While asking questions about habitability on Mars, one thing that scientists also need to consider is whether it’s safe enough for humans to even do exploration there. Radiation is definitely a big factor — in a press conference yesterday (Dec. 9) for the American Geophysical Union’s conference, scientists said the environment is unlike anything we are used to naturally on Earth.
Radiation on Mars comes from two sources: galactic cosmic rays (over the long term) and solar energetic particles (in short bursts of activity when the sun gets super-active). Of note, the sun has had a muted peak to its solar cycle, so that’s affecting the expected amount of particles on Mars. But the Mars Curiosity rover, in its first 300 Earth days of roaming, has plenty of data on galactic cosmic rays.
On the Martian surface, the average dose is about 0.67 millisieverts (mSv) per day, at least between the measurement period of August 2012 and June 2013. The journey to Mars had a dose of 1.8 mSv per day inside the spaceship. So what does that means for NASA’s human health consideration concerns?
With a 500-day trip on the surface and the journey to and from Mars (which would take 180 days each way), NASA is saying the total dosage for the mission would be about 1 Sv. Population studies over the long term have shown that increases the fatal cancer risk by 5%. Current NASA guidelines for low-Earth orbit don’t allow for a more than 3% increase, but 1 Sv is within the guidelines for several other space agencies.
But don’t rule out the trip to Mars yet, NASA states: “[NASA] does not currently have a limit for deep space missions, and is working with the National Academies Institute of Medicine to determine appropriate limits for deep space missions, such as a mission to Mars in the 2030s.”
Besides, other entities are thinking about going, such as Mars One.
Read more about the radiation findings in this Dec. 9 article on Science. The research was led by Don Hassler, a Southwest Research Institute program director and principal investigator of Curiosity’s radiation assessment detector (RAD).
NASA’s Curiosity rover has discovered evidence that an ancient Martian lake had the right chemical ingredients that could have sustained microbial life forms for long periods of time – and that these habitable conditions persisted on the Red Planet until a more recent epoch than previously thought.
Furthermore researchers have developed a novel technique allowing Curiosity to accurately date Martian rocks for the first time ever – rather than having to rely on educated guesses based on counting craters.
All that and more stems from science results just announced by members of the rover science team.
Researchers outlined their remarkable findings in a series of six new scientific papers published today (Dec. 9) in the highly respected journal Science and at talks held today at the Fall 2013 Annual Meeting of the American Geophysical Union (AGU) in San Francisco.
The Curiosity team also revealed that an investigation of natural Martian erosion processes could be used to direct the rover to spots with a higher likelihood of holding preserved evidence for the building blocks of past life – if it ever existed.
The ancient fresh water lake at the Yellowknife Bay area inside the Gale Crater landing site explored earlier this year by Curiosity existed for periods spanning perhaps millions to tens of millions of years in length – before eventually evaporating completely after Mars lost its thick atmosphere.
Furthermore the lake may have existed until as recently as 3.7 Billion years ago, much later than researchers expected which means that life had a longer and better chance of gaining a foothold on the Red Planet before it was transformed into its current cold, arid state.
Researchers also announced that they are shifting the missions focus from searching for habitable environments to searching for organic molecules – the building blocks of all life as we know it.
Why the shift? Because the team believes they have found a way to increase the chance of finding organics preserved in the sedimentary rock layers.
“Really what we’re doing is turning the corner from a mission that is dedicated to the search for habitable environments to a mission that is now dedicated to the search for that subset of habitable environments which also preserves organic carbon,” Curiosity Principal Investigator John Grotzinger, of the California Institute of Technology in Pasadena, said at an AGU press conference today.
“That’s the step we need to take as we explore for evidence of life on Mars.”
Earlier this year, Curiosity drilled into a pair of sedimentary Martian mudstone rock outcrops at Yellowknife Bay known as “John Klein” and “Cumberland” – for the first time in history.
Grotzinger said the ancient lake at Yellowknife Bay was likely about 30 miles long and 3 miles wide.
