all six wheels into the dirt, Yutu – which translates as Jade Rabbit – drove to a location about nine meters north of the lander, according to CCTV commentators.

The rover then turned around so that the red Chinese flag emblazoned on the front side would be facing the lander’s high resolution color cameras for the eagerly awaited portraits of one another.

Yutu is nearly the size of a golf cart. It measures about 1.5 m x 1 m on its sides and stands about 1.5 m (nearly 5 feet) tall – nearly human height.

The 120 kg Yutu rover will now begin driving in a circle around the right side of the 1200 kg Chang’e-3 lander – for better illumination – at a distance ranging from 10 to 18 meters.

The rover will snap further photos of the lander as it traverses about from 5 specific locations – showing the front, side and back – over the course of the next 24 hours.

See the accompanying graphic – written in Chinese.

Yutu and the Chang'e 3 lander are scheduled to take photos of each other soon from locations outlined in this artists concept.  Credit: China Space
Yutu and the Chang’e 3 lander are scheduled to take photos of each other soon from locations outlined in this artists concept. Credit: China Space

Thereafter Yutu will depart the landing site forever and begin its own lunar trek that’s expected to last at least 3 months.

So the rover and lander will soon be operating independently.

They are equipped with eight science instruments including multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail, according to Ouyang Ziyuan, senior advisor of China’s lunar probe project, in an interview on CCTV.

A UV camera will study the earth and its interaction with solar wind and a telescope will study celestial objects. This is done during the lunar day.

It will also investigate the moon’s natural resources for use by potential future Chinese astronauts.

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV

The two probes are now almost fully operational. Most of the science instruments are working including at least three cameras and the ground penetrating radar.

And although they have survived the harsh lunar environment thus far, they still face massive challenges. They must prove that they can survive the extremely cold lunar night and temperature fluctuations of more than 300 degrees Celsius – a great engineering challenge.

The rover will hibernate during the two week long lunar night.

A radioisotopic heater will provide heat to safeguard the rovers computer and electronics – including the alpha particle X-ray instrument on the rover’s robotic arm.

The Bay of Rainbows, or Sinus Iridum region, is located in the upper left portion of the moon as seen from Earth. You can see the landing site with your own eyes.

Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum
Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum

It was imaged in high resolution by China’s prior lunar mission – the Chang’e-2 lunar orbiter and is shown in graphics herein.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer

China’s Maiden Lunar Rover ‘Yutu’ Rolls 6 Wheels onto the Moon – Photo and Video Gallery

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer

China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer
Updated- See below Photo Gallery of Yutu’s descent to lunar surface on Dec. 15, 2013[/caption]

China’s first ever lunar rover rolled majestically onto the Moon’s soil on Sunday, Dec. 15, barely seven hours after the Chang’e-3 mothership touched down atop the lava filled plains of the Bay of Rainbows.

Check out the gallery of stunning photos and videos herein from China’s newest space spectacular atop stark lunar terrain.

The six wheeled ‘Yutu’, or Jade Rabbit, rover drove straight off a pair of ramps at 4:35 a.m. Beijing local time and sped right into the history books as it left a noticeably deep pair of tire tracks behind in the loose lunar dirt.

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV

The stunning feat was broadcast on China’s state run CCTV using images transmitted to Earth from cameras mounted on the Chang’e-3 lander and aimed directly at the rear of the departing moon buggy.

Watch this YouTube video from CCTV showing the separation of ‘Yutu’ from the lander:

The scene was reminiscent of NASA’s Mars Sojourner rover driving of the Mars Pathfinder lander back in 1997.

Chinese space engineers based at the Beijing Aerospace Control Center (BACC) carefully extended a pair of ramps out from the lander in a complex process, drove Yutu onto the ramps and then gently lowered them onto the moon’s soil.

China’s Change’-3 mission had just safely soft landed on the Moon hours only earlier on Saturday, Dec. 14 at 9:11 p.m. Beijing time, 8:11 EST at the Sinus Iridum region, or Bay of Rainbows.