Powdered samples deposited into the rovers miniaturized chemistry labs – SAM and CheMin – revealed the presence of significant levels of phyllosilicate clay minerals.
These clay minerals form in neutral pH water that is ‘drinkable” and conducive to the formation of life.
“Curiosity discovered that the fine-grained sedimentary rocks preserve evidence of an environment that would have been suited to support a Martian biosphere founded on chemolithoautotrophy,” according to one of the science papers co-authored by Grotzinger.
“This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species.”
The rover has detected key elements required for life including carbon, hydrogen, oxygen, sulfur nitrogen and phosphorous.
The team is still looking for signatures of organic molecules.
Right now the researchers are driving Curiosity along a 6 mile path to the base of Mount Sharp -the primary mission destination – which they hope to reach sometime in Spring 2014.
But along the way they hope to stop at a spot where wind has eroded the sedimentary rocks just recently enough to expose an area that may still preserve evidence for organic molecules – since it hasn’t been bombarded by destructive cosmic radiation for billions of years.
Stay tuned here for Ken’s continuing Curiosity, Chang’e 3, LADEE, MAVEN and MOM news.
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]
KENNEDY SPACE CENTER, FL – The heat shield crucial to the success of NASA’s 2014 Orion test flight has arrived at the Kennedy Space Center (KSC) aboard the agency’s Super Guppy aircraft – just spacious enough to fit the precious cargo inside.
Orion is currently under development as NASA’s next generation human rated vehicle to replace the now retired space shuttle. The heat shields advent is a key achievement on the path to the spacecraft’s maiden flight.
“The heat shield which we received today marks a major milestone for Orion. It is key to the continued assembly of the spacecraft,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told Universe Today during an interview at the KSC shuttle landing facility while the offloading was in progress.
The inaugural flight of Orion on the unmanned Exploration Flight Test – 1 (EFT-1) mission is scheduled to blast off from the Florida Space Coast in mid September 2014 atop a Delta 4 Heavy booster, Wilson told me.
The heat shield was flown in from Textron Defense Systems located near Boston, Massachusetts and offloaded from the Super Guppy on Dec. 5 as Universe Today observed the proceedings along with top managers from NASA and Orion’s prime contractor Lockheed Martin.
“The Orion heat shield is the largest of its kind ever built. Its wider than the Apollo and Mars Science Laboratory heat shields,” Todd Sullivan told Universe Today at KSC. Sullivan is the heat shield senior manager at Lockheed Martin.
The state-of-the-art Orion crew capsule will ultimately enable astronauts to fly to deep space destinations including the Moon, Asteroids, Mars and beyond – throughout our solar system.
The heat shield was one of the last major pieces of hardware needed to complete Orion’s exterior structure.
“Production of the heat shields primary structure that carries all the loads began at Lockheed Martin’s Waterton Facility near Denver,” said Sullivan. The titanium composite skeleton and carbon fiber skin were manufactured there to give the heat shield its shape and provide structural support during landing.
“It was then shipped to Textron in Boston in March,” for the next stage of assembly operations, Sullivan told me.
“They applied the Avcoat ablater material to the outside. That’s what protects the spacecraft from the heat of reentry.”
Textron technicians just completed the final work of installing a fiberglass-phenolic honeycomb structure onto the heat shield skin. Then they filled each of the honeycomb’s 320,000 cells with the ablative material Avcoat.
Each cell was X-rayed and sanded to match Orion’s exacting design specifications.
“Now we have about two and a half months of work ahead to prepare the Orion crew module before the heat shield is bolted on and installed,” Sullivan explained.
The Avcoat-treated shell will shield Orion from the extreme heat of nearly 4000 degrees Fahrenheit it experiences during the blazing hot temperatures it experiences as it returns at high speed to Earth. The ablative material will wear away as it heats up during the capsules atmospheric re-entry thereby preventing heat from being transferred to the rest of the capsule and saving it and the human crew from utter destruction.
“Testing the heat shield is one of the prime objectives of the EFT-1 flight,” Wilson explained.
“The Orion EFT-1 capsule will return at over 20,000 MPH,” Wilson told me. “That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions.”
“The big reason to get to those high speeds during EFT-1 is to be able to test out the thermal protection system, and the heat shield is the biggest part of that.”
The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
“Numerous sensors and instrumentation have been specially installed on the EFT-1 heat shield and the back shell tiles to collect measurements of things like temperatures, pressures and stresses during the extreme conditions of atmospheric reentry,” Wilson explained.
The data gathered during the unmanned EFT-1 flight will aid in confirming. or refuting, design decisions and computer models as the program moves forward to the first flight atop NASA’s mammoth SLS booster in 2017 on the EM-1 mission and human crewed missions thereafter.
“I’m very proud of the work we’ve done, excited to have the heat shield here [at KSC] and anxious to get it installed,” Sullivan concluded.
Stay tuned here for continuing Orion, Chang’e 3, LADEE, MAVEN and MOM news and Ken’s reports from on site at Cape Canaveral & the Kennedy Space Center press site.
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
China’s maiden moon landing probe successfully entered lunar orbit on Friday, Dec. 6, following Sunday’s (Dec. 1) spectacular blastoff – setting the stage for the historic touchdown attempt in mid December.
Engineer’s at the Beijing Aerospace Control Center (BACC) commanded the Chang’e 3 lunar probe to fire its braking thrusters for 361 seconds, according to China’s Xinhua news agency.
The do or die orbital insertion maneuver proceeded precisely as planned at the conclusion of a four and a half day voyage to Earth’s nearest neighbor.
China’s ‘Yutu’ lunar lander is riding piggyback atop the four legged landing probe during the history making journey from the Earth to the Moon.
The critical engine burn placed Chang’e 3 into its desired 100 kilometer (60 mi.) high circular orbit above the Moon’s surface at 5:53 p.m. Friday, Beijing Time (4:53 a.m. EST).
An engine failure would have doomed the mission.
Chang’e 3 is due to make a powered descent to the Moon’s surface on Dec. 14, firing the landing thrusters at an altitude of 15 km (9 mi) for a soft landing in a preselected area called the Bay of Rainbows or Sinus Iridum region.
The Bay of Rainbows is a lava filled crater located in the upper left portion of the moon as seen from Earth. It is 249 km in diameter.
The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons, according to Xinhua.
The lander is equipped with terrain recognition equipment and software to avoid rock and boulder fields that could spell catastrophe in the final seconds before touchdown if vehicle were to land directly on top of them.
The voyage began with the flawless launch of Chang’e 3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.
If successful, the Chang’e 3 mission will mark the first soft landing on the Moon since the Soviet Union’s unmanned Luna 24 sample return vehicle landed nearly four decades ago back in 1976.
The name for the ‘Yutu’ rover – which means ‘Jade Rabbit’ – was chosen after a special naming contest involving a worldwide poll and voting to select the best name.
‘Yutu’ stems from a Chinese fairy tale, in which the goddess Chang’e flew off to the moon taking her little pet Jade rabbit with her.
The six-wheeled ‘Yutu’ rover will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain.
Yutu measures 150 centimeters high and weighs approximately 120 kilograms.
The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, radar and other sensors to investigate the lunar surface and composition.
Chang’e 3 marks the beginning of the second phase of China’s lunar robotic exploration program.
The lander follows a pair of highly successful lunar orbiters named Chang’e 1 and 2 which launched in 2007 and 2010.
The next step will be an unmanned lunar sample return mission, perhaps by 2020.
China’s Chang’e 3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a similarly spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.
Stay tuned here for continuing Chang’e 3, LADEE, MAVEN and MOM news and Ken’s SpaceX and MAVEN launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
A raging hurricane is creating a “suck zone” at Saturn’s north pole. The handy Cassini spacecraft recently captured a bunch of images of the six-sided jet stream surrounding the storm, which mission managers then put together into an awesome animation showing the wind currents shifting. (You can see the animation below the jump.)