China thus became only the 3rd country in the world to successfully land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

A video grab shows China's first moon rover, Yutu, or Jade Rabbit, separating from Chang'e-3 moon lander early Dec. 15, 2013. The six-wheeled rover separated from the lander early on Sunday, several hours after the Chang'e-3 probe soft-landed on the lunar surface.  Credit: Xinhua
A video grab shows China’s first moon rover, Yutu, or Jade Rabbit, separating from Chang’e-3 moon lander early Dec. 15, 2013. The six-wheeled rover separated from the lander early on Sunday, several hours after the Chang’e-3 probe soft-landed on the lunar surface. Credit: Xinhua

It’s been nearly four decades since the prior lunar landing was accomplished by the Soviet Union’s Luna 24 sample return spacecraft.

Read my detailed account of the Chang’e-3 landing on Dec. 14 – here.

1st post landing image transmitted from the Moon’s surface by China’s Chang’e-3 lunar lander on Dec. 14, 2013. Credit: CCTV/post processing by Marco Di Lorenzo/Ken Kremer
1st post landing image transmitted from the Moon’s surface by China’s Chang’e-3 lunar lander on Dec. 14, 2013. Credit: CCTV/post processing by Marco Di Lorenzo/Ken Kremer

Watch this YouTube video compilation of CCTV’s Dec. 14 landing coverage:

Over 4600 images have already been transmitted by Chang’e-3 in less than a day on the Moon.

Tomorrow, the 120 kg Yutu rover will begin driving in a circle around the 1200 kg lander.

And the pair of lunar explorers will snap eagerly awaited portraits of one another!

The rover and lander are equipped with 8 science instruments multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail, according to Ouyang Ziyuan, senior advisor of China’s lunar probe project, in an interview on CCTV.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

Yutu moves towards drive off ramp still atop the Chang’e-3 lander, shown in this screen shot from early Dec. 15, 2013.  Credit: CCTV
Yutu moves towards drive off ramp still atop the Chang’e-3 lander, shown in this screen shot from early Dec. 15, 2013. Credit: CCTV
Yutu atop the transfer ramp to lunar surface. Credit: CCTV
Yutu atop the transfer ramp to lunar surface. Credit: CCTV
Yutu descends down the transfer ramp to lunar surface. Credit: CCTV
Yutu descends down the transfer ramp to lunar surface. Credit: CCTV
Image shows the trajectory of the lunar probe Chang'e-3 approaching the landing site  on Dec. 14.
Image shows the trajectory of the lunar probe Chang’e-3 approaching the landing site on Dec. 14.
China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua

Get Teased by the New “Interstellar” Trailer

Christopher Nolan, the writer and director of Memento, Inception, and the most recent Batman films, is taking up space on the big screen next year — literally. Nolan’s newest film, Interstellar, will be a space exploration adventure featuring Matthew McConaughey, Jessica Chastain, Anne Hathaway, and Michael Caine (of course) and, based on this teaser trailer, maintains a reverent awareness of the iconic missions of the Space Age.

Sweet.
Continue reading “Get Teased by the New “Interstellar” Trailer”

China Scores Historic Success as Chang’e-3 Rover Lands on the Moon Today

Photo taken on Dec. 14, 2013 shows a picture of the moon surface taken by the on-board camera of lunar probe Chang'e-3 on the screen of the Beijing Aerospace Control Center in Beijing. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV

Photo taken on Dec. 14, 2013 shows a picture of the moon surface taken by the on-board camera of lunar probe Chang’e-3 on the screen of the Beijing Aerospace Control Center in Beijing. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV
Story updated[/caption]

China scored a stunning, history making success with the successful touchdown of the ambitious Chang’e-3 probe with the ‘Yutu’ rover on the surface of the Moon today, Dec. 14, on the country’s first ever attempt to conduct a landing on an extraterrestrial body.

The dramatic Chang’e-3 soft landing on the lava filled plains of the Bay of Rainbows occurred at about 8:11 am EST, 9:11 p.m. Beijing local time, 1311 GMT today.

The monumental feat is the first landing on the Moon by any entity in nearly four decades. It was broadcast live on CCTV, China’s state run television network.