The feature is pretty in a picture, but NASA has a special interest because there is nothing else like this anywhere in our solar system, the agency stated. The immense storm stretches 20,000 miles (30,000 kilometers) across with winds whipping in its jet stream at 200 miles per hour (322 kilometers per hour). And despite all the turbulence, the storm is staying put at the north pole for reasons scientists are still trying to understand.
“The hexagon is just a current of air, and weather features out there that share similarities to this are notoriously turbulent and unstable,” said Andrew Ingersoll, a Cassini imaging team member at the California Institute of Technology in Pasadena. “A hurricane on Earth typically lasts a week, but this has been here for decades — and who knows — maybe centuries.”
Cassini has been orbiting Saturn since 2004, but it’s only since last year that it’s been able to peer at the hexagon with much success. That’s because the angle of the sun is finally favorable to peer at the storm. This has allowed scientists, for example, to look at the types of particles inside. They discovered that the jet stream is a sort of barrier around the storm, delineating a location with a lot of small haze particles and few large haze particles. (It’s the opposite outside of the jet stream). Scientists said it looks like the Antarctic ozone hole on Earth.
“The Antarctic ozone hole forms within a region enclosed by a jet stream with similarities to the hexagon,” NASA stated.
“Wintertime conditions enable ozone-destroying chemical processes to occur, and the jet stream prevents a resupply of ozone from the outside. At Saturn, large aerosols cannot cross into the hexagonal jet stream from outside, and large aerosol particles are created when sunlight shines on the atmosphere. Only recently, with the start of Saturn’s northern spring in August 2009, did sunlight begin bathing the planet’s northern hemisphere.”
Should Cassini have enough funding to function for a few more years, scientists are eager to watch as Saturn gets to its summer solstice in 2017 and the lighting gets even better around the north pole.
NASA also held an interesting Google+ Hangout yesterday (Nov. 4) about Saturn and the Cassini mission that featured Carolyn Porco, director of the Cassini Imaging Team and the Cassini Imaging Central Laboratory for Operations (CICLOPS). The whole video below is worth a watch, but here’s a little tidbit to let you know some of what was talked about:
“If you took all the mass of Saturn’s rings and recomposed it into a moon, it would be no bigger than Enceladus, so it’s a big spectacle coming from little mass,” Porco said. “The main rings are very thin, only about 30 feet [9 meters] thick, no bigger than about 2 stories in a modern day building. Despite the fact they are about 280,000 km [174,000 miles] across.”
CAPE CANAVERAL AIR FORCE STATION, FL – The flawless blastoff of SpaceX’s next generation Falcon 9 rocket on Tuesday Dec. 3 put on a spectacular sky show along the Florida Space Coast that was both beautiful and unforgettable – besides being truly historic as the firms first ever delivery of a commercial space satellite to the lucrative market of geostationary orbit.
For your enjoyment here’s a collection of photos and videos from fellow space photojournalists of the 5:41 p.m. EST sunset launch from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, FL.
Following a pair of launch scrubs last week on Nov. 25 and Thanksgiving Day Nov. 28 caused by issues with the powerful new Merlin 1-D first stage engines, the third time was fat last the charm as the Falcon 9 blasted precisely at the opening of the 86 minute launch window.
Launch Video
Stay tuned here for continuing SpaceX & MAVEN news and Ken’s SpaceX and MAVEN launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.
The next few years will be banner ones for learning about dwarf planets. While the high-profile New Horizons spacecraft zooms towards a Pluto date in 2015, the Dawn spacecraft is making a more stealthy (in terms of media coverage) run at Ceres, which is the smallest and closest dwarf planet to Earth.
The Dawn spacecraft, as readers likely recall, made its first port of call at fellow protoplanet Vesta. What excites scientists this time around is the likelihood of water ice on Ceres’ surface. Vesta, by contrast, was very dry.