Note: Read my related new story with a photo gallery of Yutu’s 6 wheels rolling onto lunar soil – here

This maiden Chinese moon landing marks a milestone achievement for China and clearly demonstrates the country’s technological prowess.

chang'e-3 approach 1A tidal wave of high fives was unleashed by the huge teams of Chinese space engineers teams controlling the flight from the Beijing Aerospace Control Center (BACC).

There was also a huge sense of relief from the nail biting tension upon confirmation of the successful soft landing following many years of hard work and intense planning.

The Chang’e-3 mission entails the first soft landing on the Moon by anyone since the Soviet Union’s unmanned Luna 24 sample return vehicle touched down back in 1976.

Artists concept of the rocket assisted landing of China’s lunar probe Chang'e-3.
Artists concept of the rocket assisted landing of China’s lunar probe Chang’e-3.

China now joins an elite club of three, including the United States, who have mastered the critical technology required to successfully touch down on Earth’s nearest neighbor.

China’s space vision also stands in total contrast to the utter lack of vision emanating from so called political leaders in Washington, DC who stymie NASA and US science at every opportunity!

‘Yutu’ could very well serve as a forerunner for testing the key technologies required for a Chinese manned lunar landing in the next decade.

In one of its first acts from the surface, the landers life giving solar panels were deployed as planned within minutes of touchdown

The Chang’e-3 mission is comprised of China’s ‘Yutu’ lunar lander riding piggyback atop a much larger four legged landing vehicle.

The Chang’e-3 lander transmitted its first images of the moon in real time during its approach to the lunar surface during the final stages of the ongoing landing operation carried live by CCTV.

A total of 59 images were received instead of the 10 expected, said a CCTV commentator.

The voyage from the Earth to the Moon began 12 days ago with the flawless launch of Chang’e-3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.

Chang’e-3 made a rocket powered descent to the Moon’s surface today by firing the landing thrusters starting at the altitude of 15 km (9 mi) for a soft landing targeted to a preselected area on the Bay of Rainbows.

The powered descent was autonomous and took about 12 minutes.

The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons. It was the biggest ever used by China in space said a commentator on CCTV.

The variable thrust engine enabled Chang’e-3 to reduce its deceleration as it approached the moon.

The descent was preprogrammed and controlled by the probe itself, not from the ground.

A descent camera was mounted on the lander’s belly

The 1200 kg lander is equipped with unprecedented terrain recognition equipment and software to hover above the landing site and confirm it was safe. This enabled the craft to avoid rock and boulder fields that could spell catastrophe even in the final seconds before touchdown if the vehicle were to land directly on top of them.

The descent engine fired until the lander was about hovering 100 meters above the lunar surface.

After determining it was safe to proceed, the lander descended further to about 3 meters. The engine then cut off and the lander free fell the remaining distance. The impact was cushioned by shock absorbers.

The solar panels soon unfurled. They are the most efficient Chinese solar panels available, said a CCTV commentator.

The Bay of Rainbows, or Sinus Iridum region, is located in the upper left portion of the moon as seen from Earth. You can see the landing site with your own eyes.

It was imaged in high resolution by China’s prior lunar mission – the Chang’e-2 lunar orbiter – and is shown in graphics herein.

The Yutu rover is also unfurling its solar panels and mast today.

Yutu, which translates as Jade Rabbit, stands 150 centimeters high, or nearly 5 feet – human height.

It weighs approximately 120 kilograms and sports a robotic arm equipped with advanced science instruments.

On Sunday, the six-wheeled ‘Yutu’ rover with a rocker bogie suspension similar to NASA’s Mars rovers will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain for at least three months.

In what promises to be a space spectacular, the lander and rover are expected to photograph one another soon after Yutu rolls onto the Bay of Rainbows.

They will work independently.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail, according to Ouyang Ziyuan, senior advisor of China’s lunar probe project, in an interview on CCTV.

The Chang’e-3 lander is powered by a combination of solar arrays and a nuclear battery said CCTV, in order to survive the two week long lunar nights.