Here’s Dawn’s agenda once it gets to Ceres in April 2015:
“Dawn will make its first full characterization of Ceres later in April, at an altitude of about 8,400 miles (13,500 kilometers) above the icy surface. Then, it will spiral down to an altitude of about 2,750 miles (4,430 kilometers), and obtain more science data in its survey science orbit. This phase will last for 22 days, and is designed to obtain a global view of Ceres with Dawn’s framing camera, and global maps with the visible and infrared mapping spectrometer (VIR),” NASA stated.
“Dawn will then continue to spiral its way down to an altitude of about 920 miles (1,480 kilometers), and in August 2015 will begin a two-month phase known as the high-altitude mapping orbit. During this phase, the spacecraft will continue to acquire near-global maps with the VIR and framing camera at higher resolution than in the survey phase. The spacecraft will also image in ‘stereo’ to resolve the surface in 3-D.”
Dawn will then zoom down to an altitude of just 233 miles (375 kilometers) in November 2015 for three months to obtain information about elements and the dwarf planet’s gravity. Dawn will use its Gamma Ray and Neutron Detector (GRaND) to do the first part and a gravity experiment to perform the second.
To conserve fuel, Dawn will also use a “hybrid” pointing control method to keep it on track, using both reaction wheels and thrusters to stay in the right direction. This is needed because two of its four reaction wheels had “developed excessive friction” by the time Dawn departed Vesta. The hybrid method was tested for 27 hours and successfully concluded Nov. 13. You can check out more about the hybrid mode at this link.
CAPE CANAVERAL AIR FORCE STATION, FL – SpaceX scored a spectacular launch success this evening (Dec. 3 ) when the maiden flight of their upgraded Falcon 9 rocket from Florida scorched the sky of the Florida Space Coast and successfully delivered a commercial space satellite to geostationary orbit for the first time ever – thereby revolutionizing the commercial space industry from this day forward.
The third time was finally the charm as the Falcon 9 blasted off precisely on time at 5:41 p.m. EST from Launch Complex 40 at Cape Canaveral following a pair of launch scrubs last week on Nov. 25 and Thanksgiving Day Nov. 28 caused by technical problems with the first stage engine.
The booster thundered off the pad and pierced the completely cloud free evening sky soon after sunset as the blistering roar rumbled deafeningly all across the space coast viewing area.
The rocket exhaust plume was easily visible for several minutes after liftoff of the historic mission.
The 3,138 kg (6,918 lbs) SES-8 satellite was built by Orbital Sciences for SES and is a hybrid Ku- and Ka-band spacecraft that will provide TV and communications coverage for the South Asia and Asia Pacific regions.
This new version of the Falcon 9 rocket has nearly 50% more thrust compared to the original Falcon 9.
The stakes could not have been higher for the future of SpaceX.
The firms future launch manifest of more than 50 flights for NASA and a variety of commercial entities worth billions of dollars were riding on the success of tonight’s liftoff from Cape Canaveral Air Force Station, Florida.
With 54 satellites in orbit SES is one of the largest commercial telecommunications satellite operators in the world.
The next generation Falcon 9 rocket injected the SES-8 telecommunications to its targeted geostationary transfer orbit flying 295 x 80,000 km above Earth.
A restart of the second stage engine was absolutely essential to the success of the mission since a failure to ignite would have doomed the SES-8 satellite from reaching is desired orbit since it’s a requirement for all geostationary transfer missions.
The picture-perfect flight met 100% of the mission objectives, SpaceX said in a post-launch statement.
“The successful insertion of the SES-8 satellite confirms the upgraded Falcon 9 launch vehicle delivers to the industry’s highest performance standards,” said Elon Musk, CEO and Chief Designer of SpaceX.
“As always, SpaceX remains committed to delivering the safest, most reliable launch vehicles on the market today. We appreciate SES’s early confidence in SpaceX and look forward to launching additional SES satellites in the years to come.”
Today’s launch marked SpaceX’s first commercial launch from Florida as well as the first commercial flight from Cape Canaveral Air Force Station in over five years.
Satellite operators have booked their commercial launches with other rocket companies overseas due to the high cost of other American expendable rockets.
SpaceX’s entire corporate aim has been to significantly cut the high cost of access to space.
With today’s SpaceX is sure to sign even more contracts bringing additional commercial telecommunications satellite space launches back to American soil.
Approximately 185 seconds into flight, the Falcon 9’s second stage equipped with a single Merlin 1-D engine ignited.
It burned for five minutes and 20 seconds to inject SES-8 satellite into its initial parking orbit.
Eighteen minutes later the second stage engine relit for a second time and fired for just over one minute to deliver SES-8 satellite to its final geostationary transfer orbit.
This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.
The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.
Stay tuned here for continuing SpaceX & MAVEN news and Ken’s SpaceX launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.
Learn more about SpaceX, MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations
Dec 3/4: “SpaceX launch, MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
CAPE CANAVERAL, FL – Today (Dec. 3) marks the 3rd attempt by SpaceX to launch the maiden flight of their significantly upgraded Falcon 9 rocket with the SES-8 telecommunications satellite – following the Nov. 28 ‘Thanksgiving = Spacegiving Day’ scrub due to an aborted 1st stage engine firing in progress.
And the stakes could not be higher for the future of SpaceX – with the firms future launch manifest worth billions of dollars riding on the success of today’s liftoff from Cape Canaveral Air Force Station, Florida.
In an unprecedented launch event for SpaceX, the upper stage engine on the next generation Falcon 9 booster absolutely must restart in flight for a second time in order for the commercial SES-8 payload to be delivered to geostationary transfer orbit (GTO).
Blastoff from Cape Canaveral’s seaside Space Launch Complex 40 is set for 5:41 p.m. EST (2241 GMT).
The Thanksgiving Day launch was aborted by the computers when the Marlin engines thrust failed to build up as fast as planned.
The weather forecast currently shows a 90% chance of favorable conditions at liftoff time according to Air Force meteorologists. The only concern is for winds.
The launch of SES-8 is a milestone marking the first ever attempt by SpaceX to place a satellite into the geostationary orbit replete with numerous high value commercial satellites. This is the doorway to the future profitability of SpaceX.
“I don’t want to tempt fate, but I think it’s going to have a pretty significant impact on the world launch market and on the launch industry because our prices are the most competitive of any in the world,” said SpaceX CEO and chief designer Elon Musk at a prelaunch briefing for media including Universe Today in Cocoa Beach, FL.
For the mission to be declared a success, the upper stage engine must reignite precisely as planned about 27 minutes after liftoff and burn for approximately 1 minute to successfully propel SES-8 into the propel orbit about 33 minutes after launch.
“Whether or not this launch is successful, I’m confident we will certainly make it on some subsequent launch,” said Musk.
“This is really rocking the industry. Everybody has to look out,” said Martin Halliwell, SES chief technical officer, who joined Musk at the prelaunch meeting.
The upgraded Falcon 9 will also be the launcher utilized for the manned SpaceX Dragon capsules launching to the ISS sometime later this decade!
And the very next satellite set for launch by SpaceX later in December – Thaicom 6- is essentially already waiting at the door to the onramp to space.
SpaceX plans a live broadcast of the Falcon 9 liftoff from pad 40 on Cape Canaveral Air Force Station, FL beginning at 5 p.m. EST.
It can be viewed here: www.spacex.com/webcast
The show will feature commentary about the Falcon 9 rocket and launch sequences and the SES-8 commercial satellite from SpaceX corporate headquarters in Hawthorne, CA.
The Falcon 9/SES-8 launch window extends for 86 minutes until 7:07 p.m. EST.
The 3,138 kg (6,918 lbs) SES-8 satellite is a hybrid Ku- and Ka-band spacecraft that will provide TV and communications coverage for the South Asia and Asia Pacific regions.
This mighty new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level that rises to 1.5 million pounds as the rocket climbs to orbit
The Merlin 1-D engines are arrayed in an octaweb layout for improved efficiency.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to 13 stories for the original Falcon 9.
Stay tuned here for continuing SpaceX & MAVEN news and Ken’s SpaceX launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.
Liftoff of China’s first ever lunar rover on Dec. 2 local Beijing time from the Xichang Satellite Launch Center, China. Credit: CCTV
Story updated See stunning launch video and rover deployment animation below[/caption]
CAPE CANAVERAL, FL – China successfully launched its first ever lunar rover bound for the Moon’s surface aboard a Long March rocket today at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center in southwest China.
The spectacular night time blastoff of the Long March-3B carrier rocket with the ‘Yutu’ rover was carried live on China’s state run CCTV enabling viewers worldwide to watch the dramatic proceedings as they occurred in real time – including fantastic imagery of booster jettison, spacecraft separation, thruster firings and exquisite views of Earth from cameras aboard the booster.
See the stunning launch video below.
Video caption: China’s Chang’e-3 Lunar Probe Launch on Dec 2, 2013. Credit: CCTV
The entire flight sequence proceeded flawlessly and placed the combined Chang’e 3 lunar landing vehicle and ‘Yutu’ rover on the desired earth-moon transfer orbit following spacecraft separation and unfurling of the life giving solar panels and landing legs, announced Zhang Zhenzhong, director of the Xichang center.
“The Chang’e probe is on its way to the moon, of course, is a symbol of China’s national prowess,” said Zhang Zhenzhong through a translator during the live CCTV broadcast. “Of course, it’s a symbol of China’s national power and prowess.”
The three stage 55 meter (185 foot) tall Long March-3B carrier rocket was uniquely equipped with a quartet of strap on liquid fueled boosters to provide the additional liftoff thrust required for the four day journey to Earth’s Moon.
The name for the ‘Yutu’ rover – which translates as ‘Jade Rabbit’ – was chosen after a special naming contest involving a worldwide poll and voting to select the best name.
‘Yutu’ stems from a Chinese fairy tale, in which the goddess Chang’e flew off to the moon taking her little pet Jade rabbit with her.
The Chang’e 3 lander will fire thrusters to enter lunar orbit on Dec. 6.
It is due to make a powered descent to the lunar surface on Dec. 14, firing thrusters at an altitude of 15 km (9 mi) for touchdown in a preselected area called the Bay of Rainbows or Sinus Iridum region.
If successful, the Chang’e 3 mission will mark the first soft landing on the Moon since the Soviet Union’s unmanned Luna 24 sample return vehicle landed nearly four decades ago back in 1976.
‘Yutu’ is sitting atop the 4 legged landing probe during the launch and voyage to the Moon.
A complex maneuver will be used to deploy the six-wheeled ‘Jade Rabbit’ rover. It will be lowered in stages to the moon’s surface and then drive off a pair of landing ramps to explore the moon’s terrain.
Watch this short CCTV news report with a cool animation showing how the ‘Yutu’ rover reaches the lunar surface.
‘Jade Rabbit’ measures 150 centimeters high and weighs approximately 120 kilograms.
The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, radar and other sensors to investigate the lunar surface and composition.
One highly anticipated highlight will be when the lander and deployed Jade Rabbit rover image each other on the surface.
The rover is expected to continue operating for at least three months.
The Chang’e 3 landing mission marks the beginning of the second phase of China’s lunar robotic exploration program.
It follows a pair of highly successful lunar orbiters named Chang’e 1 and 2 which launched in 2007 and 2010.
The next step will be an unmanned lunar sample return mission, perhaps around 2020.
Stay tuned here for continuing SpaceX, MAVEN and MOM news and Ken’s SpaceX and MAVEN launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.