Chinese space officials expect the lander will function a minimum of 1 year.

ESA’s network of tracking stations are providing crucial support to China for Chang’e-3 from launch to landing.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

China's lunar probe Chang'e-3 is expected to land on Sinus Iridum (Bay of Rainbows) of the moon in mid-December 2013. Credit: Xinhua
China’s lunar probe Chang’e-3 landed on Sinus Iridum (Bay of Rainbows) of the moon on 14 December 2013. Credit: Xinhua

China’s Chang’e-3 Moon Rover Descends to Lower Orbit Sets Up Historic Soft Landing

China's lunar probe Chang'e-3 is expected to land on Sinus Iridum (Bay of Rainbows) of the moon in mid-December 2013. Credit: Xinhua

All systems appear to be “GO” for the world’s first attempt to soft land a space probe on the Moon in nearly four decades.

China’s maiden moon landing probe – Chang’e-3 – is slated to attempt the history making landing this weekend on a lava plain in the Bay of Rainbows, or Sinus Iridum region.

Chinese space engineers at the Beijing Aerospace Control Center (BACC) paved the way for the historic touchdown by successfully commanding Chang’e-3 to descend from the 100 km-high lunar circular orbit it reached just one week ago on Dec. 6, to “an elliptical orbit with its nearest point about 15 km away from the moon’s surface”, according to a statement from China’s State Administration of Science, Technology and Industry for National Defense (SASTIND).

UPDATE: CCTV is providing live landing coverage

The first pictures taken from the alien lunar surface in some 37 years are expected to be transmitted within days or hours of touchdown planned as early as Saturday, Dec. 14, at 9:40 p.m. Beijing local time, 8:40 a.m. EST.

CCTV, China’s state run network, carried the launch live. It remains to be seen whether they will have live coverage of the landing since there have been no programming announcements.

SASTIND said the orbit lowering thruster firing was “conducted above the dark side of the moon at 9:20 p.m.” on Dec. 10, Beijing local time.

Confirmation of the Chang’e-3 probes new, lower orbit was received four minutes later.

China's lunar probe Chang'e-3 entered an orbit closer to the moon on Dec. 10, 2013. (Xinhua)
China’s lunar probe Chang’e-3 entered an orbit closer to the moon on Dec. 10, 2013. Credit: Xinhua

If successful, the Chang’e-3 mission will mark the first soft landing on the Moon since the Soviet Union’s unmanned Luna 24 sample return vehicle landed back in 1976.

China would join an elite club of three, including the United States, who have mastered the critical technology to successfully touch down on Earth’s nearest neighbor.

The Chang’e-3 mission is comprised of China’s ‘Yutu’ lunar lander riding piggyback atop a much larger four legged landing probe.

Artists concept of the Chinese Chang'e 3 lander and rover on the lunar surface.  Credit: Beijing Institute of Spacecraft System Engineering
Artists concept of the Chinese Chang’e-3 lander and rover on the lunar surface. Credit: Beijing Institute of Spacecraft System Engineering

The voyage from the Earth to the Moon began 12 days ago with the flawless launch of Chang’e-3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.

Chang’e-3 will make a powered descent to the Moon’s surface on Dec. 14 by firing the landing thrusters at the altitude of 15 km (9 mi) for a soft landing in a preselected area on the Bay of Rainbows.

The powered descent will take about 12 minutes.

The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons, according to Xinhua.

The Bay of Rainbows is located in the upper left portion of the moon as seen from Earth. It was imaged in high resolution by China’s prior lunar mission – the Chang’e-2 lunar orbiter.

The 1200 kg lander is equipped with terrain recognition equipment and software to avoid rock and boulder fields that could spell catastrophe even in the final seconds before touchdown if the vehicle were to land directly on top of them.

Chang’e-3 is powered by a combination of solar arrays and a nuclear device in order to survive the two week long lunar nights.

The six-wheeled ‘Yutu’ rover, with a rocker bogie suspension, will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain.

Yutu measures 150 centimeters high and weighs approximately 120 kilograms and sports a robotic arm equipped with science instruments.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer